Coordination Compounds of Cu, Zn, and Ni with Dicarboxylic Acids and N Donor Ligands, and Their Biological Activity: A Review

. 2023 Feb 02 ; 28 (3) : . [epub] 20230202

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid36771123

Complexes of carboxylic acids are very often studied due to their interesting structural, spectral, and magnetic properties. This review is focused on complexes of four dicarboxylic acids, namely, 2,2'-thiodioacetic, 3,3'-thiodipropionic, 3,3'-dithiodipropionic, and fumaric acid. Many of the complexes were characterized by single crystal X-ray analyses. Without the analyses, it is very difficult to predict the coordination mode of carboxylate groups or nitrogen ligands on central atoms. Thus, structural properties are also discussed, as well as potential applications.

Zobrazit více v PubMed

Bakalbassis E.G., Bozopoulos A.P., Mrozinski J., Rentzeperis P.J., Tsipis C.A. Crystal-structure, magnetic-properties, and orbital interactions of the (mu-terephthalato)(ethylenediamine)diaquocopper(II) zigzag chain. Inorg. Chem. 1988;27:529–532. doi: 10.1021/ic00276a019. DOI

Mrozinski J. New trends of molecular magnetism. Coord. Chem. Rev. 2005;249:2534–2548. doi: 10.1016/j.ccr.2005.05.013. DOI

Habib H.A., Sanchiz J., Janiak C. Magnetic and luminescence properties of Cu(II), Cu(II)(4)O-4 core, and Cd(II) mixed-ligand metal-organic frameworks constructed from 1,2-bis(1,2,4-triazol-4-yl)ethane and benzene-1,3,5-tricarboxylate. Inorg. Chim. Acta. 2009;362:2452–2460. doi: 10.1016/j.ica.2008.11.003. DOI

Grirrane A., Pastor A., Galindo A., Ienco A., Mealli C., Rosa P. First example of a tetra-carboxylate bridged dimanganese species. Chem. Commun. 2003:512–513. doi: 10.1039/b211886f. PubMed DOI

Grirrane A., Pastor A., Alvarez E., Mealli C., Ienco A., Masi D., Galindo A. Thiodiacetate cobalt(II) complexes: Synthesis, structure and properties. Inorg. Chem. Commun. 2005;8:463–466. doi: 10.1016/j.inoche.2005.02.011. DOI

Kopel P., Sindelar Z., Klicka R. Complexes of iron(III) salen and saloph Schiff bases with bridging dicarboxylic and tricarboxylic acids. Transit. Met. Chem. 1998;23:139–142. doi: 10.1023/A:1006990925318. DOI

Kopel P., Travnicek Z., Marek J., Mrozinski J. Syntheses and study on nickel(II) complexes with thiodiglycolic acid and nitrogen-donor ligands. X-ray structures of Ni(bpy)(tdga)(H2O)center dot 4H(2)O and (en)Ni(mu-tdga)(2)NI(en) center dot 4H(2)O (tdgaH(2)= thiodiglycolic acid) Polyhedron. 2004;23:1573–1578. doi: 10.1016/j.poly.2004.03.005. DOI

Kopel P., Travnicek Z., Marek J., Korabik M., Mrozinski J. Syntheses and properties of binuclear copper(II) mixed-ligand complexes involving thiodiglycolic acid. The crystal structures of (phen)(2)Cu(mu-tdga)Cu(phen) (NO3)(2)center dot 5H(2)O and (H2O)(pmdien)Cu(mu-tdga)Cu(pmdien)(H2O) (ClO4)(2) Polyhedron. 2003;22:411–418. doi: 10.1016/S0277-5387(02)01365-7. DOI

Alavijeh R.K., Beheshti S., Akhbari K., Morsali A. Investigation of reasons for metal-organic framework’s antibacterial activities. Polyhedron. 2018;156:257–278. doi: 10.1016/j.poly.2018.09.028. DOI

Soltani S., Akhbari K., Phuruangrat A. Investigation of effective factors on antibacterial activity of Pillared-Layered MOFs. J. Mol. Struct. 2021;1225:8. doi: 10.1016/j.molstruc.2020.129261. DOI

Kalati M., Akhbari K. Optimizing the metal ion release and antibacterial activity of ZnO@ZIF-8 by modulating its synthesis method. New J. Chem. 2021;45:22924–22931. doi: 10.1039/D1NJ04534B. DOI

Nakhaei M., Akhbari K., Kalati M., Phuruangrat A. Antibacterial activity of three zinc-terephthalate MOFs and its relation to their structural features. Inorg. Chim. Acta. 2021;522:9. doi: 10.1016/j.ica.2021.120353. DOI

Soltani S., Akhbari K., Phuruangrat A. Incorporation of silver nanoparticles on Cu-BTC metal-organic framework under the influence of reaction conditions and investigation of their antibacterial activity. Appl. Organomet. Chem. 2022;36:10. doi: 10.1002/aoc.6634. DOI

Soltani S., Akhbari K. Cu-BTC metal-organic framework as a biocompatible nanoporous carrier for chlorhexidine antibacterial agent. J. Biol. Inorg. Chem. 2022;27:81–87. doi: 10.1007/s00775-021-01912-5. PubMed DOI

Kruszynski R., Swiatkowski M. The structure of coordination precursors as an effective tool for governing of size and morphology of ZnS and ZnO nanoparticles. J. Saudi Chem. Soc. 2018;22:816–825. doi: 10.1016/j.jscs.2018.01.003. DOI

Swiatkowski M., Kruszynski R. Structurally diverse coordination compounds of zinc as effective precursors of zinc oxide nanoparticles with various morphologies. Appl. Organomet. Chem. 2019;33:18. doi: 10.1002/aoc.4812. DOI

Stepankova H., Swiatkowski M., Kruszynski R., Svec P., Michalkova H., Smolikova V., Ridoskova A., Splichal Z., Michalek P., Richtera L., et al. The Anti-Proliferative Activity of Coordination Compound-Based ZnO Nanoparticles as a Promising Agent Against Triple Negative Breast Cancer Cells. Int. J. Nanomed. 2021;16:4431–4449. doi: 10.2147/IJN.S304902. PubMed DOI PMC

Badea M., Uivarosi V., Olar R. Improvement in the Pharmacological Profile of Copper Biological Active Complexes by Their Incorporation into Organic or Inorganic Matrix. Molecules. 2020;25:5830. doi: 10.3390/molecules25245830. PubMed DOI PMC

Psomas G. Copper(II) and zinc(II) coordination compounds of non-steroidal anti-inflammatory drugs: Structural features and antioxidant activity. Coord. Chem. Rev. 2020;412:13. doi: 10.1016/j.ccr.2020.213259. DOI

Frederickson C.J., Koh J.Y., Bush A.I. The neurobiology of zinc in health and disease. Nat. Rev. Neurosci. 2005;6:449–462. doi: 10.1038/nrn1671. PubMed DOI

Porchia M., Pellei M., Del Bello F., Santini C. Zinc Complexes with Nitrogen Donor Ligands as Anticancer Agents. Molecules. 2020;25:5814. doi: 10.3390/molecules25245814. PubMed DOI PMC

Ban I., Stergar J., Maver U. NiCu magnetic nanoparticles: Review of synthesis methods, surface functionalization approaches, and biomedical applications. Nanotechnol. Rev. 2018;7:187–207. doi: 10.1515/ntrev-2017-0193. DOI

More M.S., Joshi P.G., Mishra Y.K., Khanna P.K. Metal complexes driven from Schiff bases and semicarbazones for biomedical and allied applications: A review. Mater. Today Chem. 2019;14:22. doi: 10.1016/j.mtchem.2019.100195. PubMed DOI PMC

Duncan C., White A.R. Copper complexes as therapeutic agents. Metallomics. 2012;4:127–138. doi: 10.1039/C2MT00174H. PubMed DOI

Tardito S., Marchio L. Copper Compounds in Anticancer Strategies. Curr. Med. Chem. 2009;16:1325–1348. doi: 10.2174/092986709787846532. PubMed DOI

Taylor M.R., Gabe E.J., Glusker J.P., Minkin J.A., Patterso A.L. Crystal structures of compounds with antitumor activity. 2-keto-3-ethoxybutyraldehyde bis(thiosemicarbazone) and its cupric complex. J. Am. Chem. Soc. 1966;88:1845–1846. doi: 10.1021/ja00960a067. PubMed DOI

Garcia-Tojal J., Garcia-Orad A., Serra J.L., Pizarro J.L., Lezama L., Arriortua M.I., Rojo T. Synthesis and spectroscopic properties of copper(II) complexes derived from thiophene-2-carbaldehyde thiosemicarbazone. Structure and biological activity of Cu(C6H6N3S2)(2) J. Inorg. Biochem. 1999;75:45–54. doi: 10.1016/S0162-0134(99)00031-8. PubMed DOI

Pramanik A.K., Siddikuzzaman, Palanimuthu D., Somasundaram K., Samuelson A.G. Biotin Decorated Gold Nanoparticles for Targeted Delivery of a Smart-Linked Anticancer Active Copper Complex: In Vitro and In Vivo Studies. Bioconjugate Chem. 2016;27:2874–2885. doi: 10.1021/acs.bioconjchem.6b00537. PubMed DOI

Santini C., Pellei M., Gandin V., Porchia M., Tisato F., Marzano C. Advances in Copper Complexes as Anticancer Agents. Chem. Rev. 2014;114:815–862. doi: 10.1021/cr400135x. PubMed DOI

Zhou H., Zheng C.Y., Zou G.L., Tao D.D., Gong J.P. G(1)-phase specific apoptosis in liver carcinoma cell line induced by copper-1,10-phenanthroline. Int. J. Biochem. Cell Biol. 2002;34:678–684. doi: 10.1016/S1357-2725(01)00176-5. PubMed DOI

Valdez-Camacho J.R., Ramirez-Solis A., Escalante J., Ruiz-Azuara L., Ho M. Theoretical determination of half-wave potentials for phenanthroline-, bipyridine-, acetylacetonate-, and glycinate-containing copper (II) complexes. J. Mol. Model. 2020;26:13. doi: 10.1007/s00894-020-04453-x. PubMed DOI

Yoshikawa Y., Yasui H. Zinc Complexes Developed as Metallopharmaceutics for Treating Diabetes Mellitus based on the Bio-Medicinal Inorganic Chemistry. Curr. Top. Med. Chem. 2012;12:210–218. doi: 10.2174/156802612799078874. PubMed DOI

Sakurai H., Yoshikawa Y., Yasui H. Current state for the development of metallopharmaceutics and anti-diabetic metal complexes. Chem. Soc. Rev. 2008;37:2383–2392. doi: 10.1039/b710347f. PubMed DOI

Roguin L.P., Chiarante N., Vior M.C.G., Marino J. Zinc(II) phthalocyanines as photosensitizers for antitumor photodynamic therapy. Int. J. Biochem. Cell Biol. 2019;114:14. doi: 10.1016/j.biocel.2019.105575. PubMed DOI

Kuzyniak W., Ermilov E.A., Atilla D., Gurek A.G., Nitzsche B., Derkow K., Hoffmann B., Steinemann G., Ahsen V., Hopfner M. Tetra-triethyleneoxysulfonyl substituted zinc phthalocyanine for photodynamic cancer therapy. Photodiagnosis Photodyn. Ther. 2016;13:148–157. doi: 10.1016/j.pdpdt.2015.07.001. PubMed DOI

Drewry J.A., Gunning P.T. Recent advances in biosensory and medicinal therapeutic applications of zinc(II) and copper(II) coordination complexes. Coord. Chem. Rev. 2011;255:459–472. doi: 10.1016/j.ccr.2010.10.018. DOI

Afrasiabi Z., Sinn E., Lin W.S., Ma Y.F., Campana C., Padhye S. Nickel (II) complexes of naphthaquinone thiosemicarbazone and semicarbazone: Synthesis, structure, spectroscopy, and biological activity. J. Inorg. Biochem. 2005;99:1526–1531. doi: 10.1016/j.jinorgbio.2005.04.012. PubMed DOI

Bonomo R.P., Rizzarelli E., Brescianipahor N., Nardin G. Properties and x-ray crystal-structures of copper(ii) mixed complexes with thiodiacetate and 2,2′-bipyridyl or 2,2′-6′,2′′-terpyridyl. J. Chem. Soc.-Dalton Trans. 1982:681–685. doi: 10.1039/DT9820000681. DOI

Pavlova A., Cernak J., Harms K. catena-Poly diaqua(di-2-pyridylamine-kappa N-2,N ′)nickel(II)-mu-fumarato-kappa O-2(1):O-4 tetrahydrate. Acta Crystallogr. Sect. E.-Struct Rep. Online. 2010;66:m501–m502. doi: 10.1107/S1600536810012225. PubMed DOI PMC

Bora S.J., Das B.K. Synthesis, structure and properties of a fumarate bridged Ni(II) coordination polymer. J. Mol. Struct. 2011;999:83–88. doi: 10.1016/j.molstruc.2011.05.039. DOI

Bienko A., Kopel P., Kizek R., Kruszynski R., Bienko D., Titis J., Boca R. Synthesis, crystal structure and magnetic properties of trithiocyanurate or thiodiacetate polynuclear Ni(II) and Co(II) complexes. Inorg. Chim. Acta. 2014;416:147–156. doi: 10.1016/j.ica.2014.03.009. DOI

Yu J. catena-Poly di-mu(2)-hydroxido-bis (di-2-pyridylamine)nickel(II)-mu-fumarato dihydrate. Acta Crystallogr. Sect. E.-Struct Rep. Online. 2009;65:m535–m536. doi: 10.1107/S1600536809013580. PubMed DOI PMC

Lazarou K.N., Terzis A., Perlepes S.P., Raptopoulou C.P. Synthetic, structural and spectroscopic studies of complexes derived from the copper(II) perchlorate/fumaric acid/N,N ′-chelates tertiary reaction systems. Polyhedron. 2010;29:46–53. doi: 10.1016/j.poly.2009.05.075. DOI

Chawla S.K., Arora M., Nattinen K., Rissanen K., Yakhmi J.V. Syntheses and crystal structures of three novel Cu(II) coordination polymers of different dimensionality constructed from Cu(II) carboxylates (carboxylate=malonate (mal), 2 acetate (ac), fumarate (fum)) and conformationally flexible 1,4-bis(imidazole-1-yl-methylene)benzene(IX) Polyhedron. 2004;23:3007–3019. doi: 10.1016/j.poly.2004.08.025. DOI

Mautner F.A., Vicente R., Louka F.R.Y., Massoud S.S. Dinuclear fumarato-and terephthalato-bridged copper(II) complexes: Structural characterization and magnetic properties. Inorg. Chim. Acta. 2008;361:1339–1348. doi: 10.1016/j.ica.2007.08.026. DOI

Arici M., Yesilel O.Z., Keskin S., Sahin O., Buyukgungor O. The synthesis, characterization, and theoretical hydrogen gas adsorption properties of copper(II)-3,3 ′-thiodipropionate complexes with imidazole derivatives. J. Coord. Chem. 2013;66:4093–4106. doi: 10.1080/00958972.2013.860223. DOI

Alarcon-Payer C., Pivetta T., Choquesillo-Lazarte D., Gonzalez-Perez J.M., Crisponi G., Castineiras A., Niclos-Gutierrez J. Thiodiacetato-copper(II) chelates with or without N-heterocyclic donor ligands: Molecular and/or crystal structures of Cu(tda) (n), Cu(tda)(Him)(2)(H2O) and Cu(tda)(5Mphen) center dot 2H(2)O (Him = imidazole, 5Mphen=5-methyl-1,10-phenanthroline) Inorg. Chim. Acta. 2005;358:1918–1926. doi: 10.1016/j.ica.2004.12.056. DOI

Nath J.K., Mondal A., Powell A.K., Baruah J.B. Structures, Magnetic Properties, and Photoluminescence of Dicarboxylate Coordination Polymers of Mn, Co, Ni, Cu Having N-(4-Pyridylmethyl)-1,8-naphthalimide. Cryst. Growth Des. 2014;14:4735–4748. doi: 10.1021/cg500882z. DOI

Tellez-Lopez A., Jaramillo-Garcia J., Martinez-Dominguez R., Morales-Luckie R.A., Camacho-Lopez M.A., Escudero R., Sanchez-Mendieta V. M(II)(H2O)(2) (5,5 ′-dimethy-2,2 ′-bipyridine)(fumarato) M = Co and Zn complexes bearing a unique distorted trigonal-prismatic geometry and displaying 2D supramolecular structures. Polyhedron. 2015;100:373–381. doi: 10.1016/j.poly.2015.08.025. DOI

Mori W., Takamizawa S., Kato C.N., Ohmura T., Sato T. Molecular-level design of efficient microporous materials containing metal carboxylates: Inclusion complex formation with organic polymer, gas-occlusion properties, and catalytic activities for hydrogenation of olefins. Microporous Mesoporous Mat. 2004;73:31–46. doi: 10.1016/j.micromeso.2004.02.019. DOI

Farnum G.A., Martin D.P., Sposato L.K., Supkowski R.M., LaDuca R.L. Zinc maleate and fumarate coordination polymers containing hydrogen-bonding capable organodiimines featuring ligand dependent in situ cis-trans isomerization. Inorg. Chim. Acta. 2010;363:250–256. doi: 10.1016/j.ica.2009.08.005. DOI

Mukherjee P.S., Ghoshal D., Zangrando E., Mallah T., Chaudhuri N.R. Use of different unsaturated dicarboxylates toward the design of new 3D and 2D networks of copper(II) Eur. J. Inorg. Chem. 2004:4675–4680. doi: 10.1002/ejic.200400328. DOI

Buchtelova H., Skubalova Z., Strmiska V., Michalek P., Kociova S., Smerkova K., Kruszynski R., Bienko A., Kaj M., Lewinska A., et al. Synthesis and structural characterization of antimicrobial binuclear copper (II) coordination compounds bridged by hydroxy-and/or thiodipropionic acid. J. Inorg. Biochem. 2019;191:8–20. doi: 10.1016/j.jinorgbio.2018.10.011. PubMed DOI

Wang Y.L., Chang G.J., Liu B.X. Aqua(2,2′-diamino-4,4′-bi-1,3-thiazole-kappa 2 N 3,N 3′)(thiodiacetato-kappa 3 O,S,O′)nickel(II) monohydrate. Acta Crystallogr. Sect. E.-Struct Rep. Online. 2011;67:m681. doi: 10.1107/S1600536811015157. PubMed DOI PMC

Baggio R., Perec M., Garland M.T. Aqua(2,2′-bipyriayl-N,N′)(thiodiacetato-O,O′,S)zinc(II) tetrahydrate. Acta Crystallogr. Sect. C-Cryst. Struct. Commun. 1996;52:2457–2460. doi: 10.1107/S0108270196007329. DOI

He X., Lu C.Z. Hydrothermal synthesis of two mixed-valence copper complexes with mixed ligands. Z. Anorg. Allg. Chem. 2004;630:756–759. doi: 10.1002/zaac.200300417. DOI

Sareen N., Singh S., Bhattacharya S. A Cu(II) mediated new desulfurization pathway involving elimination of ethylene sulfide. Dalton Trans. 2014;43:4635–4638. doi: 10.1039/C3DT53395F. PubMed DOI

Wen G.L., Wang Y.Y., Zhang W.H., Ren C., Liu R.T., Shi Q.Z. Self-assembled coordination polymers of V-shaped bis(pyridyl)thiadiazole dependent upon the spacer length and flexibility of aliphatic dicarboxylate ligands. Crystengcomm. 2010;12:1238–1251. doi: 10.1039/B919381M. DOI

Ren B.D., Zhao Y.J. catena-Poly (di-2-pyridylamine-kappa N-2(2),N-2 ′)copper(II)-mu-3,3 ′-dithiodipropionato-kappa O,O ′:kappa O ″. Acta Crystallogr. Sect. E.-Crystallogr. Commun. 2006;62:M170–M171. doi: 10.1107/s1600536805042364. DOI

Wang Y.Y., Wang X., Shi Q.Z., Gao Y.C. A novel binuclear copper(II) complex with fumarate and 1,10-phenanthroline. Transit. Met. Chem. 2002;27:481–484. doi: 10.1023/A:1015617327024. DOI

Cheng H.J., Shen Y.L., Zhang S.Y., Ji H.W., Yin W.Y., Li K., Yuan R.X. Three Coordination Polymers Constructed with Zinc(II), 3,3-Thiodipropionic Acid, and Bipyridyl Ligands: Syntheses, Crystal Structures and Luminescent Properties. Z. Anorg. Allg. Chem. 2015;641:1575–1580. doi: 10.1002/zaac.201500167. DOI

Yang P.P., Li B., Wang Y.H., Gu W., Liu X. Synthesis, structure, and luminescence properties of zinc(II) and cadmium(II) complexes containing the flexible ligand of 3,3 ′-thiodipropionic acid. Z. Anorg. Allg. Chem. 2008;634:1221–1224. doi: 10.1002/zaac.200700597. DOI

Grirrane A., Pastor A., Alvarez E., Mealli C., Ienco A., Galindo A. Novel results on thiodiacetate zinc(II) complexes: Synthesis and structure of Zn(tda)(phen) (2) center dot 5H(2)O. Inorg. Chem. Commun. 2006;9:160–163. doi: 10.1016/j.inoche.2005.10.021. DOI

Das M., Biswas A., Kundu B.K., Charmier M.A.J., Mukherjee A., Mobin S.M., Udayabhanu G., Mukhopadhyay S. Enhanced pseudo-halide promoted corrosion inhibition by biologically active zinc(II) Schiff base complexes. Chem. Eng. J. 2019;357:447–457. doi: 10.1016/j.cej.2018.09.150. DOI

Nie F.M., Chen J., Lu F. Synthesis, crystal structures and magnetic studies of terephthalato-and fumarato-bridged dinickel(II) complexes with tripodal poly-benzimidazole ligand. Inorg. Chim. Acta. 2011;365:190–195. doi: 10.1016/j.ica.2010.09.009. DOI

Kansiz S., Dege N., Kalibabchuk V.A. Synthesis, crystal structure and Hirshfeld surface analysis of a 1D coordination polymer catenapoly diaquabis(nicotinamide-kappa N-1)nickel(II)-mu-fumarato-kappa O-2(1):O-4. Acta Crystallogr. Sect. E.-Crystallogr. Commun. 2018;74:1263–1266. doi: 10.1107/S2056989018011489. PubMed DOI PMC

Lin J.G., Wu P.H., Kang L., Lu C.S., Meng Q.J. Synthesis and characterization of a three dimensional zinc(II) metal-organic framework constructed from flexible 1,2,3,4-tetra-(4-pyridyl)-butane ligand. Solid State Sci. 2011;13:1538–1541. doi: 10.1016/j.solidstatesciences.2011.05.017. DOI

Xu J.Y., Hurtado E.J., Lobkovsky E.B., Chen B.L. Poly (mu(2)-trans-di-4-pyridylethylene-kappa N-2:N ′)(mu(2)-fumarato-kappa O-2: O ′)zinc(II) Acta Crystallogr. Sect. E.-Crystallogr. Commun. 2007;63:m2205. doi: 10.1107/s1600536807035209. PubMed DOI

Tseng T.W., Luo T.T., Wu J.Y., Tsai C.C., Huang C.Y., Chiang M.H., Lu K.L. Adaptation of guest molecules: A simple system that amplifies the gentle perturbation of host lattices from nickel(II) to cobalt(II) Inorg. Chim. Acta. 2016;445:96–102. doi: 10.1016/j.ica.2016.02.004. DOI

Uhrinova A., Kuchar J., Cernak J. The chain structure of Ni(C4H2O4)(C12H8N2)(H2O) (n) with different types of fumarate bridging. Acta Crystallogr. Sect. E.-Struct Rep. Online. 2012;68:m92–m93. doi: 10.1107/S1600536811054614. PubMed DOI PMC

Ma J.F., Yang J., Liu J.F. A nickel(II) fumarate complex with o-phenanthroline. Acta Crystallogr. Sect. E.-Struct Rep. Online. 2003;59:M900–M902. doi: 10.1107/S1600536803019408. DOI

Pan T.T., Su J.R., Xu D.J. Tris(1H-imidazole-kappa N-3)(thiodiacetato-kappa O-3,S,O ′)-nickel(II) monohydrate. Acta Crystallogr. Sect. E.-Crystallogr. Commun. 2005;61:M1576–M1578. doi: 10.1107/s160053680502194x. DOI

Abbaszadeh A., Safari N., Amani V., Notash B., Raei F., Eftekhar F. Mononuclear and Dinuclear Copper(II) Complexes Containing N, O and S Donor Ligands: Synthesis, Characterization, Crystal Structure Determination and Antimicrobial Activity of Cu(phen)(tda) center dot 2H(2)O and (phen)(2)Cu(mu-tda)Cu(phen) (ClO4)(2 center dot)1.5H(2)O. Iran J. Chem. Chem. Eng.-Int. Engl. Ed. 2014;33:1–13.

Neuman N.I., Perec M., Gonzalez P.J., Passeggi M.C.G., Rizzi A.C., Brondino C.D. Single Crystal EPR Study of the Dinuclear Cu(II) Complex Cu(tda)(phen) (2)center dot H(2)tda (tda = Thiodiacetate, phen = Phenanthroline): Influence of Weak Interdimeric Magnetic Interactions. J. Phys. Chem. A. 2010;114:13069–13075. doi: 10.1021/jp108736p. PubMed DOI

Khullar S., Mandal S.K. Effect of Spacer Atoms in the Dicarboxylate Linkers on the Formation of Coordination Architectures-Molecular Rectangles vs 1D Coordination Polymers: Synthesis, Crystal Structures, Vapor/Gas Adsorption Studies, and Magnetic Properties. Cryst. Growth Des. 2014;14:6433–6444. doi: 10.1021/cg501284y. DOI

Ahmad M.S., Khalid M., Khan M.S., Shahid M., Ahmad M., Monika, Ansari A., Ashafaq M. Exploring catecholase activity in dinuclear Mn(ii) and Cu(ii) complexes: An experimental and theoretical approach. New J. Chem. 2020;44:7998–8009. doi: 10.1039/D0NJ00605J. DOI

Banu K.S., Chattopadhyay T., Banerjee A., Mukherjee M., Bhattacharya S., Patra G.K., Zangrando E., Das D. Mono-and dinuclear manganese(III) complexes showing efficient catechol oxidase activity: Syntheses, characterization and spectroscopic studies. Dalton Trans. 2009:8755–8764. doi: 10.1039/b902498k. PubMed DOI

Arici M., Yesilel O.Z., Sahin O., Tas M. Dinuclear and polynuclear copper(II) complexes with 3,3 ′-thiodipropionate and unprecedented coordination mode. Polyhedron. 2014;71:62–68. doi: 10.1016/j.poly.2014.01.005. DOI

Arici M., Yesilel O.Z., Tas M. Naked-eye detection and thermochromic properties of Cu(II)-3,3 ′-thiodipropionate complexes with benzimidazole. Dalton Trans. 2015;44:1627–1635. doi: 10.1039/C4DT02119C. PubMed DOI

Tella A.C., Owalude S.O., Adimula V.O., Oladipo A.C., Olayemi V.T., Ismail B., Mumtaz A., Rehman A.U., Khan A.M., Clayton H.S., et al. Synthesis, Structure, and Properties of a Dinuclear Cu(II) Coordination Polymer Based on Quinoxaline and 3,3-Thiodipropionic Acid Ligands. J. Inorg. Organomet. Polym. Mater. 2021;31:3089–3100. doi: 10.1007/s10904-021-01966-7. DOI

Lahiri D., Bhowmick T., Pathak S., Shameema O., Patra A.K., Ramakumar S., Chakravarty A.R. Anaerobic Photocleavage of DNA in Red Light by Dicopper(II) Complexes of 3,3 ′-Dithiodipropionic Acid. Inorg. Chem. 2009;48:339–349. doi: 10.1021/ic800806j. PubMed DOI

Loubalová I., Zahradníková E., Masaryk L., Nemec I., Hochvaldová L., Panáček A., Kvítek L., Večeřová R., Świątkowski M., Kopel P. Antibacterial study on nickel and copper dicarboxylate complexes. Inorg. Chim. Acta. 2023;545:121273. doi: 10.1016/j.ica.2022.121273. DOI

Young S.W., Woodburn K.W., Wright M., Mody T.D., Fan Q., Sessler J.L., Dow W.C., Miller R.A. Lutetium texaphyrin (PCI-0123): A near-infrared, water-soluble photosensitizer. Photochem. Photobiol. 1996;63:892–897. doi: 10.1111/j.1751-1097.1996.tb09647.x. PubMed DOI

Kang Y.F., Liu Q., Yin W.T., Zhang W.T., Liu P. 3D Ni(II)/Cu(II) Supermolecular Frameworks Based on Pyridylamine and Fumarate Co-ligands Containing a Trinodal (4,5,6)-Connected Network and a (H2O)16 Water Cluster. Chin. J. Chem. 2013;31:256–262. doi: 10.1002/cjoc.201200851. DOI

Zheng Y.Q., Lin J.L., Ying E.B. New mixed ligand copper(II) complexes: Syntheses and crystal structures of Cu(Imid)(2)(H2O)L with imid = imidazole, L = succinic and fumaric anions. Z. Anorg. Allg. Chem. 2003;629:673–676. doi: 10.1002/zaac.200390114. DOI

Paul A., Figuerola A., Bertolasi V., Manna S.C. DNA/protein binding and magnetic properties of a 1D Cu(II) complex containing fumarate and tridentate Schiff base ligands. Polyhedron. 2016;119:460–470. doi: 10.1016/j.poly.2016.09.028. DOI

Che G.B., Liu C.B., Xu Z.L. Poly pyrazino 2,3-f 1,10 phenanthroline copper(II)-mu(4)-fumarato-mu (2)-fumarato. Acta Crystallogr. Sect. E.-Struct Rep. Online. 2006;62:M1948–M1949. doi: 10.1107/S1600536806028376. DOI

Dong G.Y., Cui G.H., Lin J. catena-poly aqua(4,4 ′-dimethyl-2,2 ′-bipyridine)-copper(II)-mu-fumarato-kappa O-2,O ′:kappa O-2 ″ O ‴-aqua-(4,4 ′-dimethyl-2,2 ′-bipyridine)copper(II)-mu-fumarato-kappa O :kappa O ′. Acta Crystallogr. Sect. E.-Crystallogr. Commun. 2006;62:M628–M630. doi: 10.1107/s1600536806006477. DOI

Dalai S., Mukherjee P.S., Rogez G., Mallah T., Drew M.G.B., Chaudhuri N.R. Synthesis, crystal structures, and magnetic properties of two new 1D copper(II) coordination polymers containing fumarate(-2) and chelating N,N ′-donor as ligands. Eur. J. Inorg. Chem. 2002;2002:3292–3297. doi: 10.1002/1099-0682(200212)2002:12<3292::AID-EJIC3292>3.0.CO;2-G. DOI

He T., Yue K.F., Zhao Y.X., Chen S.P., Zhou C.S., Yan N. Crystal structures and thermodynamics/kinetics of Zn(II) coordination polymers with helical chains. J. Solid State Chem. 2016;239:113–120. doi: 10.1016/j.jssc.2016.04.022. DOI

Tella A.C., Oladipo A.C., Adimula V.O., Ameen O.A., Bourne S.A., Ogunlaja A.S. Synthesis and crystal structures of a copper(ii) dinuclear complex and zinc(ii) coordination polymers as materials for efficient oxidative desulfurization of dibenzothiophene. New J. Chem. 2019;43:14343–14354. doi: 10.1039/C9NJ01456J. DOI

Grirrane A., Alvarez E., Pastor A., Galindo A. Thiodipropionate Zn-II Complexes: Synthesis, DFT Studies, and X-ray Structure of {Zn(phen)(H2O)}(2)(mu-tdp)(2) center dot 3H(2)O. Z. Anorg. Allg. Chem. 2010;636:2409–2412. doi: 10.1002/zaac.201000145. DOI

Xing G.E., Liu Q.F., Zhang Y., Zhang S.F., Dong Y.L. Microporous Zinc(II) Metal-Organic Framework with 6-Connected pcu Topology: Synthesis, Structure, and Gas Adsorption Properties. Z. Anorg. Allg. Chem. 2015;641:1556–1559. doi: 10.1002/zaac.201500152. DOI

Gong W., Niu H.L., Zhang J., Song J.M., Mao C.J., Zhang S.Y. Synthesis, structure and properties of three isostructure polymer networks based on mixed ligands. Inorg. Chim. Acta. 2014;418:93–98. doi: 10.1016/j.ica.2014.04.009. DOI

Abdolalian P., Morsali A., Bruno G. Sonochemical synthesis and characterization of microrod to nanoparticle of new mixed-ligand zinc(II) fumarate metal-organic polymer. Ultrason. Sonochem. 2017;37:654–659. doi: 10.1016/j.ultsonch.2017.02.023. PubMed DOI

Bhattacharya B., Saha D., Maity D.K., Dey R., Ghoshal D. Syntheses, X-ray structures, gas adsorption and luminescent properties of three coordination polymers of Zn(II) dicarboxylates mixed with a linear, neutral, and rigid N,N ′-donor ligand. Crystengcomm. 2014;16:4783–4795. doi: 10.1039/C3CE42441C. DOI

Burrows A.D., Harrington R.W., Mahon M.F., Price C.E. The influence of hydrogen bonding on the structure of zinc co-ordination polymers. J. Chem. Soc.-Dalton Trans. 2000:3845–3854. doi: 10.1039/b003210g. DOI

Burke N.J., Burrows A.D., Donovan A.S., Harrington R.W., Mahon M.F., Price C.E. Zinc dicarboxylate polymers and dimers: Thiourea substitution as a tool in supramolecular synthesis. Dalton Trans. 2003:3840–3849. doi: 10.1039/b307420j. DOI

Che G.B., Liu B. catena-Poly pyrazino 2,3-f 1,10 phenanthroline zinc(II)-mu(4)-fumara to-mu(2)-fumarato. Acta Crystallogr. Sect. E.-Crystallogr. Commun. 2006;62:M2036–M2038. doi: 10.1107/s1600536806029643. DOI

Liu Y.Y., Jiang Y.Y., Yang J., Liu Y.Y., Ma J.F. Syntheses, structures and photoluminescence of zinc(II) and silver(I) coordination polymers based on 1,1 ′-(1,4-butanediyl)bis(2-methylbenzimidazole) and different carboxylate ligands. Crystengcomm. 2011;13:6118–6129. doi: 10.1039/c0ce00990c. DOI

Tao J., Tong M.L., Shi J.X., Chen X.M., Ng S.W. Blue photoluminescent zinc coordination polymers with supertetranuclear cores. Chem. Commun. 2000:2043–2044. doi: 10.1039/b005753n. DOI

Uebler J.W., Wilson J.A., LaDuca R.L. Donor disposition and aliphatic conformation effects on structure in luminescent zinc dicarboxylate coordination polymers with isomeric dipyridylamide coligands. Crystengcomm. 2013;15:1586–1596. doi: 10.1039/c2ce26929e. DOI

Wang B.C., Chen X.L., Hu H.M., Yao H.L., Xue G.L. Two novel Zn(II) coordination polymers based on trigonal ligand: 4 ′-(4-pyridyl)-3,2 ′:6 ′,3 ″-terpyridine. Inorg. Chem. Commun. 2009;12:856–859. doi: 10.1016/j.inoche.2009.06.038. DOI

Zhao R.L., Yue K.F., Zhou C.S., Cheng Q.D.M., Shi J.T., Liu Y.L., Wang Y.Y. A study of zinc(II) coordination polymers with identical meso-helix based on 1,4-bis(2-methyl-imidazol-1-yl)butane. Inorg. Chim. Acta. 2013;402:25–32. doi: 10.1016/j.ica.2013.03.015. DOI

Zheng Y.Q., Lin J.L., Chen B.Y. New catenary coordination polymers using fumarato ligand as bridging spacer: Crystal structures of Mn(phen)(2)(H2O)(2) L center dot 4H(2)O, Mn(phen)(H2O)(2)L and Zn(phen)L center dot H2L with-H2L fumaric acid. J. Mol. Struct. 2003;646:151–159. doi: 10.1016/S0022-2860(02)00615-4. DOI

Deng H.X., Doonan C.J., Furukawa H., Ferreira R.B., Towne J., Knobler C.B., Wang B., Yaghi O.M. Multiple Functional Groups of Varying Ratios in Metal-Organic Frameworks. Science. 2010;327:846–850. doi: 10.1126/science.1181761. PubMed DOI

Konar S., Zangrando E., Drew M.G.B., Ribas J., Chaudhuri N.R. Synthesis, structural analysis, and magnetic behaviour of three fumarate bridged coordination polymers: Five-fold interpenetrated diamond-like net of Ni-II, sheets of Ni-II and Co-II. Dalton Trans. 2004:260–266. doi: 10.1039/B311988B. PubMed DOI

Liu Y., Xu D.J. catena-poly diaquabis(1H-benzimidazole-kappa N-3)-nickel(II)-mu-fumarato-kappa O-2:O ′. Acta Crystallogr. Sect. E.-Crystallogr. Commun. 2004;60:M1002–M1004. doi: 10.1107/s1600536804015144. DOI

Ohmura T., Mori W., Hasegawa M., Takei T., Ikeda T., Hasegawa E. Crystal structures and magnetic and gas-occlusion properties of microporous materials containing infinite chains of mononuclear metal (Cu(II), Zn(II), and Ni(II)) dicarboxylates unit. Bull. Chem. Soc. Jpn. 2003;76:1387–1395. doi: 10.1246/bcsj.76.1387. DOI

Yang Q., Wei Q., Chen S.P., Zhang G.C., Zhou C.S., Gao S.L. Solid state synthesis, thermodynamics and catalytic combustion effect of a high energy nickel(II) coordination compound. J. Anal. Appl. Pyrolysis. 2013;99:66–70. doi: 10.1016/j.jaap.2012.10.026. DOI

Carlucci L., Ciani G., Proserpio D.M., Rizzato S. New polymeric networks from the self-assembly of silver(I) salts and the flexible ligand 1,3-bis(4-pyridyl)propane (bpp). A systematic investigation of the effects of the counterions and a survey of the coordination polymers base on bpp. Crystengcomm. 2002;4:121–129. doi: 10.1039/b201288j. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

In Vitro Interaction of Binuclear Copper Complexes with Liver Drug-Metabolizing Cytochromes P450

. 2024 Sep 10 ; 17 (9) : . [epub] 20240910

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...