Gradual Response of Cyanobacterial Thylakoids to Acute High-Light Stress-Importance of Carotenoid Accumulation

. 2021 Jul 28 ; 10 (8) : . [epub] 20210728

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34440685

Grantová podpora
854126 European Research Council - International
19-11494S Grantová Agentura České Republiky

Light plays an essential role in photosynthesis; however, its excess can cause damage to cellular components. Photosynthetic organisms thus developed a set of photoprotective mechanisms (e.g., non-photochemical quenching, photoinhibition) that can be studied by a classic biochemical and biophysical methods in cell suspension. Here, we combined these bulk methods with single-cell identification of microdomains in thylakoid membrane during high-light (HL) stress. We used Synechocystis sp. PCC 6803 cells with YFP tagged photosystem I. The single-cell data pointed to a three-phase response of cells to acute HL stress. We defined: (1) fast response phase (0-30 min), (2) intermediate phase (30-120 min), and (3) slow acclimation phase (120-360 min). During the first phase, cyanobacterial cells activated photoprotective mechanisms such as photoinhibition and non-photochemical quenching. Later on (during the second phase), we temporarily observed functional decoupling of phycobilisomes and sustained monomerization of photosystem II dimer. Simultaneously, cells also initiated accumulation of carotenoids, especially ɣ-carotene, the main precursor of all carotenoids. In the last phase, in addition to ɣ-carotene, we also observed accumulation of myxoxanthophyll and more even spatial distribution of photosystems and phycobilisomes between microdomains. We suggest that the overall carotenoid increase during HL stress could be involved either in the direct photoprotection (e.g., in ROS scavenging) and/or could play an additional role in maintaining optimal distribution of photosystems in thylakoid membrane to attain efficient photoprotection.

Zobrazit více v PubMed

Strašková A., Steinbach G., Konert G., Kotabová E., Komenda J., Tichý M., Kaňa R. Pigment-protein complexes are organized into stable microdomains in cyanobacterial thylakoids. Biochim. Biophys. Acta (BBA)-Bioenerg. 2019;1860 doi: 10.1016/j.bbabio.2019.07.008. PubMed DOI

Ruban A.V., Young A.J., Pascal A.A., Horton P. The Effects of lllumination on the Xanthophyll Composition of the Photosystem II Light-Harvesting Complexes of Spinach Thylakoid Membranes. Plant Physiol. 1994;104:227–234. doi: 10.1104/pp.104.1.227. PubMed DOI PMC

Casella S., Huang F., Mason D., Zhao G.Y., Johnson G.N., Mullineaux C.W., Liu L.N. Dissecting the Native Architecture and Dynamics of Cyanobacterial Photosynthetic Machinery. Mol Plant. 2017;10:1434–1448. doi: 10.1016/j.molp.2017.09.019. PubMed DOI PMC

Grigoryeva N., Chistyakova L. Fluorescence Microscopic Spectroscopy for Investigation and Monitoring of Biological Diversity and Physiological State of Cyanobacterial Cultures. Cyanobacteria. Rij. IntechOpen. 2018:11–43. doi: 10.5772/intechopen.78044. DOI

Konert G., Steinbach G., Canonico M., Kaňa R. Protein arrangement factor: A new photosynthetic parameter characterizing the organization of thylakoid membrane proteins. Physiol Plant. 2019;166:264–277. doi: 10.1111/ppl.12952. PubMed DOI

Canonico M., Konert G., Kaňa R. Plasticity of Cyanobacterial Thylakoid Microdomains Under Variable Light Conditions. Front. Plant Sci. 2020;11 doi: 10.3389/fpls.2020.586543. PubMed DOI PMC

Andersson B., Anderson J.M. Lateral heterogeneity in the distribution of chlorophyll-protein complexes of the thylakoid membranes of spinach chloroplasts. Biochim. Biophys. Acta. 1980;593:427–440. doi: 10.1016/0005-2728(80)90078-X. PubMed DOI

Albertsson P. A quantitative model of the domain structure of the photosynthetic membrane. Trends Plant Sci. 2001;6:349–358. doi: 10.1016/S1360-1385(01)02021-0. PubMed DOI

Ruban A.V., Johnson M.P. Visualizing the dynamic structure of the plant photosynthetic membrane. Nat. Plants. 2015;1:15161. doi: 10.1038/nplants.2015.161. PubMed DOI

Vermaas W.F.J., Timlin J.A., Jones H.D.T., Sinclair M.B., Nieman L.T., Hamad S.W., Melgaard D.K., Haaland D.M. In vivo hyperspectral confocal fluorescence imaging to determine pigment localization and distribution in cyanobacterial cells. Proc. Natl. Acad. Sci. USA. 2008;105:4050–4055. doi: 10.1073/pnas.0708090105. PubMed DOI PMC

Sherman D.M., Troyan T.A., Sherman L.A. Localization of membrane-proteins in the cyanobacterium synechococcus sp pcc7942-radial asymmetry in the photosynthetic complexes. Plant Physiol. 1994;106:251–262. doi: 10.1104/pp.106.1.251. PubMed DOI PMC

Huokko T., Ni T., Dykes G.F., Simpson D.M., Brownridge P., Conradi F.D., Beynon R.J., Nixon P.J., Mullineaux C.W., Zhang P., et al. Probing the biogenesis pathway and dynamics of thylakoid membranes. Nat. Commun. 2021;12:3475. doi: 10.1038/s41467-021-23680-1. PubMed DOI PMC

Mahbub M., Hemm L., Yang Y., Kaur R., Carmen H., Engl C., Huokko T., Riediger M., Watanabe S., Liu L.N., et al. mRNA localization, reaction centre biogenesis and thylakoid membrane targeting in cyanobacteria. Nat. Plants. 2020;6:1179–1191. doi: 10.1038/s41477-020-00764-2. PubMed DOI

Mullineaux C.W., Liu L.-N. Membrane Dynamics in Phototrophic Bacteria. Annu. Rev. Microbiol. 2020;74:633–654. doi: 10.1146/annurev-micro-020518-120134. PubMed DOI

Sarcina M., Bouzovitis N., Mullineaux C.W. Mobilization of photosystem II induced by intense red light in the cyanobacterium Synechococcus sp PCC7942. Plant Cell. 2006;18:457–464. doi: 10.1105/tpc.105.035808. PubMed DOI PMC

Tamary E., Kiss V., Nevo R., Adam Z., Bernat G., Rexroth S., Rogner M., Reich Z. Structural and functional alterations of cyanobacterial phycobilisomes induced by high-light stress. Biochim. Biophys. Acta-Bioenerg. 2012;1817:319–327. doi: 10.1016/j.bbabio.2011.11.008. PubMed DOI

Steinbach G., Kaňa R. Automated microscopy: Macro language controlling a confocal microscope and its external illumination–adaptation for photosynthetic organisms. Microsc. Microanal. 2016;22:258–263. doi: 10.1017/S1431927616000556. PubMed DOI

Kirilovsky D. Modulating energy arriving at photochemical reaction centers: Orange carotenoid protein-related photoprotection and state transitions. Photosynth. Res. 2015;126:3–17. doi: 10.1007/s11120-014-0031-7. PubMed DOI

Adir N., Zer H., Shochat S., Ohad I. Photoinhibition-a historical perspective. Photosynth. Res. 2003;76:343–370. doi: 10.1023/A:1024969518145. PubMed DOI

Kirilovsky D., Kaňa R., Prášil O. Mechanisms Modulating Energy Arriving at Reaction Centers in Cyanobacteria. In: Demmig-Adams B., Garab G., Adams W. III, Govindjee, editors. Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria. Springer; Dordrecht, The Netherlands: 2014. pp. 471–501. DOI

Kirilovsky D. Photoprotection in cyanobacteria: The orange carotenoid protein (OCP)-related non-photochemical-quenching mechanism. Photosynth. Res. 2007;93:7–16. doi: 10.1007/s11120-007-9168-y. PubMed DOI

Kok B. On the Inhibition of Photosynthesis by Intense Light. Biochim Biophys. Acta. 1956;21:234–244. doi: 10.1016/0006-3002(56)90003-8. PubMed DOI

Sonoike K. Photoinhibition of Photosystem I: Its Physiological Significance in the Chilling Sensitivity of Plants. Plant Cell Physiol. 1996;37:239–247. doi: 10.1093/oxfordjournals.pcp.a028938. DOI

Murata N., Takahashi S., Nishiyama Y., Allakhverdiev S.I. Photoinhibition of photosystem II under environmental stress. Biochim. Biophys. Acta. 2007;1767:414–421. doi: 10.1016/j.bbabio.2006.11.019. PubMed DOI

Tyystjärvi E. Photoinhibition of Photosystem II. Int. Rev. Cell Mol. Biol. 2013;300:243–303. doi: 10.1016/b978-0-12-405210-9.00007-2. PubMed DOI

Keren N., Krieger-Liszkay A. Photoinhibition: Molecular mechanisms and physiological significance. Physiol. Plant. 2011;142:1–5. doi: 10.1111/j.1399-3054.2011.01467.x. PubMed DOI

Oguchi R., Hikosaka K., Hirose T. Does the photosynthetic light-acclimation need change in leaf anatomy? Plant Cell Environ. 2003;26:505–512. doi: 10.1046/j.1365-3040.2003.00981.x. DOI

Takahashi S., Badger M.R. Photoprotection in plants: A new light on photosystem II damage. Trends Plant Sci. 2011;16:53–60. doi: 10.1016/j.tplants.2010.10.001. PubMed DOI

Campbell D.A., Tyystjarvi E. Parameterization of photosystem II photoinactivation and repair. Biochim. Biophys. Acta. 2012;1817:258–265. doi: 10.1016/j.bbabio.2011.04.010. PubMed DOI

Vass I. Molecular mechanisms of photodamage in the Photosystem II complex. Biochim. Biophys. Acta. 2012;1817:209–217. doi: 10.1016/j.bbabio.2011.04.014. PubMed DOI

Komenda J., Sobotka R., Nixon P.J. Assembling and maintaining the Photosystem II complex in chloroplasts and cyanobacteria. Curr. Opin. Plant Biol. 2012;15:245–251. doi: 10.1016/j.pbi.2012.01.017. PubMed DOI

Prasil O., Adir N., Ohad I. Dynamics of photosystem II: Mechanism of photoinhibition and recovery processes. Top. Photosynth. 1992;11:295–348.

Komenda J., Tichy M., Prásil O., Knoppová J., Kuviková S., de Vries R., Nixon P.J. The exposed N-terminal tail of the D1 subunit is required for rapid D1 degradation during photosystem II repair in Synechocystis sp PCC 6803. Plant Cell. 2007;19:2839–2854. doi: 10.1105/tpc.107.053868. PubMed DOI PMC

Komenda J. Role of two forms of the D1 protein in the recovery from photoinhibition of photosystem II in the cyanobacterium Synechococcus PCC 7942. Biochim. Biophys. Acta. 2000;1457:243–252. doi: 10.1016/S0005-2728(00)00105-5. PubMed DOI

Stoitchkova K., Zsiros O., Jávorfi T., Páli T., Andreeva A., Gombos Z., Garab G. Heat- and light-induced reorganizations in the phycobilisome antenna of Synechocystis sp. PCC 6803. Thermo-optic effect. Biochim. Biophys. Acta (BBA)-Bioenerg. 2007;1767:750–756. doi: 10.1016/j.bbabio.2007.03.002. PubMed DOI

Kaňa R., Prášil O., Komárek O., Papageorgiou G., Govindjee Spectral characteristic of fluorescence induction in a model cyanobacterium, Synechococcus sp (PCC 7942) Biochim. Biophys. Acta. 2009;1787:1170–1178. doi: 10.1016/j.bbabio.2009.04.013. PubMed DOI

Campbell D., Hurry V., Clarke A.K., Gustafsson P., Oquist G. Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation. Microbiol. Mol. Biol. Rev. MMBR. 1998;62:667–683. doi: 10.1128/MMBR.62.3.667-683.1998. PubMed DOI PMC

Cser K., Vass I. Radiative and non-radiative charge recombination pathways in Photosystem II studied by thermoluminescence and chlorophyll fluorescence in the cyanobacterium Synechocystis 6803. Biochim. Biophys. Acta. 2007;1767:233–243. doi: 10.1016/j.bbabio.2007.01.022. PubMed DOI

Stadnichuk I.N., Yanyushin M.F., Bernát G., Zlenko D.V., Krasilnikov P.M., Lukashev E.P., Maksimov E.G., Paschenko V.Z. Fluorescence quenching of the phycobilisome terminal emitter LCM from the cyanobacterium Synechocystis sp. PCC 6803 detected in vivo and in vitro. J. Photochem. Photobiol. B Biol. 2013;125:137–145. doi: 10.1016/j.jphotobiol.2013.05.014. PubMed DOI

Kirilovsky D., Kerfeld C.A. The Orange Carotenoid Protein: A blue-green light photoactive protein. Photochem. Photobiol. Sci. 2013;12:1135–1143. doi: 10.1039/c3pp25406b. PubMed DOI

Siefermann-Harms D. The light-harvesting and protective functions of carotenoids in photosynthetic membranes. Physiol. Plant. 1987;69:561–568. doi: 10.1111/j.1399-3054.1987.tb09240.x. DOI

Daddy S., Zhan J., Jantaro S., He C., He Q., Wang Q. A novel high light-inducible carotenoid-binding protein complex in the thylakoid membranes of Synechocystis PCC 6803. Sci. Rep. 2015;5:9480. doi: 10.1038/srep09480. PubMed DOI PMC

Kuthanová Trsková E., Belgio E., Yeates A.M., Sobotka R., Ruban A.V., Kana R. Antenna proton sensitivity determines photosynthetic light harvesting strategy. J. Exp. Bot. 2018;69:4483–4493. doi: 10.1093/jxb/ery240. PubMed DOI PMC

Bilger W., Björkman O. Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth. Res. 1990;25:173–185. doi: 10.1007/BF00033159. PubMed DOI

Cogdell R. The function of pigments in chloroplasts. Plant Pigment. 1988:183–230.

Domonkos I., Kis M., Gombos Z., Ughy B. Carotenoids, versatile components of oxygenic photosynthesis. Prog. Lipid. Res. 2013;52:539–561. doi: 10.1016/j.plipres.2013.07.001. PubMed DOI

Ruban A.V., Johnson M.P. Xanthophylls as modulators of membrane protein function. Arch. Biochem. Biophys. 2010;504:78–85. doi: 10.1016/j.abb.2010.06.034. PubMed DOI

Kaňa R., Kotabová E., Kopečná J., Trsková E., Belgio E., Sobotka R., Ruban A.V. Violaxanthin inhibits nonphotochemical quenching in light-harvesting antennae of Chromera velia. FEBS Lett. 2016;590:1076–1085. doi: 10.1002/1873-3468.12130. PubMed DOI

Hirschberg J., Chamovitz D. Carotenoids in Cyanobacteria. In: Bryant D.A., editor. The Molecular Biology of Cyanobacteria. Springer; Dordrecht, The Netherlands: 1994. pp. 559–579. DOI

Zakar T., Herman E., Vajravel S., Kovacs L., Knoppová J., Komenda J., Domonkos I., Kis M., Gombos Z., Laczko-Dobos H. Lipid and carotenoid cooperation-driven adaptation to light and temperature stress in Synechocystis sp. PCC6803. Biochim. Biophys. Acta (BBA)-Bioenerg. 2017;1858:337–350. doi: 10.1016/j.bbabio.2017.02.002. PubMed DOI PMC

Tóth T.N., Chukhutsina V., Domonkos I., Knoppová J., Komenda J., Kis M., Lénárt Z., Garab G., Kovács L., Gombos Z., et al. Carotenoids are essential for the assembly of cyanobacterial photosynthetic complexes. Biochim. Biophys. Acta (BBA)-Bioenerg. 2015;1847:1153–1165. doi: 10.1016/j.bbabio.2015.05.020. PubMed DOI

Williams J.G.K. Construction of specific mutations in photosystem II photosynthetic reaction center by genetic engineering methods in Synechocystis 6803. Methods Enzymol. 1988;167:766–778.

Tichý M., Bečková M., Kopečná J., Noda J., Sobotka R., Komenda J. Strain of Synechocystis PCC 6803 with Aberrant Assembly of Photosystem II Contains Tandem Duplication of a Large Chromosomal Region. Front. Plant Sci. 2016;7 doi: 10.3389/fpls.2016.00648. PubMed DOI PMC

Strašková A., Knoppová J., Komenda J. Isolation of the cyanobacterial YFP-tagged photosystem I using GFP-Trap®. Photosynthetica. 2018;56:300–305. doi: 10.1007/s11099-018-0771-2. DOI

Wittig I., Karas M., Schägger H. High Resolution Clear Native Electrophoresis for In-gel Functional Assays and Fluorescence Studies of Membrane Protein Complexes. Mol. &Amp; Cell. Proteom. 2007;6:1215–1225. doi: 10.1074/mcp.M700076-MCP200. PubMed DOI

Kaňa R., Kotabová E., Komárek O., Šedivá B., Papageorgiou G.C., Govindjee, Prášil O. The slow S to M fluorescence rise in cyanobacteria is due to a state 2 to state 1 transition. Biochim. Biophys. Acta. 2012;1817:1237–1247. doi: 10.1016/j.bbabio.2012.02.024. PubMed DOI

Kaňa R. Application of spectrally resolved fluorescence induction to study light-induced nonphotochemical quenching in algae. Photosynthetica. 2018;56:132–138. doi: 10.1007/s11099-018-0780-1. DOI

Ritchie R.J. Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynth. Res. 2006;89:27–41. doi: 10.1007/s11120-006-9065-9. PubMed DOI

Pazderník M., Mareš J., Pilný J., Sobotka R. The antenna-like domain of the cyanobacterial ferrochelatase can bind chlorophyll and carotenoids in an energy-dissipative configuration. J. Biol. Chem. 2019;294:11131–11143. doi: 10.1074/jbc.RA119.008434. PubMed DOI PMC

Sutton S. Measurement of microbial cells by optical density. J. Valid. Technol. 2011;17:46–49.

Steinbach G., Schubert F., Kana R. Cryo-imaging of photosystems and phycobilisomes in Anabaena sp PCC 7120 cells. J. Photochem. Photobiol. B-Biol. 2015;152:395–399. doi: 10.1016/j.jphotobiol.2015.10.003. PubMed DOI

Aro E.M., McCaffery S., Anderson J.M. Photoinhibition and D1 protein-degradation in peas acclimated to different growth irradiances. Plant Physiol. 1993;103:835–843. doi: 10.1104/pp.103.3.835. PubMed DOI PMC

Martins B.M.C., Tooke A.K., Thomas P., Locke J.C.W. Cell size control driven by the circadian clock and environment in cyanobacteria. Proc. Natl. Acad. Sci. USA. 2018;115:E11415–E11424. doi: 10.1073/pnas.1811309115. PubMed DOI PMC

van Alphen P., Hellingwerf K.J. Sustained Circadian Rhythms in Continuous Light in Synechocystis sp. PCC6803 Growing in a Well-Controlled Photobioreactor. PLoS ONE. 2015;10:e0127715. doi: 10.1371/journal.pone.0127715. PubMed DOI PMC

Demmig-Adams B., Garab G., Adams W.W., III, Govindjee . In: Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria. Demmig-Adams B., Garab G., Adams W. III, editors. Volume XXXVIII. Springer; Dordrecht, The Netherlands: 2014. p. 649. DOI

Boulay C., Wilson A., D’Haene S., Kirilovsky D. Identification of a protein required for recovery of full antenna capacity in OCP-related photoprotective mechanism in cyanobacteria. Proc. Natl. Acad. Sci. USA. 2010;107:11620–11625. doi: 10.1073/pnas.1002912107. PubMed DOI PMC

Gwizdala M., Wilson A., Kirilovsky D. In Vitro Reconstitution of the Cyanobacterial Photoprotective Mechanism Mediated by the Orange Carotenoid Protein in Synechocystis PCC 6803. Plant Cell. 2011;23:2631–2643. doi: 10.1105/tpc.111.086884. PubMed DOI PMC

Kopecna J., Komenda J., Bucinska L., Sobotka R. Long-term acclimation of the cyanobacterium Synechocystis sp. PCC 6803 to high light is accompanied by an enhanced production of chlorophyll that is preferentially channeled to trimeric photosystem I. Plant Physiol. 2012;160:2239–2250. doi: 10.1104/pp.112.207274. PubMed DOI PMC

Havaux M. Carotenoids as membrane stabilizers in chloroplasts. Trends Plant Sci. 1998;3:147–151. doi: 10.1016/S1360-1385(98)01200-X. DOI

Kaňa R., Steinbach G., Sobotka R., Vámosi G., Komenda J. Fast Diffusion of the Unassembled PetC1-GFP Protein in the Cyanobacterial Thylakoid Membrane. Life. 2021;11:15. doi: 10.3390/life11010015. PubMed DOI PMC

Izuhara T., Kaihatsu I., Jimbo H., Takaichi S., Nishiyama Y. Elevated Levels of Specific Carotenoids During Acclimation to Strong Light Protect the Repair of Photosystem II in Synechocystis sp. PCC 6803. Front. Plant Sci. 2020;11 doi: 10.3389/fpls.2020.01030. PubMed DOI PMC

Rast A., Schaffer M., Albert S., Wan W., Pfeffer S., Beck F., Plitzko J.M., Nickelsen J., Engel B.D. Biogenic regions of cyanobacterial thylakoids form contact sites with the plasma membrane. Nat. Plants. 2019;5:436–446. doi: 10.1038/s41477-019-0399-7. PubMed DOI

Vajravel S., Kis M., Kłodawska K., Laczko-Dobos H., Malec P., Kovács L., Gombos Z., Toth T.N. Zeaxanthin and echinenone modify the structure of photosystem I trimer in Synechocystis sp. PCC 6803. Biochim. Biophys. Acta (BBA)-Bioenerg. 2017;1858:510–518. doi: 10.1016/j.bbabio.2017.05.001. PubMed DOI

Gruszecki W.I., Strzałka K. Carotenoids as modulators of lipid membrane physical properties. Biochim. Biophys. Acta. 2005;1740:108–115. doi: 10.1016/j.bbadis.2004.11.015. PubMed DOI

Mohamed H.E., van de Meene A.M.L., Roberson R.W., Vermaas W.F.J. Myxoxanthophyll Is Required for Normal Cell Wall Structure and Thylakoid Organization in the Cyanobacterium Synechocystis sp. Strain PCC 6803. J. Bacteriol. 2005;187:6883–6892. doi: 10.1128/JB.187.20.6883-6892.2005. PubMed DOI PMC

Steiger S., Schäfer L., Sandmann G. High-light-dependent upregulation of carotenoids and their antioxidative properties in the cyanobacterium Synechocystis PCC 6803. J. Photochem. Photobiol. B Biol. 1999;52:14–18. doi: 10.1016/S1011-1344(99)00094-9. DOI

Kaňa R. Mobility of photosynthetic proteins. Photosynth. Res. 2013;116:465–479. doi: 10.1007/s11120-013-9898-y. PubMed DOI

Pagels F., Vasconcelos V., Guedes A.C. Carotenoids from Cyanobacteria: Biotechnological Potential and Optimization Strategies. Biomolecules. 2021;11:735. doi: 10.3390/biom11050735. PubMed DOI PMC

Lohr M., Wilhelm C. Algae displaying the diadinoxanthin cycle also possess the violaxanthin cycle. Proc. Natl. Acad. Sci. USA. 1999;96:8784–8789. doi: 10.1073/pnas.96.15.8784. PubMed DOI PMC

Böhme K., Wilhelm C., Goss R. Light regulation of carotenoid biosynthesis in the prasinophycean alga Mantoniella squamata. Photochem. Photobiol. Sci. 2002;1:619–628. doi: 10.1039/B204965C. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...