In Vitro Interaction of Binuclear Copper Complexes with Liver Drug-Metabolizing Cytochromes P450
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
IGA_LF_2024_006 and IGA_PrF_2024_013
Internal Grants of Palacký University
PubMed
39338356
PubMed Central
PMC11434749
DOI
10.3390/ph17091194
PII: ph17091194
Knihovny.cz E-zdroje
- Klíčová slova
- antibacterial activity, copper complexes, cytochromes P450, dicarboxylic acid, drug interactions, enzyme activity, inhibition,
- Publikační typ
- časopisecké články MeSH
Two copper(II) mixed ligand complexes with dicarboxylate bridges were prepared and studied, namely [Cu2(μ-fu)(pmdien)2(H2O)2](ClO4)2 (complex No. 5) and [Cu2(μ-dtdp)(pmdien)2(H2O)2](ClO4)2 (complex No. 6), where H2fu = fumaric acid, pmdien = N,N,N',N″,N″ pentamethyldiethylenetriamine, and H2dtdp = 3,3'-dithiodipropionic acid. The copper atoms are coordinated in the same mode by the tridentate pmdien ligand and oxygen of water molecules, and they only differ in the dicarboxylate bridge. This work is focused on the study of the inhibitory effect of these potential antimicrobial drugs on the activity of the most important human liver drug-metabolizing enzymes, cytochromes P450 (CYP), especially their forms CYP2C8, CYP2C19, and CYP3A4. The obtained results allow us to estimate the probability of potential drug interactions with simultaneously administrated drugs that are metabolized by these CYP enzymes. In conclusion, the presence of adverse effects due to drug-drug interactions with concomitantly used drugs cannot be excluded, and hence, topical application may be recommended as a relatively safe approach.
Zobrazit více v PubMed
Stryer L. Biochemistry. 4th ed. W. H. Freeman and Company; New York, NY, USA: 1995.
Solomon E.I., Heppner D.E., Johnston E.M., Ginsbach J.W., Cirera J., Qayyum M., Kieber-Emmons M.T., Kjaergaard C.H., Hadt R.G., Tian L. Copper active sites in biology. Chem. Rev. 2014;7:3659–3853. doi: 10.1021/cr400327t. PubMed DOI PMC
Locatelli M., Farina C. Role of copper in central nervous system physiology and pathology. Neural Regen. Res. 2025;4:1058–1068. doi: 10.4103/NRR.NRR-D-24-00110. PubMed DOI PMC
Molinaro C., Martoriati A., Pelinski L., Cailliau K. Copper Complexes as Anticancer Agents Targeting Topoisomerases I and II. Cancers. 2020;12:2863. doi: 10.3390/cancers12102863. PubMed DOI PMC
Alcock N.W., Tracy V.M., Waddington T.C. Acetates and Acetato-Complexes. Part 2. Spectroscopic Studies. J. Chem. Soc. Dalton Trans. 1976;21:2243–2246. doi: 10.1039/dt9760002243. DOI
Tombers M., Meyer J., Meyer J., Lawicki A., Zamudio-Bayer V., Hirsch K., Lau J.T., von Issendorff B., Terasaki A., Schlathölter T.A., et al. Mn12-Acetate Complexes Studied as Single Molecules. Chem.-Eur. J. 2022;28:e202102592. doi: 10.1002/chem.202102592. PubMed DOI PMC
Mrozinski J. New trends of molecular magnetism. Coord. Chem. Rev. 2005;249:2534–2548. doi: 10.1016/j.ccr.2005.05.013. DOI
Eddaoudi M., Moler D.B., Li H.L., Chen B.L., Reineke T.M., O’Keeffe M., Yaghi O.M. Modular chemistry: Secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. Acc. Chem. Res. 2001;34:319–330. doi: 10.1021/ar000034b. PubMed DOI
Ackermann L. Carboxylate-Assisted Ruthenium-Catalyzed Alkyne Annulations by C-H/Het-H Bond Functionalizations. Acc. Chem. Res. 2014;47:281–295. doi: 10.1021/ar3002798. PubMed DOI
Soltani S., Akhbari K., Phuruangrat A. Incorporation of silver nanoparticles on Cu-BTC metal-organic framework under the influence of reaction conditions and investigation of their antibacterial activity. Appl. Organomet. Chem. 2022;36:e6634. doi: 10.1002/aoc.6634. DOI
Soltani S., Akhbari K. Cu-BTC metal-organic framework as a biocompatible nanoporous carrier for chlorhexidine antibacterial agent. J. Biol. Inorg. Chem. 2022;27:81–88. doi: 10.1007/s00775-021-01912-5. PubMed DOI
Yenikaya C., Poyraz M., Sari M., Demirci F., Ilkimen H., Büyükgüngör O. Synthesis, characterization and biological evaluation of a novel Cu(II) complex with the mixed ligands 2,6-pyridinedicarboxylic acid and 2-aminopyridine. Polyhedron. 2009;28:3526–3532. doi: 10.1016/j.poly.2009.05.079. DOI
Yesilel O.Z., Mutlu A., Darcan C., Büyükgüngör O. Syntheses, structural characterization and antimicrobial activities of novel cobalt-pyrazine-2,3-dicarboxylate complexes with N-donor ligands. J. Mol. Struct. 2010;964:39–46. doi: 10.1016/j.molstruc.2009.10.048. DOI
Thornton L., Dixit V., Assad L.O.N., Ribeiro T.P., Queiroz D.D., Kellett A., Casey A., Colleran J., Pereira M.D., Rochford G., et al. Water-soluble and photo-stable silver(I) dicarboxylate complexes containing 1,10-phenanthroline ligands: Antimicrobial and anticancer chemotherapeutic potential, DNA interactions and antioxidant activity. J. Inorg. Biochem. 2016;159:120–132. doi: 10.1016/j.jinorgbio.2016.02.024. PubMed DOI
Alisir S.H., Demir S., Sariboga B., Buyukgungor O. A disparate 3-D silver(I) coordination polymer of pyridine-3,5-dicarboxylate and pyrimidine with strong intermetallic interactions: X-ray crystallography, photoluminescence and antimicrobial activity. J. Coord. Chem. 2015;68:155–168. doi: 10.1080/00958972.2014.978307. DOI
Jaros S.W., da Silva M., Florek M., Smolenski P., Pombeiro A.J.L., Kirillov A.M. Silver(I) 1,3,5-Triaza-7-phosphaadamantane Coordination Polymers Driven by Substituted Glutarate and Malonate Building Blocks: Self-Assembly Synthesis, Structural Features, and Antimicrobial Properties. Inorg. Chem. 2016;55:5886–5894. doi: 10.1021/acs.inorgchem.6b00186. PubMed DOI
Loubalová I., Kopel P. Coordination Compounds of Cu, Zn, and Ni with Dicarboxylic Acids and N Donor Ligands, and Their Biological Activity: A Review. Molecules. 2023;28:1445. doi: 10.3390/molecules28031445. PubMed DOI PMC
Abbaszadeh A., Safari N., Amani V., Notash B., Raei F., Eftekhar F. Mononuclear and Dinuclear Copper(II) Complexes Containing N, O and S Donor Ligands: Synthesis, Characterization, Crystal Structure Determination and Antimicrobial Activity of [Cu(phen)(tda].2H2O) and [(phen)2Cu(µ-tda)Cu(phen)] (ClO4)2.1.5H2O. Iran J. Chem. Chem. Eng.-Int. Engl. Ed. 2014;33:1–13.
Paul A., Figuerola A., Bertolasi V., Manna S.C. DNA/protein binding and magnetic properties of a 1D Cu(II) complex containing fumarate and tridentate Schiff base ligands. Polyhedron. 2016;119:460–470. doi: 10.1016/j.poly.2016.09.028. DOI
Loubalová I., Zahradníková E., Masaryk L., Nemec I., Hochvaldová L., Panácek A., Kvítek L., Vecerová R., Swiatkowski M., Kopel P. Antibacterial study on nickel and copper dicarboxylate complexes. Inorg. Chim. Acta. 2023;545:121273. doi: 10.1016/j.ica.2022.121273. DOI
Anzenbacher P., Anzenbacherová E. Cytochromes P450 and metabolism of xenobiotics. Cell. Mol. Life Sci. 2001;58:737–747. doi: 10.1007/PL00000897. PubMed DOI PMC
Srejber M., Navrátilová V., Paloncyová M., Bazgier V., Berka K., Anzenbacher P., Otyepka M. Membrane-attached mammalian cytochromes P450: An overview of the membrane’s effects on structure, drug binding, and interactions with redox partners. J. Inorg. Biochem. 2018;183:117–136. doi: 10.1016/j.jinorgbio.2018.03.002. PubMed DOI
Mautner F.A., Vicente R., Louka F.R.Y., Massoud S.S. Dinuclear fumarato- and terephthalato-bridged copper(II) complexes: Structural characterization and magnetic properties. Inorg. Chim. Acta. 2008;361:1339–1348. doi: 10.1016/j.ica.2007.08.026. DOI
Pavlishchuk V.V., Kolotilov S.V., Addison A.W., Prushan M.J., Butcher R.J., Thompson L.K. Mono- and trinuclear nickel(II) complexes with sulfur-containing oxime ligands: Uncommon templated coupling of oxime with nitrile. Inorg. Chem. 1999;38:1759–1766. doi: 10.1021/ic981277r. PubMed DOI
Kopel P., Mrozinski J., Dolezal K., Langer V., Boca R., Bienko A., Pochaba A. Ferromagnetic Properties of a Trinuclear Nickel(II) Complex with a Trithiocyanurate Bridge. Eur. J. Inorg. Chem. 2009:5475–5482. doi: 10.1002/ejic.200900617. DOI
Jefcoate C.R. Measurement of substrate and inhibitor binding to microsomal cytochrome P-450 by optical-difference spectroscopy. Methods Enzymol. 1978;52:258–279. doi: 10.1016/s0076-6879(78)52029-6. PubMed DOI
Oesch F., Fabian E., Oesch-Bartlomowicz B., Werner C., Landsiedel R. Drug-metabolizing enzymes in the skin of man, rat, and pig. Drug Metab. Rev. 2007;39:659–698. doi: 10.1080/03602530701690366. PubMed DOI
Špičáková A., Bazgier V., Skálová L., Otyepka M., Anzenbacher P. β-caryophyllene Oxide and Trans-nerolidol Affect Enzyme Activity of CYP3A4-In Vitro and In Silico Studies. Physiol. Res. 2019;68:S51–S58. doi: 10.33549/physiolres.934323. PubMed DOI
Spicakova A., Anzenbacher P., Liskova B., Kuca K., Fusek J., Anzenbacherova E. Evaluation of possible inhibition of human liver drug metabolizing cytochromes P450 by two new acetylcholinesterase oxime-type reactivators. Food Chem. Toxicol. 2016;88:100–104. doi: 10.1016/j.fct.2015.11.024. PubMed DOI
Nguyen L.T., Myslivecková Z., Szotáková B., Spicáková A., Lnenicková K., Ambroz M., Kubícek V., Krasulová K., Anzenbacher P., Skálová L. The inhibitory effects of β-caryophyllene, β-caryophyllene oxide and α-humulene on the activities of the main drug-metabolizing enzymes in rat and human liver in vitro. Chem.-Biol. Interact. 2017;278:123–128. doi: 10.1016/j.cbi.2017.10.021. PubMed DOI
Guengerich F.P. Inhibition of Cytochrome P450 Enzymes by Drugs-Molecular Basis and Practical Applications. Biomol. Ther. 2022;30:1–18. doi: 10.4062/biomolther.2021.102. PubMed DOI PMC
In Vitro Drug Interaction Studies—Cytochrome P450 Enzyme- and Transporter-Mediated Drug Interactions Guidance for Industry. FDA, Ed. [(accessed on 20 November 2023)];2020 Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/in-vitro-drug-interaction-studies-cytochrome-p450-enzyme-and-transporter-mediated-drug-interactions.
Chang T.K., Waxman D.J. Enzymatic analysis of cDNA-expressed human CYP1A1, CYP1A2, and CYP1B1 with 7-ethoxyresorufin as substrate. Methods Mol. Biol. 1998;107:103–109. PubMed
Soucek P. Novel sensitive high-performance liquid chromatographic method for assay of coumarin 7-hydroxylation. J. Chromatogr. B. 1999;734:23–29. doi: 10.1016/S0378-4347(99)00325-4. PubMed DOI
Donato M.T., Jiménez N., Castell J.V., Gómez-Lechón M.J. Fluorescence-based assays for screening nine cytochrome P450 (P450) activities in intact cells expressing individual human P450 enzymes. Drug Metab. Dispos. 2004;32:699–706. doi: 10.1124/dmd.32.7.699. PubMed DOI
Crespi C.L., Chang T.K., Waxman D.J. High-performance liquid chromatographic analysis of CYP2C8-catalyzed paclitaxel 6 alpha-hydroxylation. Methods Mol. Biol. 1998;107:123–127. PubMed
Crespi C.L., Chang T.K., Waxman D.J. Determination of CYP2C9-catalyzed diclofenac 4′-hydroxylation by high-performance liquid chromatography. Methods Mol. Biol. 1998;107:129–133. PubMed
Mercolini L., Mandrioli R., Iannello C., Matrisciano F., Nicoletti F., Raggi M.A. Simultaneous analysis of diazepam and its metabolites in rat plasma and brain tissue by HPLC-UV and SPE. Talanta. 2009;80:279–285. doi: 10.1016/j.talanta.2009.06.074. PubMed DOI
Crespi C.L., Chang T.K., Waxman D.J. CYP2D6-dependent bufuralol 1′-hydroxylation assayed by reversed-phase ion-pair high-performance liquid chromatography with fluorescence detection. Methods Mol. Biol. 1998;107:141–145. PubMed
Lucas D., Menez J.F., Berthou F. Chlorzoxazone: An in vitro and in vivo substrate probe for liver CYP2E1. Methods Enzymol. 1996;272:115–123. doi: 10.1016/s0076-6879(96)72014-1. PubMed DOI
Guengerich F.P., Martin M.V., Beaune P.H., Kremers P., Wolff T., Waxman D.J. Characterization of rat and human liver microsomal cytochrome P-450 forms involved in nifedipine oxidation, a prototype for genetic polymorphism in oxidative drug metabolism. J. Biol. Chem. 1986;261:5051–5060. doi: 10.1016/S0021-9258(19)89213-X. PubMed DOI
Ortiz de Montellano P.R. Cytochrome P450-activated prodrugs. Future Med. Chem. 2013;5:213–228. doi: 10.4155/fmc.12.197. PubMed DOI PMC
Zanger U.M., Schwab M. Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther. 2013;138:103–141. doi: 10.1016/j.pharmthera.2012.12.007. PubMed DOI
Devi S., Sangeeta. Kumari B. Emugel for topical drug delivery: A novel approach. GSC Biol. Pharm. Sci. 2020;11:104–114. doi: 10.30574/gscbps.2020.11.3.0165. DOI
Schenkman J.B., Jansson I. Spectral analyses of cytochromes P450. Methods Mol. Biol. 1998;107:25–33. PubMed