Coordination Compounds of Cu, Zn, and Ni with Dicarboxylic Acids and N Donor Ligands, and Their Biological Activity: A Review
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
36771123
PubMed Central
PMC9920268
DOI
10.3390/molecules28031445
PII: molecules28031445
Knihovny.cz E-zdroje
- Klíčová slova
- antibacterial, anticancer, copper, dicarboxylate complex, mixed ligand complexes, nickel, zinc,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Complexes of carboxylic acids are very often studied due to their interesting structural, spectral, and magnetic properties. This review is focused on complexes of four dicarboxylic acids, namely, 2,2'-thiodioacetic, 3,3'-thiodipropionic, 3,3'-dithiodipropionic, and fumaric acid. Many of the complexes were characterized by single crystal X-ray analyses. Without the analyses, it is very difficult to predict the coordination mode of carboxylate groups or nitrogen ligands on central atoms. Thus, structural properties are also discussed, as well as potential applications.
Zobrazit více v PubMed
Bakalbassis E.G., Bozopoulos A.P., Mrozinski J., Rentzeperis P.J., Tsipis C.A. Crystal-structure, magnetic-properties, and orbital interactions of the (mu-terephthalato)(ethylenediamine)diaquocopper(II) zigzag chain. Inorg. Chem. 1988;27:529–532. doi: 10.1021/ic00276a019. DOI
Mrozinski J. New trends of molecular magnetism. Coord. Chem. Rev. 2005;249:2534–2548. doi: 10.1016/j.ccr.2005.05.013. DOI
Habib H.A., Sanchiz J., Janiak C. Magnetic and luminescence properties of Cu(II), Cu(II)(4)O-4 core, and Cd(II) mixed-ligand metal-organic frameworks constructed from 1,2-bis(1,2,4-triazol-4-yl)ethane and benzene-1,3,5-tricarboxylate. Inorg. Chim. Acta. 2009;362:2452–2460. doi: 10.1016/j.ica.2008.11.003. DOI
Grirrane A., Pastor A., Galindo A., Ienco A., Mealli C., Rosa P. First example of a tetra-carboxylate bridged dimanganese species. Chem. Commun. 2003:512–513. doi: 10.1039/b211886f. PubMed DOI
Grirrane A., Pastor A., Alvarez E., Mealli C., Ienco A., Masi D., Galindo A. Thiodiacetate cobalt(II) complexes: Synthesis, structure and properties. Inorg. Chem. Commun. 2005;8:463–466. doi: 10.1016/j.inoche.2005.02.011. DOI
Kopel P., Sindelar Z., Klicka R. Complexes of iron(III) salen and saloph Schiff bases with bridging dicarboxylic and tricarboxylic acids. Transit. Met. Chem. 1998;23:139–142. doi: 10.1023/A:1006990925318. DOI
Kopel P., Travnicek Z., Marek J., Mrozinski J. Syntheses and study on nickel(II) complexes with thiodiglycolic acid and nitrogen-donor ligands. X-ray structures of Ni(bpy)(tdga)(H2O)center dot 4H(2)O and (en)Ni(mu-tdga)(2)NI(en) center dot 4H(2)O (tdgaH(2)= thiodiglycolic acid) Polyhedron. 2004;23:1573–1578. doi: 10.1016/j.poly.2004.03.005. DOI
Kopel P., Travnicek Z., Marek J., Korabik M., Mrozinski J. Syntheses and properties of binuclear copper(II) mixed-ligand complexes involving thiodiglycolic acid. The crystal structures of (phen)(2)Cu(mu-tdga)Cu(phen) (NO3)(2)center dot 5H(2)O and (H2O)(pmdien)Cu(mu-tdga)Cu(pmdien)(H2O) (ClO4)(2) Polyhedron. 2003;22:411–418. doi: 10.1016/S0277-5387(02)01365-7. DOI
Alavijeh R.K., Beheshti S., Akhbari K., Morsali A. Investigation of reasons for metal-organic framework’s antibacterial activities. Polyhedron. 2018;156:257–278. doi: 10.1016/j.poly.2018.09.028. DOI
Soltani S., Akhbari K., Phuruangrat A. Investigation of effective factors on antibacterial activity of Pillared-Layered MOFs. J. Mol. Struct. 2021;1225:8. doi: 10.1016/j.molstruc.2020.129261. DOI
Kalati M., Akhbari K. Optimizing the metal ion release and antibacterial activity of ZnO@ZIF-8 by modulating its synthesis method. New J. Chem. 2021;45:22924–22931. doi: 10.1039/D1NJ04534B. DOI
Nakhaei M., Akhbari K., Kalati M., Phuruangrat A. Antibacterial activity of three zinc-terephthalate MOFs and its relation to their structural features. Inorg. Chim. Acta. 2021;522:9. doi: 10.1016/j.ica.2021.120353. DOI
Soltani S., Akhbari K., Phuruangrat A. Incorporation of silver nanoparticles on Cu-BTC metal-organic framework under the influence of reaction conditions and investigation of their antibacterial activity. Appl. Organomet. Chem. 2022;36:10. doi: 10.1002/aoc.6634. DOI
Soltani S., Akhbari K. Cu-BTC metal-organic framework as a biocompatible nanoporous carrier for chlorhexidine antibacterial agent. J. Biol. Inorg. Chem. 2022;27:81–87. doi: 10.1007/s00775-021-01912-5. PubMed DOI
Kruszynski R., Swiatkowski M. The structure of coordination precursors as an effective tool for governing of size and morphology of ZnS and ZnO nanoparticles. J. Saudi Chem. Soc. 2018;22:816–825. doi: 10.1016/j.jscs.2018.01.003. DOI
Swiatkowski M., Kruszynski R. Structurally diverse coordination compounds of zinc as effective precursors of zinc oxide nanoparticles with various morphologies. Appl. Organomet. Chem. 2019;33:18. doi: 10.1002/aoc.4812. DOI
Stepankova H., Swiatkowski M., Kruszynski R., Svec P., Michalkova H., Smolikova V., Ridoskova A., Splichal Z., Michalek P., Richtera L., et al. The Anti-Proliferative Activity of Coordination Compound-Based ZnO Nanoparticles as a Promising Agent Against Triple Negative Breast Cancer Cells. Int. J. Nanomed. 2021;16:4431–4449. doi: 10.2147/IJN.S304902. PubMed DOI PMC
Badea M., Uivarosi V., Olar R. Improvement in the Pharmacological Profile of Copper Biological Active Complexes by Their Incorporation into Organic or Inorganic Matrix. Molecules. 2020;25:5830. doi: 10.3390/molecules25245830. PubMed DOI PMC
Psomas G. Copper(II) and zinc(II) coordination compounds of non-steroidal anti-inflammatory drugs: Structural features and antioxidant activity. Coord. Chem. Rev. 2020;412:13. doi: 10.1016/j.ccr.2020.213259. DOI
Frederickson C.J., Koh J.Y., Bush A.I. The neurobiology of zinc in health and disease. Nat. Rev. Neurosci. 2005;6:449–462. doi: 10.1038/nrn1671. PubMed DOI
Porchia M., Pellei M., Del Bello F., Santini C. Zinc Complexes with Nitrogen Donor Ligands as Anticancer Agents. Molecules. 2020;25:5814. doi: 10.3390/molecules25245814. PubMed DOI PMC
Ban I., Stergar J., Maver U. NiCu magnetic nanoparticles: Review of synthesis methods, surface functionalization approaches, and biomedical applications. Nanotechnol. Rev. 2018;7:187–207. doi: 10.1515/ntrev-2017-0193. DOI
More M.S., Joshi P.G., Mishra Y.K., Khanna P.K. Metal complexes driven from Schiff bases and semicarbazones for biomedical and allied applications: A review. Mater. Today Chem. 2019;14:22. doi: 10.1016/j.mtchem.2019.100195. PubMed DOI PMC
Duncan C., White A.R. Copper complexes as therapeutic agents. Metallomics. 2012;4:127–138. doi: 10.1039/C2MT00174H. PubMed DOI
Tardito S., Marchio L. Copper Compounds in Anticancer Strategies. Curr. Med. Chem. 2009;16:1325–1348. doi: 10.2174/092986709787846532. PubMed DOI
Taylor M.R., Gabe E.J., Glusker J.P., Minkin J.A., Patterso A.L. Crystal structures of compounds with antitumor activity. 2-keto-3-ethoxybutyraldehyde bis(thiosemicarbazone) and its cupric complex. J. Am. Chem. Soc. 1966;88:1845–1846. doi: 10.1021/ja00960a067. PubMed DOI
Garcia-Tojal J., Garcia-Orad A., Serra J.L., Pizarro J.L., Lezama L., Arriortua M.I., Rojo T. Synthesis and spectroscopic properties of copper(II) complexes derived from thiophene-2-carbaldehyde thiosemicarbazone. Structure and biological activity of Cu(C6H6N3S2)(2) J. Inorg. Biochem. 1999;75:45–54. doi: 10.1016/S0162-0134(99)00031-8. PubMed DOI
Pramanik A.K., Siddikuzzaman, Palanimuthu D., Somasundaram K., Samuelson A.G. Biotin Decorated Gold Nanoparticles for Targeted Delivery of a Smart-Linked Anticancer Active Copper Complex: In Vitro and In Vivo Studies. Bioconjugate Chem. 2016;27:2874–2885. doi: 10.1021/acs.bioconjchem.6b00537. PubMed DOI
Santini C., Pellei M., Gandin V., Porchia M., Tisato F., Marzano C. Advances in Copper Complexes as Anticancer Agents. Chem. Rev. 2014;114:815–862. doi: 10.1021/cr400135x. PubMed DOI
Zhou H., Zheng C.Y., Zou G.L., Tao D.D., Gong J.P. G(1)-phase specific apoptosis in liver carcinoma cell line induced by copper-1,10-phenanthroline. Int. J. Biochem. Cell Biol. 2002;34:678–684. doi: 10.1016/S1357-2725(01)00176-5. PubMed DOI
Valdez-Camacho J.R., Ramirez-Solis A., Escalante J., Ruiz-Azuara L., Ho M. Theoretical determination of half-wave potentials for phenanthroline-, bipyridine-, acetylacetonate-, and glycinate-containing copper (II) complexes. J. Mol. Model. 2020;26:13. doi: 10.1007/s00894-020-04453-x. PubMed DOI
Yoshikawa Y., Yasui H. Zinc Complexes Developed as Metallopharmaceutics for Treating Diabetes Mellitus based on the Bio-Medicinal Inorganic Chemistry. Curr. Top. Med. Chem. 2012;12:210–218. doi: 10.2174/156802612799078874. PubMed DOI
Sakurai H., Yoshikawa Y., Yasui H. Current state for the development of metallopharmaceutics and anti-diabetic metal complexes. Chem. Soc. Rev. 2008;37:2383–2392. doi: 10.1039/b710347f. PubMed DOI
Roguin L.P., Chiarante N., Vior M.C.G., Marino J. Zinc(II) phthalocyanines as photosensitizers for antitumor photodynamic therapy. Int. J. Biochem. Cell Biol. 2019;114:14. doi: 10.1016/j.biocel.2019.105575. PubMed DOI
Kuzyniak W., Ermilov E.A., Atilla D., Gurek A.G., Nitzsche B., Derkow K., Hoffmann B., Steinemann G., Ahsen V., Hopfner M. Tetra-triethyleneoxysulfonyl substituted zinc phthalocyanine for photodynamic cancer therapy. Photodiagnosis Photodyn. Ther. 2016;13:148–157. doi: 10.1016/j.pdpdt.2015.07.001. PubMed DOI
Drewry J.A., Gunning P.T. Recent advances in biosensory and medicinal therapeutic applications of zinc(II) and copper(II) coordination complexes. Coord. Chem. Rev. 2011;255:459–472. doi: 10.1016/j.ccr.2010.10.018. DOI
Afrasiabi Z., Sinn E., Lin W.S., Ma Y.F., Campana C., Padhye S. Nickel (II) complexes of naphthaquinone thiosemicarbazone and semicarbazone: Synthesis, structure, spectroscopy, and biological activity. J. Inorg. Biochem. 2005;99:1526–1531. doi: 10.1016/j.jinorgbio.2005.04.012. PubMed DOI
Bonomo R.P., Rizzarelli E., Brescianipahor N., Nardin G. Properties and x-ray crystal-structures of copper(ii) mixed complexes with thiodiacetate and 2,2′-bipyridyl or 2,2′-6′,2′′-terpyridyl. J. Chem. Soc.-Dalton Trans. 1982:681–685. doi: 10.1039/DT9820000681. DOI
Pavlova A., Cernak J., Harms K. catena-Poly diaqua(di-2-pyridylamine-kappa N-2,N ′)nickel(II)-mu-fumarato-kappa O-2(1):O-4 tetrahydrate. Acta Crystallogr. Sect. E.-Struct Rep. Online. 2010;66:m501–m502. doi: 10.1107/S1600536810012225. PubMed DOI PMC
Bora S.J., Das B.K. Synthesis, structure and properties of a fumarate bridged Ni(II) coordination polymer. J. Mol. Struct. 2011;999:83–88. doi: 10.1016/j.molstruc.2011.05.039. DOI
Bienko A., Kopel P., Kizek R., Kruszynski R., Bienko D., Titis J., Boca R. Synthesis, crystal structure and magnetic properties of trithiocyanurate or thiodiacetate polynuclear Ni(II) and Co(II) complexes. Inorg. Chim. Acta. 2014;416:147–156. doi: 10.1016/j.ica.2014.03.009. DOI
Yu J. catena-Poly di-mu(2)-hydroxido-bis (di-2-pyridylamine)nickel(II)-mu-fumarato dihydrate. Acta Crystallogr. Sect. E.-Struct Rep. Online. 2009;65:m535–m536. doi: 10.1107/S1600536809013580. PubMed DOI PMC
Lazarou K.N., Terzis A., Perlepes S.P., Raptopoulou C.P. Synthetic, structural and spectroscopic studies of complexes derived from the copper(II) perchlorate/fumaric acid/N,N ′-chelates tertiary reaction systems. Polyhedron. 2010;29:46–53. doi: 10.1016/j.poly.2009.05.075. DOI
Chawla S.K., Arora M., Nattinen K., Rissanen K., Yakhmi J.V. Syntheses and crystal structures of three novel Cu(II) coordination polymers of different dimensionality constructed from Cu(II) carboxylates (carboxylate=malonate (mal), 2 acetate (ac), fumarate (fum)) and conformationally flexible 1,4-bis(imidazole-1-yl-methylene)benzene(IX) Polyhedron. 2004;23:3007–3019. doi: 10.1016/j.poly.2004.08.025. DOI
Mautner F.A., Vicente R., Louka F.R.Y., Massoud S.S. Dinuclear fumarato-and terephthalato-bridged copper(II) complexes: Structural characterization and magnetic properties. Inorg. Chim. Acta. 2008;361:1339–1348. doi: 10.1016/j.ica.2007.08.026. DOI
Arici M., Yesilel O.Z., Keskin S., Sahin O., Buyukgungor O. The synthesis, characterization, and theoretical hydrogen gas adsorption properties of copper(II)-3,3 ′-thiodipropionate complexes with imidazole derivatives. J. Coord. Chem. 2013;66:4093–4106. doi: 10.1080/00958972.2013.860223. DOI
Alarcon-Payer C., Pivetta T., Choquesillo-Lazarte D., Gonzalez-Perez J.M., Crisponi G., Castineiras A., Niclos-Gutierrez J. Thiodiacetato-copper(II) chelates with or without N-heterocyclic donor ligands: Molecular and/or crystal structures of Cu(tda) (n), Cu(tda)(Him)(2)(H2O) and Cu(tda)(5Mphen) center dot 2H(2)O (Him = imidazole, 5Mphen=5-methyl-1,10-phenanthroline) Inorg. Chim. Acta. 2005;358:1918–1926. doi: 10.1016/j.ica.2004.12.056. DOI
Nath J.K., Mondal A., Powell A.K., Baruah J.B. Structures, Magnetic Properties, and Photoluminescence of Dicarboxylate Coordination Polymers of Mn, Co, Ni, Cu Having N-(4-Pyridylmethyl)-1,8-naphthalimide. Cryst. Growth Des. 2014;14:4735–4748. doi: 10.1021/cg500882z. DOI
Tellez-Lopez A., Jaramillo-Garcia J., Martinez-Dominguez R., Morales-Luckie R.A., Camacho-Lopez M.A., Escudero R., Sanchez-Mendieta V. M(II)(H2O)(2) (5,5 ′-dimethy-2,2 ′-bipyridine)(fumarato) M = Co and Zn complexes bearing a unique distorted trigonal-prismatic geometry and displaying 2D supramolecular structures. Polyhedron. 2015;100:373–381. doi: 10.1016/j.poly.2015.08.025. DOI
Mori W., Takamizawa S., Kato C.N., Ohmura T., Sato T. Molecular-level design of efficient microporous materials containing metal carboxylates: Inclusion complex formation with organic polymer, gas-occlusion properties, and catalytic activities for hydrogenation of olefins. Microporous Mesoporous Mat. 2004;73:31–46. doi: 10.1016/j.micromeso.2004.02.019. DOI
Farnum G.A., Martin D.P., Sposato L.K., Supkowski R.M., LaDuca R.L. Zinc maleate and fumarate coordination polymers containing hydrogen-bonding capable organodiimines featuring ligand dependent in situ cis-trans isomerization. Inorg. Chim. Acta. 2010;363:250–256. doi: 10.1016/j.ica.2009.08.005. DOI
Mukherjee P.S., Ghoshal D., Zangrando E., Mallah T., Chaudhuri N.R. Use of different unsaturated dicarboxylates toward the design of new 3D and 2D networks of copper(II) Eur. J. Inorg. Chem. 2004:4675–4680. doi: 10.1002/ejic.200400328. DOI
Buchtelova H., Skubalova Z., Strmiska V., Michalek P., Kociova S., Smerkova K., Kruszynski R., Bienko A., Kaj M., Lewinska A., et al. Synthesis and structural characterization of antimicrobial binuclear copper (II) coordination compounds bridged by hydroxy-and/or thiodipropionic acid. J. Inorg. Biochem. 2019;191:8–20. doi: 10.1016/j.jinorgbio.2018.10.011. PubMed DOI
Wang Y.L., Chang G.J., Liu B.X. Aqua(2,2′-diamino-4,4′-bi-1,3-thiazole-kappa 2 N 3,N 3′)(thiodiacetato-kappa 3 O,S,O′)nickel(II) monohydrate. Acta Crystallogr. Sect. E.-Struct Rep. Online. 2011;67:m681. doi: 10.1107/S1600536811015157. PubMed DOI PMC
Baggio R., Perec M., Garland M.T. Aqua(2,2′-bipyriayl-N,N′)(thiodiacetato-O,O′,S)zinc(II) tetrahydrate. Acta Crystallogr. Sect. C-Cryst. Struct. Commun. 1996;52:2457–2460. doi: 10.1107/S0108270196007329. DOI
He X., Lu C.Z. Hydrothermal synthesis of two mixed-valence copper complexes with mixed ligands. Z. Anorg. Allg. Chem. 2004;630:756–759. doi: 10.1002/zaac.200300417. DOI
Sareen N., Singh S., Bhattacharya S. A Cu(II) mediated new desulfurization pathway involving elimination of ethylene sulfide. Dalton Trans. 2014;43:4635–4638. doi: 10.1039/C3DT53395F. PubMed DOI
Wen G.L., Wang Y.Y., Zhang W.H., Ren C., Liu R.T., Shi Q.Z. Self-assembled coordination polymers of V-shaped bis(pyridyl)thiadiazole dependent upon the spacer length and flexibility of aliphatic dicarboxylate ligands. Crystengcomm. 2010;12:1238–1251. doi: 10.1039/B919381M. DOI
Ren B.D., Zhao Y.J. catena-Poly (di-2-pyridylamine-kappa N-2(2),N-2 ′)copper(II)-mu-3,3 ′-dithiodipropionato-kappa O,O ′:kappa O ″. Acta Crystallogr. Sect. E.-Crystallogr. Commun. 2006;62:M170–M171. doi: 10.1107/s1600536805042364. DOI
Wang Y.Y., Wang X., Shi Q.Z., Gao Y.C. A novel binuclear copper(II) complex with fumarate and 1,10-phenanthroline. Transit. Met. Chem. 2002;27:481–484. doi: 10.1023/A:1015617327024. DOI
Cheng H.J., Shen Y.L., Zhang S.Y., Ji H.W., Yin W.Y., Li K., Yuan R.X. Three Coordination Polymers Constructed with Zinc(II), 3,3-Thiodipropionic Acid, and Bipyridyl Ligands: Syntheses, Crystal Structures and Luminescent Properties. Z. Anorg. Allg. Chem. 2015;641:1575–1580. doi: 10.1002/zaac.201500167. DOI
Yang P.P., Li B., Wang Y.H., Gu W., Liu X. Synthesis, structure, and luminescence properties of zinc(II) and cadmium(II) complexes containing the flexible ligand of 3,3 ′-thiodipropionic acid. Z. Anorg. Allg. Chem. 2008;634:1221–1224. doi: 10.1002/zaac.200700597. DOI
Grirrane A., Pastor A., Alvarez E., Mealli C., Ienco A., Galindo A. Novel results on thiodiacetate zinc(II) complexes: Synthesis and structure of Zn(tda)(phen) (2) center dot 5H(2)O. Inorg. Chem. Commun. 2006;9:160–163. doi: 10.1016/j.inoche.2005.10.021. DOI
Das M., Biswas A., Kundu B.K., Charmier M.A.J., Mukherjee A., Mobin S.M., Udayabhanu G., Mukhopadhyay S. Enhanced pseudo-halide promoted corrosion inhibition by biologically active zinc(II) Schiff base complexes. Chem. Eng. J. 2019;357:447–457. doi: 10.1016/j.cej.2018.09.150. DOI
Nie F.M., Chen J., Lu F. Synthesis, crystal structures and magnetic studies of terephthalato-and fumarato-bridged dinickel(II) complexes with tripodal poly-benzimidazole ligand. Inorg. Chim. Acta. 2011;365:190–195. doi: 10.1016/j.ica.2010.09.009. DOI
Kansiz S., Dege N., Kalibabchuk V.A. Synthesis, crystal structure and Hirshfeld surface analysis of a 1D coordination polymer catenapoly diaquabis(nicotinamide-kappa N-1)nickel(II)-mu-fumarato-kappa O-2(1):O-4. Acta Crystallogr. Sect. E.-Crystallogr. Commun. 2018;74:1263–1266. doi: 10.1107/S2056989018011489. PubMed DOI PMC
Lin J.G., Wu P.H., Kang L., Lu C.S., Meng Q.J. Synthesis and characterization of a three dimensional zinc(II) metal-organic framework constructed from flexible 1,2,3,4-tetra-(4-pyridyl)-butane ligand. Solid State Sci. 2011;13:1538–1541. doi: 10.1016/j.solidstatesciences.2011.05.017. DOI
Xu J.Y., Hurtado E.J., Lobkovsky E.B., Chen B.L. Poly (mu(2)-trans-di-4-pyridylethylene-kappa N-2:N ′)(mu(2)-fumarato-kappa O-2: O ′)zinc(II) Acta Crystallogr. Sect. E.-Crystallogr. Commun. 2007;63:m2205. doi: 10.1107/s1600536807035209. PubMed DOI
Tseng T.W., Luo T.T., Wu J.Y., Tsai C.C., Huang C.Y., Chiang M.H., Lu K.L. Adaptation of guest molecules: A simple system that amplifies the gentle perturbation of host lattices from nickel(II) to cobalt(II) Inorg. Chim. Acta. 2016;445:96–102. doi: 10.1016/j.ica.2016.02.004. DOI
Uhrinova A., Kuchar J., Cernak J. The chain structure of Ni(C4H2O4)(C12H8N2)(H2O) (n) with different types of fumarate bridging. Acta Crystallogr. Sect. E.-Struct Rep. Online. 2012;68:m92–m93. doi: 10.1107/S1600536811054614. PubMed DOI PMC
Ma J.F., Yang J., Liu J.F. A nickel(II) fumarate complex with o-phenanthroline. Acta Crystallogr. Sect. E.-Struct Rep. Online. 2003;59:M900–M902. doi: 10.1107/S1600536803019408. DOI
Pan T.T., Su J.R., Xu D.J. Tris(1H-imidazole-kappa N-3)(thiodiacetato-kappa O-3,S,O ′)-nickel(II) monohydrate. Acta Crystallogr. Sect. E.-Crystallogr. Commun. 2005;61:M1576–M1578. doi: 10.1107/s160053680502194x. DOI
Abbaszadeh A., Safari N., Amani V., Notash B., Raei F., Eftekhar F. Mononuclear and Dinuclear Copper(II) Complexes Containing N, O and S Donor Ligands: Synthesis, Characterization, Crystal Structure Determination and Antimicrobial Activity of Cu(phen)(tda) center dot 2H(2)O and (phen)(2)Cu(mu-tda)Cu(phen) (ClO4)(2 center dot)1.5H(2)O. Iran J. Chem. Chem. Eng.-Int. Engl. Ed. 2014;33:1–13.
Neuman N.I., Perec M., Gonzalez P.J., Passeggi M.C.G., Rizzi A.C., Brondino C.D. Single Crystal EPR Study of the Dinuclear Cu(II) Complex Cu(tda)(phen) (2)center dot H(2)tda (tda = Thiodiacetate, phen = Phenanthroline): Influence of Weak Interdimeric Magnetic Interactions. J. Phys. Chem. A. 2010;114:13069–13075. doi: 10.1021/jp108736p. PubMed DOI
Khullar S., Mandal S.K. Effect of Spacer Atoms in the Dicarboxylate Linkers on the Formation of Coordination Architectures-Molecular Rectangles vs 1D Coordination Polymers: Synthesis, Crystal Structures, Vapor/Gas Adsorption Studies, and Magnetic Properties. Cryst. Growth Des. 2014;14:6433–6444. doi: 10.1021/cg501284y. DOI
Ahmad M.S., Khalid M., Khan M.S., Shahid M., Ahmad M., Monika, Ansari A., Ashafaq M. Exploring catecholase activity in dinuclear Mn(ii) and Cu(ii) complexes: An experimental and theoretical approach. New J. Chem. 2020;44:7998–8009. doi: 10.1039/D0NJ00605J. DOI
Banu K.S., Chattopadhyay T., Banerjee A., Mukherjee M., Bhattacharya S., Patra G.K., Zangrando E., Das D. Mono-and dinuclear manganese(III) complexes showing efficient catechol oxidase activity: Syntheses, characterization and spectroscopic studies. Dalton Trans. 2009:8755–8764. doi: 10.1039/b902498k. PubMed DOI
Arici M., Yesilel O.Z., Sahin O., Tas M. Dinuclear and polynuclear copper(II) complexes with 3,3 ′-thiodipropionate and unprecedented coordination mode. Polyhedron. 2014;71:62–68. doi: 10.1016/j.poly.2014.01.005. DOI
Arici M., Yesilel O.Z., Tas M. Naked-eye detection and thermochromic properties of Cu(II)-3,3 ′-thiodipropionate complexes with benzimidazole. Dalton Trans. 2015;44:1627–1635. doi: 10.1039/C4DT02119C. PubMed DOI
Tella A.C., Owalude S.O., Adimula V.O., Oladipo A.C., Olayemi V.T., Ismail B., Mumtaz A., Rehman A.U., Khan A.M., Clayton H.S., et al. Synthesis, Structure, and Properties of a Dinuclear Cu(II) Coordination Polymer Based on Quinoxaline and 3,3-Thiodipropionic Acid Ligands. J. Inorg. Organomet. Polym. Mater. 2021;31:3089–3100. doi: 10.1007/s10904-021-01966-7. DOI
Lahiri D., Bhowmick T., Pathak S., Shameema O., Patra A.K., Ramakumar S., Chakravarty A.R. Anaerobic Photocleavage of DNA in Red Light by Dicopper(II) Complexes of 3,3 ′-Dithiodipropionic Acid. Inorg. Chem. 2009;48:339–349. doi: 10.1021/ic800806j. PubMed DOI
Loubalová I., Zahradníková E., Masaryk L., Nemec I., Hochvaldová L., Panáček A., Kvítek L., Večeřová R., Świątkowski M., Kopel P. Antibacterial study on nickel and copper dicarboxylate complexes. Inorg. Chim. Acta. 2023;545:121273. doi: 10.1016/j.ica.2022.121273. DOI
Young S.W., Woodburn K.W., Wright M., Mody T.D., Fan Q., Sessler J.L., Dow W.C., Miller R.A. Lutetium texaphyrin (PCI-0123): A near-infrared, water-soluble photosensitizer. Photochem. Photobiol. 1996;63:892–897. doi: 10.1111/j.1751-1097.1996.tb09647.x. PubMed DOI
Kang Y.F., Liu Q., Yin W.T., Zhang W.T., Liu P. 3D Ni(II)/Cu(II) Supermolecular Frameworks Based on Pyridylamine and Fumarate Co-ligands Containing a Trinodal (4,5,6)-Connected Network and a (H2O)16 Water Cluster. Chin. J. Chem. 2013;31:256–262. doi: 10.1002/cjoc.201200851. DOI
Zheng Y.Q., Lin J.L., Ying E.B. New mixed ligand copper(II) complexes: Syntheses and crystal structures of Cu(Imid)(2)(H2O)L with imid = imidazole, L = succinic and fumaric anions. Z. Anorg. Allg. Chem. 2003;629:673–676. doi: 10.1002/zaac.200390114. DOI
Paul A., Figuerola A., Bertolasi V., Manna S.C. DNA/protein binding and magnetic properties of a 1D Cu(II) complex containing fumarate and tridentate Schiff base ligands. Polyhedron. 2016;119:460–470. doi: 10.1016/j.poly.2016.09.028. DOI
Che G.B., Liu C.B., Xu Z.L. Poly pyrazino 2,3-f 1,10 phenanthroline copper(II)-mu(4)-fumarato-mu (2)-fumarato. Acta Crystallogr. Sect. E.-Struct Rep. Online. 2006;62:M1948–M1949. doi: 10.1107/S1600536806028376. DOI
Dong G.Y., Cui G.H., Lin J. catena-poly aqua(4,4 ′-dimethyl-2,2 ′-bipyridine)-copper(II)-mu-fumarato-kappa O-2,O ′:kappa O-2 ″ O ‴-aqua-(4,4 ′-dimethyl-2,2 ′-bipyridine)copper(II)-mu-fumarato-kappa O :kappa O ′. Acta Crystallogr. Sect. E.-Crystallogr. Commun. 2006;62:M628–M630. doi: 10.1107/s1600536806006477. DOI
Dalai S., Mukherjee P.S., Rogez G., Mallah T., Drew M.G.B., Chaudhuri N.R. Synthesis, crystal structures, and magnetic properties of two new 1D copper(II) coordination polymers containing fumarate(-2) and chelating N,N ′-donor as ligands. Eur. J. Inorg. Chem. 2002;2002:3292–3297. doi: 10.1002/1099-0682(200212)2002:12<3292::AID-EJIC3292>3.0.CO;2-G. DOI
He T., Yue K.F., Zhao Y.X., Chen S.P., Zhou C.S., Yan N. Crystal structures and thermodynamics/kinetics of Zn(II) coordination polymers with helical chains. J. Solid State Chem. 2016;239:113–120. doi: 10.1016/j.jssc.2016.04.022. DOI
Tella A.C., Oladipo A.C., Adimula V.O., Ameen O.A., Bourne S.A., Ogunlaja A.S. Synthesis and crystal structures of a copper(ii) dinuclear complex and zinc(ii) coordination polymers as materials for efficient oxidative desulfurization of dibenzothiophene. New J. Chem. 2019;43:14343–14354. doi: 10.1039/C9NJ01456J. DOI
Grirrane A., Alvarez E., Pastor A., Galindo A. Thiodipropionate Zn-II Complexes: Synthesis, DFT Studies, and X-ray Structure of {Zn(phen)(H2O)}(2)(mu-tdp)(2) center dot 3H(2)O. Z. Anorg. Allg. Chem. 2010;636:2409–2412. doi: 10.1002/zaac.201000145. DOI
Xing G.E., Liu Q.F., Zhang Y., Zhang S.F., Dong Y.L. Microporous Zinc(II) Metal-Organic Framework with 6-Connected pcu Topology: Synthesis, Structure, and Gas Adsorption Properties. Z. Anorg. Allg. Chem. 2015;641:1556–1559. doi: 10.1002/zaac.201500152. DOI
Gong W., Niu H.L., Zhang J., Song J.M., Mao C.J., Zhang S.Y. Synthesis, structure and properties of three isostructure polymer networks based on mixed ligands. Inorg. Chim. Acta. 2014;418:93–98. doi: 10.1016/j.ica.2014.04.009. DOI
Abdolalian P., Morsali A., Bruno G. Sonochemical synthesis and characterization of microrod to nanoparticle of new mixed-ligand zinc(II) fumarate metal-organic polymer. Ultrason. Sonochem. 2017;37:654–659. doi: 10.1016/j.ultsonch.2017.02.023. PubMed DOI
Bhattacharya B., Saha D., Maity D.K., Dey R., Ghoshal D. Syntheses, X-ray structures, gas adsorption and luminescent properties of three coordination polymers of Zn(II) dicarboxylates mixed with a linear, neutral, and rigid N,N ′-donor ligand. Crystengcomm. 2014;16:4783–4795. doi: 10.1039/C3CE42441C. DOI
Burrows A.D., Harrington R.W., Mahon M.F., Price C.E. The influence of hydrogen bonding on the structure of zinc co-ordination polymers. J. Chem. Soc.-Dalton Trans. 2000:3845–3854. doi: 10.1039/b003210g. DOI
Burke N.J., Burrows A.D., Donovan A.S., Harrington R.W., Mahon M.F., Price C.E. Zinc dicarboxylate polymers and dimers: Thiourea substitution as a tool in supramolecular synthesis. Dalton Trans. 2003:3840–3849. doi: 10.1039/b307420j. DOI
Che G.B., Liu B. catena-Poly pyrazino 2,3-f 1,10 phenanthroline zinc(II)-mu(4)-fumara to-mu(2)-fumarato. Acta Crystallogr. Sect. E.-Crystallogr. Commun. 2006;62:M2036–M2038. doi: 10.1107/s1600536806029643. DOI
Liu Y.Y., Jiang Y.Y., Yang J., Liu Y.Y., Ma J.F. Syntheses, structures and photoluminescence of zinc(II) and silver(I) coordination polymers based on 1,1 ′-(1,4-butanediyl)bis(2-methylbenzimidazole) and different carboxylate ligands. Crystengcomm. 2011;13:6118–6129. doi: 10.1039/c0ce00990c. DOI
Tao J., Tong M.L., Shi J.X., Chen X.M., Ng S.W. Blue photoluminescent zinc coordination polymers with supertetranuclear cores. Chem. Commun. 2000:2043–2044. doi: 10.1039/b005753n. DOI
Uebler J.W., Wilson J.A., LaDuca R.L. Donor disposition and aliphatic conformation effects on structure in luminescent zinc dicarboxylate coordination polymers with isomeric dipyridylamide coligands. Crystengcomm. 2013;15:1586–1596. doi: 10.1039/c2ce26929e. DOI
Wang B.C., Chen X.L., Hu H.M., Yao H.L., Xue G.L. Two novel Zn(II) coordination polymers based on trigonal ligand: 4 ′-(4-pyridyl)-3,2 ′:6 ′,3 ″-terpyridine. Inorg. Chem. Commun. 2009;12:856–859. doi: 10.1016/j.inoche.2009.06.038. DOI
Zhao R.L., Yue K.F., Zhou C.S., Cheng Q.D.M., Shi J.T., Liu Y.L., Wang Y.Y. A study of zinc(II) coordination polymers with identical meso-helix based on 1,4-bis(2-methyl-imidazol-1-yl)butane. Inorg. Chim. Acta. 2013;402:25–32. doi: 10.1016/j.ica.2013.03.015. DOI
Zheng Y.Q., Lin J.L., Chen B.Y. New catenary coordination polymers using fumarato ligand as bridging spacer: Crystal structures of Mn(phen)(2)(H2O)(2) L center dot 4H(2)O, Mn(phen)(H2O)(2)L and Zn(phen)L center dot H2L with-H2L fumaric acid. J. Mol. Struct. 2003;646:151–159. doi: 10.1016/S0022-2860(02)00615-4. DOI
Deng H.X., Doonan C.J., Furukawa H., Ferreira R.B., Towne J., Knobler C.B., Wang B., Yaghi O.M. Multiple Functional Groups of Varying Ratios in Metal-Organic Frameworks. Science. 2010;327:846–850. doi: 10.1126/science.1181761. PubMed DOI
Konar S., Zangrando E., Drew M.G.B., Ribas J., Chaudhuri N.R. Synthesis, structural analysis, and magnetic behaviour of three fumarate bridged coordination polymers: Five-fold interpenetrated diamond-like net of Ni-II, sheets of Ni-II and Co-II. Dalton Trans. 2004:260–266. doi: 10.1039/B311988B. PubMed DOI
Liu Y., Xu D.J. catena-poly diaquabis(1H-benzimidazole-kappa N-3)-nickel(II)-mu-fumarato-kappa O-2:O ′. Acta Crystallogr. Sect. E.-Crystallogr. Commun. 2004;60:M1002–M1004. doi: 10.1107/s1600536804015144. DOI
Ohmura T., Mori W., Hasegawa M., Takei T., Ikeda T., Hasegawa E. Crystal structures and magnetic and gas-occlusion properties of microporous materials containing infinite chains of mononuclear metal (Cu(II), Zn(II), and Ni(II)) dicarboxylates unit. Bull. Chem. Soc. Jpn. 2003;76:1387–1395. doi: 10.1246/bcsj.76.1387. DOI
Yang Q., Wei Q., Chen S.P., Zhang G.C., Zhou C.S., Gao S.L. Solid state synthesis, thermodynamics and catalytic combustion effect of a high energy nickel(II) coordination compound. J. Anal. Appl. Pyrolysis. 2013;99:66–70. doi: 10.1016/j.jaap.2012.10.026. DOI
Carlucci L., Ciani G., Proserpio D.M., Rizzato S. New polymeric networks from the self-assembly of silver(I) salts and the flexible ligand 1,3-bis(4-pyridyl)propane (bpp). A systematic investigation of the effects of the counterions and a survey of the coordination polymers base on bpp. Crystengcomm. 2002;4:121–129. doi: 10.1039/b201288j. DOI
In Vitro Interaction of Binuclear Copper Complexes with Liver Drug-Metabolizing Cytochromes P450