Two copper(II) mixed ligand complexes with dicarboxylate bridges were prepared and studied, namely [Cu2(μ-fu)(pmdien)2(H2O)2](ClO4)2 (complex No. 5) and [Cu2(μ-dtdp)(pmdien)2(H2O)2](ClO4)2 (complex No. 6), where H2fu = fumaric acid, pmdien = N,N,N',N′′,N′′ pentamethyldiethylenetriamine, and H2dtdp = 3,3'-dithiodipropionic acid. The copper atoms are coordinated in the same mode by the tridentate pmdien ligand and oxygen of water molecules, and they only differ in the dicarboxylate bridge. This work is focused on the study of the inhibitory effect of these potential antimicrobial drugs on the activity of the most important human liver drug-metabolizing enzymes, cytochromes P450 (CYP), especially their forms CYP2C8, CYP2C19, and CYP3A4. The obtained results allow us to estimate the probability of potential drug interactions with simultaneously administrated drugs that are metabolized by these CYP enzymes. In conclusion, the presence of adverse effects due to drug-drug interactions with concomitantly used drugs cannot be excluded, and hence, topical application may be recommended as a relatively safe approach.
- Publication type
- Journal Article MeSH
Within the European Human Biomonitoring (HBM) Initiative HBM4EU we derived HBM indicators that were designed to help answering key policy questions and support chemical policies. The result indicators convey information on chemicals exposure of different age groups, sexes, geographical regions and time points by comparing median exposure values. If differences are observed for one group or the other, policy measures or risk management options can be implemented. Impact indicators support health risk assessment by comparing exposure values with health-based guidance values, such as human biomonitoring guidance values (HBM-GVs). In general, the indicators should be designed to translate complex scientific information into short and clear messages and make it accessible to policy makers but also to a broader audience such as stakeholders (e.g. NGO's), other scientists and the general public. Based on harmonized data from the HBM4EU Aligned Studies (2014-2021), the usefulness of our indicators was demonstrated for the age group children (6-11 years), using two case examples: one phthalate (Diisobutyl phthalate: DiBP) and one non-phthalate substitute (Di-isononyl cyclohexane-1,2- dicarboxylate: DINCH). For the comparison of age groups, these were compared to data for teenagers (12-18 years), and time periods were compared using data from the DEMOCOPHES project (2011-2012). Our result indicators proved to be suitable for demonstrating the effectiveness of policy measures for DiBP and the need of continuous monitoring for DINCH. They showed similar exposure for boys and girls, indicating that there is no need for gender focused interventions and/or no indication of sex-specific exposure patterns. They created a basis for a targeted approach by highlighting relevant geographical differences in internal exposure. An adequate data basis is essential for revealing differences for all indicators. This was particularly evident in our studies on the indicators on age differences. The impact indicator revealed that health risks based on exposure to DiBP cannot be excluded. This is an indication or flag for risk managers and policy makers that exposure to DiBP still is a relevant health issue. HBM indicators derived within HBM4EU are a valuable and important complement to existing indicator lists in the context of environment and health. Their applicability, current shortcomings and solution strategies are outlined.
- MeSH
- Biological Monitoring MeSH
- Child MeSH
- Phthalic Acids * MeSH
- Carboxylic Acids MeSH
- Humans MeSH
- Adolescent MeSH
- Policy MeSH
- Check Tag
- Child MeSH
- Humans MeSH
- Adolescent MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Four bipyridine-type ligands variably derivatized with two bioactive groups (taken from ethacrynic acid, flurbiprofen, biotin, and benzylpenicillin) were prepared via sequential esterification steps from commercial 2,2'-bipyridine-4,4'-dicarboxylic acid and subsequently coordinated to ruthenium(II) p-cymene and iridium(III) pentamethylcyclopentadienyl scaffolds. The resulting complexes were isolated as nitrate salts in high yields and fully characterized by analytical and spectroscopic methods. NMR and MS studies in aqueous solution and in cell culture medium highlighted a substantial stability of ligand coordination and a slow release of the bioactive fragments in the latter case. The complexes were assessed for their antiproliferative activity on four cancer cell lines, showing cytotoxicity to the low micromolar level (equipotent with cisplatin). Additional biological experiments revealed a multimodal mechanism of action of the investigated compounds, involving DNA metalation and enzyme inhibition. Synergic effects provided by specific combinations of metal and bioactive fragments were identified, pointing toward an optimal ethacrynic acid/flurbiprofen combination for both Ru(II) and Ir(III) complexes.
- MeSH
- Iridium chemistry pharmacology MeSH
- Coordination Complexes chemical synthesis chemistry pharmacology MeSH
- Humans MeSH
- Ligands MeSH
- Molecular Structure MeSH
- Tumor Cells, Cultured MeSH
- DNA Damage MeSH
- Cell Proliferation drug effects MeSH
- Antineoplastic Agents chemical synthesis chemistry pharmacology MeSH
- Pyridines chemistry pharmacology MeSH
- Ruthenium chemistry pharmacology MeSH
- Drug Screening Assays, Antitumor MeSH
- Cell Survival drug effects MeSH
- Dose-Response Relationship, Drug MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Neurosteroids are endogenous steroidal compounds that can modulate neuronal receptors. N-Methyl-D-aspartate receptors (NMDARs) are glutamate-gated, calcium-permeable ion channels that are of particular interest, as they participate in synaptic transmission and are implicated in various processes, such as learning, memory, or long-term neuronal potentiation. Positive allosteric modulators that increase the activity of NMDARs may provide a therapeutic aid for patients suffering from neuropsychiatric disorders where NMDAR hypofunction is thought to be involved, such as intellectual disability, autism spectrum disorder, or schizophrenia. We recently described a new class of pregn-5-ene and androst-5-ene 3β-dicarboxylic acid hemiesters (2-24) as potent positive modulators of NMDARs. Considering the recommended guidelines for the early stage development of new, potent compounds, we conducted an in vitro safety assessment and plasma stability screening to evaluate their druglikeness. First, compounds were screened for their hepatotoxicity and mitochondrial toxicity in a HepG2 cell line. Second, toxicity in primary rat postnatal neurons was estimated. Next, the ability of compounds 2-24 to cross a Caco-2 monolayer was also studied. Finally, rat and human plasma stability screening revealed an unforeseen high stability of the C-3 hemiester moiety. In summary, by using potency/efficacy towards NMDARs data along with toxicity profile, Caco-2 permeability and plasma stability, compounds 14 and 15 were selected for further in vivo animal studies.
- MeSH
- Androstenols blood chemistry pharmacology MeSH
- Hep G2 Cells MeSH
- Cholesterol blood chemistry pharmacology MeSH
- Esters blood chemistry pharmacology MeSH
- Rats MeSH
- Dicarboxylic Acids blood chemistry pharmacology MeSH
- Humans MeSH
- Intellectual Disability drug therapy metabolism MeSH
- Mitochondria drug effects metabolism MeSH
- Molecular Structure MeSH
- Tumor Cells, Cultured MeSH
- Neurons drug effects metabolism MeSH
- Neuroprotective Agents blood chemistry pharmacology MeSH
- Autism Spectrum Disorder drug therapy metabolism MeSH
- Rats, Wistar MeSH
- Pregnenolone analogs & derivatives blood pharmacology MeSH
- Receptors, N-Methyl-D-Aspartate antagonists & inhibitors metabolism MeSH
- Schizophrenia drug therapy metabolism MeSH
- Drug Stability MeSH
- Cell Survival drug effects MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Here, we report the synthesis of pregn-5-ene and androst-5-ene dicarboxylic acid esters and explore the structure-activity relationship (SAR) for their modulation of N-methyl-d-aspartate receptors (NMDARs). All compounds were positive modulators of recombinant GluN1/GluN2B receptors (EC50 varying from 1.8 to 151.4 μM and Emax varying from 48% to 452%). Moreover, 10 compounds were found to be more potent GluN1/GluN2B receptor modulators than endogenous pregnenolone sulfate (EC50 = 21.7 μM). The SAR study revealed a relationship between the length of the residues at carbon C-3 of the steroid molecule and the positive modulatory effect at GluN1/GluN2B receptors for various D-ring modifications. A selected compound, 20-oxo-pregnenolone hemiadipate, potentiated native NMDARs to a similar extent as GluN1/GluN2A-D receptors and inhibited AMPARs and GABAAR responses. These results provide a unique opportunity for the development of new steroid based drugs with potential use in the treatment of neuropsychiatric disorders involving hypofunction of NMDARs.
- MeSH
- Allosteric Regulation MeSH
- HEK293 Cells MeSH
- Protein Conformation MeSH
- Humans MeSH
- Membrane Transport Modulators chemistry pharmacology MeSH
- Models, Molecular MeSH
- Molecular Structure MeSH
- Pregnenolone pharmacology MeSH
- Receptors, N-Methyl-D-Aspartate antagonists & inhibitors metabolism MeSH
- Steroids chemistry pharmacology MeSH
- Structure-Activity Relationship MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The moderate-to-high in vitro cytotoxicity against ovarian A2780 (IC50 = 4.7-14.4 μM), prostate LNCaP (IC50 = 18.7-30.8 μM) and prostate PC-3 (IC50 = 17.6-42.3 μM) human cancer cell lines of the platinum(II) cyclobutane-1,1'-dicarboxylato complexes [Pt(cbdc)(naza)2] (1-6; cbdc = cyclobutane-1,1'-dicarboxylate(2-); naza = halogeno-substituted 7-azaindoles), derived from the anticancer metallodrug carboplatin, are reported. The complexes containing the chloro- and bromo-substituted 7-azaindoles (1, 2, and 4-6) showed a significantly higher (p < 0.05) cytotoxicity against A2780 cell line as compared to cisplatin used as a reference drug. Addition of the non-toxic concentration (5.0 μM) of L-buthionine sulfoximine (L-BSO, an effective inhibitor of γ-glutamylcysteine synthase) markedly increases the in vitro cytotoxicity of the selected complex 3 against A2780 cancer cell line by a factor of about 4.4. The cytotoxicity against A2780 and LNCaP cells, as well as the DNA platination, were effectively enhanced by UVA light irradiation (λmax = 365 nm) of the complexes, with the highest phototoxicity determined for compound 3, resulting in a 4-fold decline in the A2780 cells viability from 25.1% to 6.1%. The 1H NMR and ESI-MS experiments suggested that the complexes did not interact with glutathione as well as their ability to interact with guanosine monophosphate. The studies also confirmed UVA light induced the formation of the cis [Pt(H2O)2(cbdc`)(naza)] intermediate, where cbdc` represents monodentate-coordinated cbdc ligand, which is thought to be responsible for the enhanced cytotoxicity. This is further supported by the results of transcription mapping experiments showing that the studied complexes preferentially form the bifunctional adducts with DNA under UVA irradiation, in contrast to the formation of the less effective monofunctional adducts in dark.
- MeSH
- DNA Adducts chemistry genetics MeSH
- Buthionine Sulfoximine pharmacology MeSH
- DNA Breaks, Double-Stranded drug effects radiation effects MeSH
- Spectrometry, Mass, Electrospray Ionization MeSH
- Indoles chemistry pharmacology MeSH
- Carboplatin chemistry pharmacology MeSH
- Nucleic Acid Conformation MeSH
- Humans MeSH
- Molecular Structure MeSH
- Cell Line, Tumor MeSH
- Neoplasms genetics pathology MeSH
- Antineoplastic Agents chemistry pharmacology MeSH
- Proton Magnetic Resonance Spectroscopy MeSH
- Drug Synergism MeSH
- Ultraviolet Rays * MeSH
- Cell Survival drug effects genetics radiation effects MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The reaction of α-amino-ω-methoxypoly(ethylene glycol) [M = 5000] or star α-amino-poly(ethylene glycol) [M = 20 000] with hemiesters of prednisolone dicarboxylic acids (succinic, glutaric, adipic, phthalic acid) has been used to prepare the corresponding conjugates. The rate of esterase catalyzed hydrolysis of the conjugates is controlled by the molecular mass of poly(ethylene glycol) and the length of the linker between prednisolone and poly(ethylene glycol) (τ(1/2)∼ 5-0.5 h). The enzymatic hydrolysis proceeds most rapidly at conjugates with linkers derived from adipic and phthalic acids. The synthesized conjugates form polypseudorotaxanes with α-cyclodextrin which were characterized by 2D NOESY NMR spectra, powder X-ray diffraction patterns and in one case also by STM microscopy. In the case of the polypseudorotaxane having the linker derived from adipic acid, the enzymatic release proceeds ca. five times slower in comparison with the rate of prednisolone release from the corresponding conjugate. The rate of prednisolone release from the carrier can be controlled by three factors: character of the linker between the polymeric carrier and prednisolone, the molecular mass of poly(ethylene glycol) and complex formation with α-cyclodextrin. The synthesized polypseudorotaxanes represent new promising transport systems intended for targeted release of prednisolone in transplanted liver.
- MeSH
- alpha-Cyclodextrins chemistry MeSH
- Cyclodextrins chemistry MeSH
- Molecular Structure MeSH
- Poloxamer chemistry MeSH
- Polyethylene Glycols chemistry MeSH
- Prednisolone chemistry MeSH
- Microscopy, Scanning Tunneling MeSH
- Rotaxanes chemistry MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Basic operation principles of a lightweight, low power, low cost, portable ion chromatograph utilizing open tubular ion chromatography in capillary columns coated with multi-layer polymeric stationary phases are demonstrated. A minimalistic configuration of a portable IC instrument was developed that does not require any chromatographic eluent delivery system, nor sample injection device as it uses gravity-based eluent flow and hydrodynamic sample injection adopted from capillary electrophoresis. As a detection device, an inexpensive commercially available capacitance sensor is used that has been shown to be a suitable substitute for contactless conductivity detection in capillary separation systems. The built-in temperature sensor allows for baseline drift correction typically encountered in conductivity/capacitance measurements without thermostating device. The whole instrument does not require any power supply for its operation, except the detection and data acquisition part that is provided by a USB port of a Netbook computer. It is extremely lightweight, its total weight including the Netbook computer is less than 2.5kg and it can be continuously operated for more than 8h. Several parameters of the instrument, such as detection cell design, eluent delivery systems and data treatment were optimized as well as the composition of eluent for non-suppressed ion chromatographic analysis of common inorganic cations (Na(+), NH(4)(+), K(+), Cs(+), Ca(2+), Mg(2+), transition metals). Low conductivity eluents based on weakly complexing organic acids such as tartaric, oxalic or pyridine-2,6-dicarboxylic acids were used with contactless capacitance detection for simultaneous separation of mono- and divalent cations. Separation of Na(+) and NH(4)(+) cations was optimized by addition of 18-crown-6 to the eluent. The best separation of 6 metal cations commonly present in various environmental samples was accomplished in less than 30min using a 1.75mM pyridine-2,6-dicarboxylic acid and 3mM 18-crown-6 eluent with excellent repeatability (below 2%) and detection limits in the low micromolar range. The analysis of field samples is demonstrated; the concentrations of common inorganic cations in river water, mineral water and snow samples were determined.
We have previously reported that the reducing agent dithiothreitol (DTT) strongly increases thermally induced activity of the transient receptor potential vanilloid receptor-1 (TRPV1) channel. Here, we show that exposure to oxidizing agents also enhances the heat-induced activation of TRPV1. The actions of sulfhydryl modifiers on heat-evoked whole-cell membrane currents were examined in TRPV1-transfected human embryonic kidney 293T cells. The sensitizing effects of the membrane-permeable oxidizing agents diamide (1 mM), chloramine-T (1 mM), and the copper-o-complex (100:400 microM) were not reversed by washout, consistent with the stable nature of covalently modified sulfhydryl groups. In contrast, the membrane-impermeable cysteine-specific oxidant 5,5'-dithio-bis-(2-nitrobenzoic acid) (0.5 mM) was ineffective. The alkylating agent N-ethylmaleimide (1 mM) strongly and irreversibly affected heat-evoked responses in a manner that depended on DTT pretreatment. Extracellular application of the membrane-impermeable reducing agent glutathione (10 mM) mimicked the effects of 10 mM DTT in potentiating the heat-induced and voltage-induced membrane currents. Using site-directed mutagenesis, we identified Cys621 as the residue responsible for the extracellular modulation of TRPV1 by reducing agents. These data suggest that the vanilloid receptor is targeted by redox-active substances that directly modulate channel activity at sites located extracellularly as well as within the cytoplasmic domains. The results obtained demonstrate that an optimal redox state is crucial for the proper functioning of the TRPV1 channel and both its reduced and oxidized states can result in an increase in responsiveness to thermal stimuli.
- MeSH
- Cell Line MeSH
- Diamide pharmacology MeSH
- Dithiothreitol pharmacology MeSH
- Ethylmaleimide pharmacology MeSH
- Financing, Organized MeSH
- Capsaicin pharmacology MeSH
- TRPV Cation Channels physiology genetics MeSH
- Rats MeSH
- Dithionitrobenzoic Acid pharmacology MeSH
- Humans MeSH
- Membrane Potentials drug effects MeSH
- Patch-Clamp Techniques MeSH
- Mutation, Missense genetics MeSH
- Mutation genetics MeSH
- Mutant Proteins physiology genetics MeSH
- Oxidants pharmacology MeSH
- Hydrogen Peroxide pharmacology MeSH
- Reducing Agents pharmacology MeSH
- Sulfhydryl Reagents pharmacology MeSH
- Transfection MeSH
- Hot Temperature MeSH
- Dose-Response Relationship, Drug MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Humans MeSH
- Animals MeSH
- MeSH
- Amino Acids pharmacology MeSH
- Homocysteine analogs & derivatives MeSH
- Rats MeSH
- Brain Injuries etiology prevention & control MeSH
- Proline analogs & derivatives therapeutic use MeSH
- Receptors, Metabotropic Glutamate agonists MeSH
- Seizures complications MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Animals MeSH
- Publication type
- Comparative Study MeSH