Photosynthetic Light-Harvesting (Antenna) Complexes-Structures and Functions
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
UNCE/SCI/010
Charles University Center of Nano- and Bio-Photonics
393271229
Deutsche Forschungsgemeinschaft
PubMed
34204994
PubMed Central
PMC8199901
DOI
10.3390/molecules26113378
PII: molecules26113378
Knihovny.cz E-zdroje
- Klíčová slova
- bacteriochlorophylls, carotenoids, chlorophylls, excitation energy transfer, light-harvesting complexes, photoprotection, photosynthesis, photosystems, pigment-protein complexes,
- MeSH
- bakteriální proteiny chemie metabolismus MeSH
- fotosyntéza MeSH
- konformace proteinů MeSH
- molekulární modely MeSH
- multimerizace proteinu MeSH
- přenos energie MeSH
- rostlinné proteiny chemie metabolismus MeSH
- rostliny metabolismus MeSH
- sinice metabolismus MeSH
- světlosběrné proteinové komplexy chemie metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- bakteriální proteiny MeSH
- rostlinné proteiny MeSH
- světlosběrné proteinové komplexy MeSH
Chlorophylls and bacteriochlorophylls, together with carotenoids, serve, noncovalently bound to specific apoproteins, as principal light-harvesting and energy-transforming pigments in photosynthetic organisms. In recent years, enormous progress has been achieved in the elucidation of structures and functions of light-harvesting (antenna) complexes, photosynthetic reaction centers and even entire photosystems. It is becoming increasingly clear that light-harvesting complexes not only serve to enlarge the absorption cross sections of the respective reaction centers but are vitally important in short- and long-term adaptation of the photosynthetic apparatus and regulation of the energy-transforming processes in response to external and internal conditions. Thus, the wide variety of structural diversity in photosynthetic antenna "designs" becomes conceivable. It is, however, common for LHCs to form trimeric (or multiples thereof) structures. We propose a simple, tentative explanation of the trimer issue, based on the 2D world created by photosynthetic membrane systems.
Institut für Chemie und Biochemie Freie Universität Berlin Arnimallee 22 D 14195 Berlin Germany
Max Volmer Laboratorium Technische Universität Berlin Straße des 17 Juni 135 D 10623 Berlin Germany
Zobrazit více v PubMed
Renger G., editor. Primary Processes of Photosynthesis, Part 2: Principles and Apparatus. Royal Society of Chemistry; Cambridge, UK: 2007. DOI
Green B.R., Parson W.W., editors. Light-Harvesting Antennas in Photosynthesis. Springer; Dordrecht, The Netherlands: 2003. DOI
Tomo T., Allakhverdiev S.I., Mimuro M. Constitution and energetics of photosystem I and photosystem II in the chlorophyll d-dominated cyanobacterium Acaryochloris marina. J. Photochem. Photobiol. B Biol. 2011;104:333–340. doi: 10.1016/j.jphotobiol.2011.02.017. PubMed DOI
Murray J., Duncan J., Barber J. CP43-like chlorophyll binding proteins: Structural and evolutionary implications. Trends Plant Sci. 2006;11:152–158. doi: 10.1016/j.tplants.2006.01.007. PubMed DOI
Hoffman G.E., Sanchez-Puerta M.V., Delwiche C.F. Evolution of light-harvesting complex proteins from Chl c-containing algae. BMC Evol. Biol. 2011;11:101. doi: 10.1186/1471-2148-11-101. PubMed DOI PMC
Chen M., Schliep M., Willows R.D., Cai Z.-L., Neilan B.A., Scheer H. A Red-Shifted Chlorophyll. Science. 2010;329:1318–1319. doi: 10.1126/science.1191127. PubMed DOI
Miyashita H., Ikemoto H., Kurano N., Adachi K., Chihara M., Miyachi S. Chlorophyll d as a major pigment. Nature. 1996;383:402. doi: 10.1038/383402a0. DOI
Loughlin P., Lin Y., Chen M. Chlorophyll d and Acaryochloris marina: Current status. Photosynth. Res. 2013;116:277–293. doi: 10.1007/s11120-013-9829-y. PubMed DOI
Gan F., Zhang S., Rockwell N.C., Martin S.S., Lagarias J.C., Bryant D.A. Extensive remodeling of a cyanobacterial photosynthetic apparatus in far-red light. Science. 2014;345:1312–1317. doi: 10.1126/science.1256963. PubMed DOI
Nürnberg D.J., Morton J., Santabarbara S., Telfer A., Joliot P., Antonaru L.A., Ruban A.V., Cardona T., Krausz E., Boussac A., et al. Photochemistry beyond the red limit in chlorophyll f–containing photosystems. Science. 2018;360:1210–1213. doi: 10.1126/science.aar8313. PubMed DOI
Cherepanov D.A., Shelaev I.V., Gostev F.E., Aybush A.V., Mamedov M.D., Shen G., Nadtochenko V.A., Bryant D.A., Semenov A.Y., Golbeck J.H. Evidence that chlorophyll f functions solely as an antenna pigment in far-red-light photosystem I from Fischerella thermalis PCC 7521. Biochim. Biophys. Acta Bioenerg. 2020;1861:148184. doi: 10.1016/j.bbabio.2020.148184. PubMed DOI
Hashimoto H., Sugai Y., Uragami C., Gardiner A.T., Cogdell R.J. Natural and artificial light-harvesting systems utilizing the functions of carotenoids. J. Photochem. Photobiol. C Photochem. Rev. 2015;25:46–70. doi: 10.1016/j.jphotochemrev.2015.07.004. DOI
Fiedor L., Dudkowiak A., Pilch M. The origin of the dark S1 state in carotenoids: A comprehensive model. J. R. Soc. Interface. 2019;16 doi: 10.1098/rsif.2019.0191. PubMed DOI PMC
Arvidsson P.-O., Sundby C. A model for the topology of the chloroplast thylakoid membrane. Funct. Plant Biol. 1999;26:687–694. doi: 10.1071/PP99072. DOI
Pfeiffer S., Krupinska K. New Insights in Thylakoid Membrane Organization. Plant Cell Physiol. 2005;46:1443–1451. doi: 10.1093/pcp/pci156. PubMed DOI
Broess K., Trinkunas G., Van Hoek A., Croce R., van Amerongen H. Determination of the excitation migration time in Photosystem II. Biochim. Biophys. Acta Bioenerg. 2008;1777:404–409. doi: 10.1016/j.bbabio.2008.02.003. PubMed DOI
Renger G. The light reactions of photosynthesis. Curr. Sci. 2010;98:1305–1319.
Groot M.L., Pawlowicz N.P., van Wilderen L.J.G.W., Breton J., van Stokkum I.H.M., van Grondelle R. Initial electron donor and acceptor in isolated Photosystem II reaction centers identified with femtosecond mid-IR spectroscopy. Proc. Natl. Acad. Sci. USA. 2005;102:13087–13092. doi: 10.1073/pnas.0503483102. PubMed DOI PMC
Müller M.G., Niklas J., Lubitz W., Holzwarth A.R. Ultrafast Transient Absorption Studies on Photosystem I Reaction Centers from Chlamydomonas reinhardtii. 1. A New Interpretation of the Energy Trapping and Early Electron Transfer Steps in Photosystem I. Biophys. J. 2003;85:3899–3922. doi: 10.1016/S0006-3495(03)74804-8. PubMed DOI PMC
Holzwarth A.R., Müller M.G., Niklas J., Lubitz W. Ultrafast Transient Absorption Studies on Photosystem I Reaction Centers from Chlamydomonas reinhardtii. 2: Mutations near the P700 Reaction Center Chlorophylls Provide New Insight into the Nature of the Primary Electron Donor. Biophys. J. 2006;90:552–565. doi: 10.1529/biophysj.105.059824. PubMed DOI PMC
Holzwarth A.R., Müller M.G., Reus M., Nowaczyk M., Sander J., Rogner M. Kinetics and mechanism of electron transfer in intact photosystem II and in the isolated reaction center: Pheophytin is the primary electron acceptor. Proc. Natl. Acad. Sci. USA. 2006;103:6895–6900. doi: 10.1073/pnas.0505371103. PubMed DOI PMC
Renger G., Renger T. Photosystem II: The machinery of photosynthetic water splitting. Photosynth. Res. 2008;98:53–80. doi: 10.1007/s11120-008-9345-7. PubMed DOI
Novoderezhkin V.I., Romero E., Dekker J.P., van Grondelle R. Multiple Charge-Separation Pathways in Photosystem II: Modeling of Transient Absorption Kinetics. ChemPhysChem. 2011;12:681–688. doi: 10.1002/cphc.201000830. PubMed DOI
Giera W., Ramesh V., Webber A.N., van Stokkum I., van Grondelle R., Gibasiewicz K. Effect of the P700 pre-oxidation and point mutations near A0 on the reversibility of the primary charge separation in Photosystem I from Chlamydomonas reinhardtii. Biochim. Biophys. Acta Bioenerg. 2010;1797:106–112. doi: 10.1016/j.bbabio.2009.09.006. PubMed DOI
Mitchell P. Conduction of protons through membranes of mitochondria and bacteria by uncouplers of oxidative phosphorylation. Biochem. J. 1961;81:24.
Mitchell P. Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol. Rev. 1966;41:445–501. doi: 10.1111/j.1469-185X.1966.tb01501.x. PubMed DOI
Junge W. Photophosphorylation. In: Renger G., editor. Primary Processes of Photosynthesis, Part 2: Principles and Apparatus. Royal Society of Chemistry; Cambridge, UK: 2007. pp. 447–487. DOI
Jansson S. The light-harvesting chlorophyll ab-binding proteins. Biochim. Biophys. Acta Bioenerg. 1994;1184:1–19. doi: 10.1016/0005-2728(94)90148-1. PubMed DOI
Pan X., Ma J., Su X., Cao P., Chang W., Liu Z., Zhang X., Li M. Structure of the maize photosystem I supercomplex with light-harvesting complexes I and II. Science. 2018;360:1109–1113. doi: 10.1126/science.aat1156. PubMed DOI
Wei X., Su X., Cao P., Liu X., Chang W., Li M., Zhang X., Liu Z. Structure of spinach photosystem II–LHCII supercomplex at 3.2 Å resolution. Nature. 2016;534:69–74. doi: 10.1038/nature18020. PubMed DOI
Ben-Shem A., Frolow F., Nelson N. Crystal structure of plant photosystem I. Nature. 2003;426:630–635. doi: 10.1038/nature02200. PubMed DOI
Croce R., van Amerongen H. Light-harvesting in photosystem I. Photosynth. Res. 2013;116:153–166. doi: 10.1007/s11120-013-9838-x. PubMed DOI PMC
Mazor Y., Borovikova A., Caspy I., Nelson N. Structure of the plant photosystem I supercomplex at 2.6 Å resolution. Nat. Plants. 2017;3:17014. doi: 10.1038/nplants.2017.14. PubMed DOI
Liu Z., Yan H., Wang K., Kuang T., Zhang J., Gui L., An X., Chang W. Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution. Nature. 2004;428:287–292. doi: 10.1038/nature02373. PubMed DOI
Standfuss J., Van Scheltinga A.C.T., Lamborghini M., Kühlbrandt W. Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 Å resolution. EMBO J. 2005;24:919–928. doi: 10.1038/sj.emboj.7600585. PubMed DOI PMC
Pan X., Li M., Wan T., Wang L., Jia C., Hou Z., Zhao X., Zhang J., Chang W. Structural insights into energy regulation of light-harvesting complex CP29 from spinach. Nat. Struct. Mol. Biol. 2011;18:309–315. doi: 10.1038/nsmb.2008. PubMed DOI
Schubert A., Beenken W.J., Stiel H., Voigt B., Leupold D., Lokstein H. Excitonic Coupling of Chlorophylls in the Plant Light-Harvesting Complex LHC-II. Biophys. J. 2002;82:1030–1039. doi: 10.1016/S0006-3495(02)75462-3. PubMed DOI PMC
Kühlbrandt W., Wang D.N., Fujiyoshi Y. Atomic model of plant light-harvesting complex by electron crystallography. Nature. 1994;367:614–621. doi: 10.1038/367614a0. PubMed DOI
Rogl H., Schödel R., Lokstein H., Kühlbrandt W., Schubert A. Assignment of Spectral Substructures to Pigment-Binding Sites in Higher Plant Light-Harvesting Complex LHC-II. Biochemistry. 2002;41:2281–2287. doi: 10.1021/bi015875k. PubMed DOI
Krikunova M., Voigt B., Lokstein H. Direct evidence for excitonically coupled chlorophylls a and b in LHC II of higher plants by nonlinear polarization spectroscopy in the frequency domain. Biochim. Biophys. Acta Bioenerg. 2002;1556:1–5. doi: 10.1016/S0005-2728(02)00326-2. PubMed DOI
Pieper J., Irrgang K.-D. Nature of low-energy exciton levels in light-harvesting complex II of green plants as revealed by satellite hole structure. Photosynth. Res. 2020;146:279–285. doi: 10.1007/s11120-020-00752-9. PubMed DOI
Lokstein H., Leupold D., Voigt B., Nowak F., Ehlert J., Hoffmann P., Garab G. Nonlinear polarization spectroscopy in the frequency domain of light-harvesting complex II: Absorption band substructure and exciton dynamics. Biophys. J. 1995;69:1536–1543. doi: 10.1016/S0006-3495(95)80025-1. PubMed DOI PMC
Voigt B., Krikunova M., Lokstein H. Influence of detergent concentration on aggregation and spectroscopic properties of light-harvesting complex II. Photosynth. Res. 2007;95:317–325. doi: 10.1007/s11120-007-9250-5. PubMed DOI
Ginsberg N.S., Davis J., Ballottari M., Cheng Y.-C., Bassi R., Fleming G.R. Solving structure in the CP29 light harvesting complex with polarization-phased 2D electronic spectroscopy. Proc. Natl. Acad. Sci. USA. 2011;108:3848–3853. doi: 10.1073/pnas.1012054108. PubMed DOI PMC
Jurinovich S., Viani L., Prandi I.G., Renger T., Mennucci B. Towards an ab initio description of the optical spectra of light-harvesting antennae: Application to the CP29 complex of photosystem II. Phys. Chem. Chem. Phys. 2015;17:14405–14416. doi: 10.1039/C4CP05647G. PubMed DOI
König C., Neugebauer J. First-principles calculation of electronic spectra of light-harvesting complex II. Phys. Chem. Chem. Phys. 2011;13:10475–10490. doi: 10.1039/c0cp02808h. PubMed DOI
Jang S.J., Mennucci B. Delocalized excitons in natural light-harvesting complexes. Rev. Mod. Phys. 2018;90:035003. doi: 10.1103/RevModPhys.90.035003. DOI
Dreuw A., Harbach P.H.P., Mewes J.M., Wormit M. Quantum chemical excited state calculations on pigment–protein complexes require thorough geometry re-optimization of experimental crystal structures. Theor. Chem. Acc. 2009;125:419–426. doi: 10.1007/s00214-009-0680-3. DOI
Götze J.P., Thiel W. TD-DFT and DFT/MRCI study of electronic excitations in Violaxanthin and Zeaxanthin. Chem. Phys. 2013;415:247–255. doi: 10.1016/j.chemphys.2013.01.030. DOI
König C., Neugebauer J. Quantum Chemical Description of Absorption Properties and Excited-State Processes in Photosynthetic Systems. ChemPhysChem. 2011;13:386–425. doi: 10.1002/cphc.201100408. PubMed DOI
Curutchet C., Mennucci B. Quantum Chemical Studies of Light Harvesting. Chem. Rev. 2016;117:294–343. doi: 10.1021/acs.chemrev.5b00700. PubMed DOI
Liguori N., Croce R., Marrink S.J., Thallmair S. Molecular dynamics simulations in photosynthesis. Photosynth. Res. 2020;144:273–295. doi: 10.1007/s11120-020-00741-y. PubMed DOI PMC
Cupellini L., Bondanza M., Nottoli M., Mennucci B. Successes & challenges in the atomistic modeling of light-harvesting and its photoregulation. Biochim. Biophys. Acta Bioenerg. 2020;1861:148049. doi: 10.1016/j.bbabio.2019.07.004. PubMed DOI
Renger T., Müh F. Understanding photosynthetic light-harvesting: A bottom up theoretical approach. Phys. Chem. Chem. Phys. 2013;15:3348–3371. doi: 10.1039/C3CP43439G. PubMed DOI
Sláma V., Cupellini L., Mennucci B. Exciton properties and optical spectra of light harvesting complex II from a fully atomistic description. Phys. Chem. Chem. Phys. 2020;22:16783–16795. doi: 10.1039/D0CP02492A. PubMed DOI
Zouni A., Witt H.-T., Kern J., Fromme P., Krauss N., Saenger W., Orth P.P. Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution. Nature. 2001;409:739–743. doi: 10.1038/35055589. PubMed DOI
Umena Y., Kawakami K., Shen J.-R., Kamiya N. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature. 2011;473:55–60. doi: 10.1038/nature09913. PubMed DOI
Fromme P., Grotjohann I. Bioenergetic Processes of Cyanobacteria. Springer; Dordrecht, The Netherlands: 2011. Structure of Cyanobacterial Photosystems I and II; pp. 285–335. DOI
Malavath T., Caspy I., Netzer-El S.Y., Klaiman D., Nelson N. Structure and function of wild-type and subunit-depleted photosystem I in Synechocystis. Biochim. Biophys. Acta Bioenerg. 2018;1859:645–654. doi: 10.1016/j.bbabio.2018.02.002. PubMed DOI
Hatazaki S., Sharma D.K., Hirata S., Nose K., Iyoda T., Kölsch A., Lokstein H., Vacha M. Identification of Short- and Long-Wavelength Emitting Chlorophylls in Cyanobacterial Photosystem I by Plasmon-Enhanced Single-Particle Spectroscopy at Room Temperature. J. Phys. Chem. Lett. 2018;9:6669–6675. doi: 10.1021/acs.jpclett.8b03064. PubMed DOI
Kerfeld C.A. Structure and Function of the Water-Soluble Carotenoid-Binding Proteins of Cyanobacteria. Photosynth. Res. 2004;81:215–225. doi: 10.1023/B:PRES.0000036886.60187.c8. PubMed DOI
Hofmann E., Wrench P.M., Sharples F.P., Hiller R.G., Welte W., Diederichs K. Structural Basis of Light Harvesting by Carotenoids: Peridinin-Chlorophyll-Protein from Amphidinium carterae. Science. 1996;272:1788–1791. doi: 10.1126/science.272.5269.1788. PubMed DOI
Krikunova M., Lokstein H., Leupold D., Hiller R.G., Voigt B. Pigment-Pigment Interactions in PCP of Amphidinium carterae Investigated by Nonlinear Polarization Spectroscopy in the Frequency Domain. Biophys. J. 2006;90:261–271. doi: 10.1529/biophysj.104.055350. PubMed DOI PMC
Leupold D., Lokstein H., Scheer H. Excitation Energy Transfer between (Bacterio) Chlorophylls—The Role of Excitonic Coupling. In: Grimm B., Porra R.J., Rüdiger W., Scheer H., editors. Chlorophylls and Bacteriochlorophylls. Springer; Dordrecht, The Netherlands: 2006. pp. 413–430. DOI
Damjanović A., Ritz T., Schulten K. Excitation Transfer in the Peridinin-Chlorophyll-Protein of Amphidinium carterae. Biophys. J. 2000;79:1695–1705. doi: 10.1016/S0006-3495(00)76422-8. PubMed DOI PMC
Krueger B.P., Lampoura S.S., Van Stokkum I.H., Papagiannakis E., Salverda J.M., Gradinaru C., Rutkauskas D., Hiller R.G., Van Grondelle R. Energy Transfer in the Peridinin Chlorophyll-a Protein of Amphidinium carterae Studied by Polarized Transient Absorption and Target Analysis. Biophys. J. 2001;80:2843–2855. doi: 10.1016/S0006-3495(01)76251-0. PubMed DOI PMC
Zigmantas D., Polivka T., Hiller R.G., Yartsev A., Sundström V. Spectroscopic and Dynamic Properties of the Peridinin Lowest Singlet Excited States. J. Phys. Chem. A. 2001;105:10296–10306. doi: 10.1021/jp010022n. DOI
Zigmantas D., Hiller R.G., Sundstrom V., Polivka T. Carotenoid to chlorophyll energy transfer in the peridinin-chlorophyll-a-protein complex involves an intramolecular charge transfer state. Proc. Natl. Acad. Sci. USA. 2002;99:16760–16765. doi: 10.1073/pnas.262537599. PubMed DOI PMC
Zigmantas D., Hiller R.G., Sharples F.P., Frank H.A., Sundström V., Polivka T. Effect of a conjugated carbonyl group on the photophysical properties of carotenoids. Phys. Chem. Chem. Phys. 2004;6:3009–3016. doi: 10.1039/B315786E. DOI
Shima S., Ilagan R.P., Gillespie N., Sommer B.J., Hiller R.G., Sharples F.P., Frank H.A., Birge R.R. Two-Photon and Fluorescence Spectroscopy and the Effect of Environment on the Photochemical Properties of Peridinin in Solution and in the Peridinin-Chlorophyll-Protein from Amphidinium carterae. J. Phys. Chem. A. 2003;107:8052–8066. doi: 10.1021/jp022648z. DOI
Polívka T., Sundström V. Ultrafast Dynamics of Carotenoid Excited States—From Solution to Natural and Artificial Systems. Chem. Rev. 2004;104:2021–2072. doi: 10.1021/cr020674n. PubMed DOI
Kleima F.J., Wendling M., Hofmann E., Peterman E.J.G., van Grondelle A.R., van Amerongen H. Peridinin Chlorophyll a Protein: Relating Structure and Steady-State Spectroscopy. Biochemistry. 2000;39:5184–5195. doi: 10.1021/bi992427s. PubMed DOI
Ilagan R.P., Shima S., Melkozernov A., Lin S., Blankenship R.E., Sharples F.P., Hiller R.G., Birge R.R., Frank H.A. Spectroscopic Properties of the Main-Form and High-Salt Peridinin—Chlorophyll a Proteins from Amphidinium carterae. Biochemistry. 2004;43:1478–1487. doi: 10.1021/bi0357964. PubMed DOI
Wörmke S., Mackowski S., Brotosudarmo T., Jung C., Zumbusch A., Ehrl M., Scheer H., Hofmann E., Hiller R., Bräuchle C. Monitoring fluorescence of individual chromophores in peridinin–chlorophyll–protein complex using single molecule spectroscopy. Biochim. Biophys. Acta Bioenerg. 2007;1767:956–964. doi: 10.1016/j.bbabio.2007.05.004. PubMed DOI
Vinklárek I.S., Bornemann T.L.V., Lokstein H., Hofmann E., Alster J., Pšenčík J. Temperature Dependence of Chlorophyll Triplet Quenching in Two Photosynthetic Light-Harvesting Complexes from Higher Plants and Dinoflagellates. J. Phys. Chem. B. 2018;122:8834–8845. doi: 10.1021/acs.jpcb.8b06751. PubMed DOI
Wagner N.L., Greco J.A., Enriquez M.M., Frank H.A., Birge R.R. The Nature of the Intramolecular Charge Transfer State in Peridinin. Biophys. J. 2013;104:1314–1325. doi: 10.1016/j.bpj.2013.01.045. PubMed DOI PMC
Götze J.P., Karasulu B., Patil M., Thiel W. Vibrational relaxation as the driving force for wavelength conversion in the peridinin–chlorophyll a-protein. Biochim. Biophys. Acta Bioenerg. 2015;1847:1509–1517. doi: 10.1016/j.bbabio.2015.07.011. PubMed DOI
Knecht S., Marian C.M., Kongsted J., Mennucci B. On the Photophysics of Carotenoids: A Multireference DFT Study of Peridinin. J. Phys. Chem. B. 2013;117:13808–13815. doi: 10.1021/jp4078739. PubMed DOI
Ghosh S., Bishop M.M., Roscioli J.D., LaFountain A.M., Frank H.A., Beck W.F. Excitation Energy Transfer by Coherent and Incoherent Mechanisms in the Peridinin–Chlorophyll a Protein. J. Phys. Chem. Lett. 2017;8:463–469. doi: 10.1021/acs.jpclett.6b02881. PubMed DOI
Parson W.W. Functional Patterns of Reaction Centers in Anoxygenic Photosynthetic Bacteria. In: Renger G., editor. Primary Processes of Photosynthesis, Part 2: Principles and Apparatus. Royal Society of Chemistry; Cambridge, UK: 2007. pp. 57–109. DOI
Peschek G.A., Bernroitner M., Sari S., Pairer M., Obinger C. Life Implies Work: A Holistic Account of Our Microbial Biosphere Focussing on the Bioenergetic Processes of Cyanobacteria, the Ecologically Most Successful Organisms on Our Earth. In: Peschek G.A., Obinger C., Renger G., editors. Bioenergetic Processes of Cyanobacteria. Springer; Dordrecht, The Netherlands: 2011. pp. 3–70. DOI
Cogdell R.J., Gall A., Köhler J. The architecture and function of the light-harvesting apparatus of purple bacteria: From single molecules to in vivo membranes. Q. Rev. Biophys. 2006;39:227–324. doi: 10.1017/S0033583506004434. PubMed DOI
Hunter C.N., Daldal F., Thurnauer M.C., Beatty J.T., editors. The Purple Phototrophic Bacteria. Springer; Dordrecht, The Netherlands: 2009. DOI
Gabrielsen M., Gardiner A.T., Cogdell R.J. Peripheral Complexes of Purple Bacteria. In: Hunter C.N., Daldal F., Thurnauer M.C., Beatty J.T., editors. The Purple Phototrophic Bacteria. Springer; Dordrecht, The Netherlands: 2009. pp. 135–153. DOI
Law C.J., Cogdell R.J. The Light-Harvesting System of Purple Anoxygenic Photosynthetic Bacteria. In: Renger G., editor. Primary Processes of Photosynthesis, Part 1: Principles and Apparatus. Royal Society of Chemistry; Cambridge, UK: 2007. pp. 205–259. DOI
Roszak A.W., Howard T.D., Southall J., Gardiner A.T., Law C.J., Isaacs N.W., Cogdell R.J. Crystal Structure of the RC-LH1 Core Complex from Rhodopseudomonas palustris. Science. 2003;302:1969–1972. doi: 10.1126/science.1088892. PubMed DOI
Cherezov V., Clogston J., Papiz M.Z., Caffrey M. Room to Move: Crystallizing Membrane Proteins in Swollen Lipidic Mesophases. J. Mol. Biol. 2006;357:1605–1618. doi: 10.1016/j.jmb.2006.01.049. PubMed DOI
Leupold D., Stiel H., Teuchner K., Nowak F., Sandner W., Ücker B., Scheer H. Size Enhancement of Transition Dipoles to One- and Two-Exciton Bands in a Photosynthetic Antenna. Phys. Rev. Lett. 1996;77:4675–4678. doi: 10.1103/PhysRevLett.77.4675. PubMed DOI
Leupold D., Voigt B., Beenken W., Stiel H. Pigment-protein architecture in the light-harvesting antenna complexes of purple bacteria: Does the crystal structure reflect the native pigment-protein arrangement? FEBS Lett. 2000;480:73–78. doi: 10.1016/S0014-5793(00)01892-5. PubMed DOI
Leupold D., Stiel H., Ehlert J., Nowak F., Teuchner K., Voigt B., Bandilla M., Ücker B., Scheer H. Photophysical characterization of the B800-depleted light harvesting complex B850 of Rhodobacter sphaeroides. Chem. Phys. Lett. 1999;301:537–545. doi: 10.1016/S0009-2614(99)00061-5. DOI
Krikunova M., Kummrow A., Voigt B., Rini M., Lokstein H., Moskalenko A., Scheer H., Razjivin A., Leupold D. Fluorescence of native and carotenoid-depleted LH2 from Chromatium minutissimum, originating from simultaneous two-photon absorption in the spectral range of the presumed (optically ’dark’) S(1) state of carotenoids. FEBS Lett. 2002;528:227–229. doi: 10.1016/S0014-5793(02)03315-X. PubMed DOI
Stepanenko I., Kompanetz V., Makhneva Z., Chekalin S., Moskalenko A., Razjivin A. Two-Photon Excitation Spectroscopy of Carotenoid-Containing and Carotenoid-Depleted LH2 Complexes from Purple Bacteria. J. Phys. Chem. B. 2009;113:11720–11723. doi: 10.1021/jp906565m. PubMed DOI
Theiss C., Leupold D., Moskalenko A.A., Razjivin A.P., Eichler H.J., Lokstein H. Femtosecond Spectroscopy of Native and Carotenoidless Purple-Bacterial LH2 Clarifies Functions of Carotenoids. Biophys. J. 2008;94:4808–4811. doi: 10.1529/biophysj.107.121681. PubMed DOI PMC
Shibl M.F., Schulze J., Al-Marri M.J., Kühn O. Multilayer-MCTDH approach to the energy transfer dynamics in the LH2 antenna complex. J. Phys. B At. Mol. Opt. Phys. 2017;50:184001. doi: 10.1088/1361-6455/aa8374. DOI
Ramos F.C., Nottoli M., Cupellini L., Mennucci B. The molecular mechanisms of light adaption in light-harvesting complexes of purple bacteria revealed by a multiscale modeling. Chem. Sci. 2019;10:9650–9662. doi: 10.1039/C9SC02886B. PubMed DOI PMC
Cupellini L., Jurinovich S., Campetella M., Caprasecca S., Guido C.A., Kelly S.M., Gardiner A.T., Cogdell R., Mennucci B. An Ab Initio Description of the Excitonic Properties of LH2 and Their Temperature Dependence. J. Phys. Chem. B. 2016;120:11348–11359. doi: 10.1021/acs.jpcb.6b06585. PubMed DOI
Nottoli M., Jurinovich S., Cupellini L., Gardiner A.T., Cogdell R., Mennucci B. The role of charge-transfer states in the spectral tuning of antenna complexes of purple bacteria. Photosynth. Res. 2018;137:215–226. doi: 10.1007/s11120-018-0492-1. PubMed DOI
Pšenčík J., Ikonen T., Laurinmäki P., Merckel M., Butcher S., Serimaa R., Tuma R. Lamellar Organization of Pigments in Chlorosomes, the Light Harvesting Complexes of Green Photosynthetic Bacteria. Biophys. J. 2004;87:1165–1172. doi: 10.1529/biophysj.104.040956. PubMed DOI PMC
Griebenow K., Holzwarth A.R., van Mourik F., van Grondelle R. Pigment organization and energy transfer in green bacteria. 2. Circular and linear dichroism spectra of protein-containing and protein-free chlorosomes isolated from Chloroflexus aurantiacus strain Ok-70-fl. Biochim. Biophys. Acta Bioenerg. 1991;1058:194–202. doi: 10.1016/S0005-2728(05)80237-3. DOI
Dostál J., Vácha F., Pšenčík J., Zigmantas D. 2D Electronic Spectroscopy Reveals Excitonic Structure in the Baseplate of a Chlorosome. J. Phys. Chem. Lett. 2014;5:1743–1747. doi: 10.1021/jz5005279. PubMed DOI
Matthews B., Fenna R., Bolognesi M., Schmid M., Olson J. Structure of a bacteriochlorophyll a-protein from the green photosynthetic bacterium Prosthecochloris aestuarii. J. Mol. Biol. 1979;131:259–285. doi: 10.1016/0022-2836(79)90076-7. PubMed DOI
Olson J.M. The FMO Protein. Photosynth. Res. 2004;80:181–187. doi: 10.1023/B:PRES.0000030428.36950.43. PubMed DOI
Camara-Artigas A., Blankenship R.E., Allen J.P. The structure of the FMO protein from Chlorobium tepidum at 2.2 Å resolution. Photosynth. Res. 2003;75:49–55. doi: 10.1023/A:1022406703110. PubMed DOI
Tronrud D., Wen J., Gay L., Blankenship R.E. The structural basis for the difference in absorbance spectra for the FMO antenna protein from various green sulfur bacteria. Photosynth. Res. 2009;100:79–87. doi: 10.1007/s11120-009-9430-6. PubMed DOI
Alster J., Kabeláč M., Tuma R., Pšenčík J., Burda J. Computational study of short-range interactions in bacteriochlorophyll aggregates. Comput. Theor. Chem. 2012;998:87–97. doi: 10.1016/j.comptc.2012.07.001. DOI
Busch M.S.A., Müh F., Madjet M.E.-A., Renger T. The Eighth Bacteriochlorophyll Completes the Excitation Energy Funnel in the FMO Protein. J. Phys. Chem. Lett. 2010;2:93–98. doi: 10.1021/jz101541b. PubMed DOI
Mühlbacher L., Kleinekathöfer U. Preparational Effects on the Excitation Energy Transfer in the FMO Complex. J. Phys. Chem. B. 2012;116:3900–3906. doi: 10.1021/jp301444q. PubMed DOI
Jurinovich S., Curutchet C., Mennucci B. The Fenna-Matthews-Olson Protein Revisited: A Fully Polarizable (TD)DFT/MM Description. ChemPhysChem. 2014;15:3194–3204. doi: 10.1002/cphc.201402244. PubMed DOI
Bold B.M., Sokolov M., Maity S., Wanko M., Dohmen P.M., Kranz J.J., Kleinekathöfer U., Höfener S., Elstner M. Benchmark and performance of long-range corrected time-dependent density functional tight binding (LC-TD-DFTB) on rhodopsins and light-harvesting complexes. Phys. Chem. Chem. Phys. 2020;22:10500–10518. doi: 10.1039/C9CP05753F. PubMed DOI
Liu X., Kuhn O. Vibrational and vibronic coherences in the dynamics of the FMO complex. Chem. Phys. 2016;481:272–280. doi: 10.1016/j.chemphys.2016.03.021. DOI
Dostál J., Pšenčík J., Zigmantas D. In situ mapping of the energy flow through the entire photosynthetic apparatus. Nat. Chem. 2016;8:705–710. doi: 10.1038/nchem.2525. PubMed DOI
MacColl R. Cyanobacterial Phycobilisomes. J. Struct. Biol. 1998;124:311–334. doi: 10.1006/jsbi.1998.4062. PubMed DOI
Adir N. Elucidation of the molecular structures of components of the phycobilisome: Reconstructing a giant. Photosynth. Res. 2005;85:15–32. doi: 10.1007/s11120-004-2143-y. PubMed DOI
Adir N., Bar-Zvi S., Harris D. The amazing phycobilisome. Biochim. Biophys. Acta Bioenerg. 2020;1861:148047. doi: 10.1016/j.bbabio.2019.07.002. PubMed DOI
Fromme R., Brune D., Fromme P. High resolution structure of C-Phycocyanin from Thermosynechococcus elongatus. 2010 to be published.
Kehoe D.M., Gutu A. Responding to Color: The Regulation of Complementary Chromatic Adaptation. Annu. Rev. Plant Biol. 2006;57:127–150. doi: 10.1146/annurev.arplant.57.032905.105215. PubMed DOI
Dolganov N.A., Bhaya D., Grossman A.R. Cyanobacterial protein with similarity to the chlorophyll a/b binding proteins of higher plants: Evolution and regulation. Proc. Natl. Acad. Sci. USA. 1995;92:636–640. doi: 10.1073/pnas.92.2.636. PubMed DOI PMC
Montané M.-H., Kloppstech K. The family of light-harvesting-related proteins (LHCs, ELIPs, HLIPs): Was the harvesting of light their primary function? Gene. 2000;258:1–8. doi: 10.1016/S0378-1119(00)00413-3. PubMed DOI
Engelken J., Brinkmann H., Adamska I. Taxonomic distribution and origins of the extended LHC (light-harvesting complex) antenna protein superfamily. BMC Evol. Biol. 2010;10:233. doi: 10.1186/1471-2148-10-233. PubMed DOI PMC
Psencik J., Hey D., Grimm B., Lokstein H. Photoprotection of Photosynthetic Pigments in Plant One-Helix Protein 1/2 Heterodimers. J. Phys. Chem. Lett. 2020;11:9387–9392. doi: 10.1021/acs.jpclett.0c02660. PubMed DOI
Pakrasi H.B., Riethman H.C., Sherman L.A. Organization of pigment proteins in the photosystem II complex of the cyanobacterium Anacystis nidulans R2. Proc. Natl. Acad. Sci. USA. 1985;82:6903–6907. doi: 10.1073/pnas.82.20.6903. PubMed DOI PMC
Burnap R.L., Troyan T., Sherman L.A. The Highly Abundant Chlorophyll-Protein Complex of Iron-Deficient Synechococcus sp. PCC7942 (CP43′) Is Encoded by the isiA Gene. Plant Physiol. 1993;103:893–902. doi: 10.1104/pp.103.3.893. PubMed DOI PMC
Bibby T.S., Nield J., Barber J. Iron deficiency induces the formation of an antenna ring around trimeric photosystem I in cyanobacteria. Nature. 2001;412:743–745. doi: 10.1038/35089098. PubMed DOI
Sandström S., Park Y.-I., Öquist G., Gustafsson P. CP43′, the isiA Gene Product, Functions as an Excitation Energy Dissipator in the Cyanobacterium Synechococcus sp. PCC 7942. Photochem. Photobiol. 2001;74:431–437. doi: 10.1562/0031-8655(2001)074<0431:CTIGPF>2.0.CO;2. PubMed DOI
Ihalainen J.A., D’Haene S., Yeremenko N., Van Roon H., Arteni A.A., Boekema E.J., Van Grondelle R., Matthijs H.C.P., Dekker J.P. Aggregates of the Chlorophyll-Binding Protein IsiA (CP43′) Dissipate Energy in Cyanobacteria. Biochemistry. 2005;44:10846–10853. doi: 10.1021/bi0510680. PubMed DOI
Bibby T.S., Nield J., Partensky F., Barber J. Antenna ring around photosystem I. Nature. 2001;413:590. doi: 10.1038/35098153. PubMed DOI
Bibby T.S., Nield J., Chen M., Larkum A.W.D., Barber J. Structure of a photosystem II supercomplex isolated from Prochloron didemni retaining its chlorophyll a/b light-harvesting system. Proc. Natl. Acad. Sci. USA. 2003;100:9050–9054. doi: 10.1073/pnas.1532271100. PubMed DOI PMC
Plumley F.G., Schmidt G.W. Reconstitution of chlorophyll a/b light-harvesting complexes: Xanthophyll-dependent assembly and energy transfer. Proc. Natl. Acad. Sci. USA. 1987;84:146–150. doi: 10.1073/pnas.84.1.146. PubMed DOI PMC
Paulsen H., Rümler U., Rüdiger W. Reconstitution of pigment-containing complexes from light-harvesting chlorophyll a/b-binding protein overexpressed in Escherichia coli. Planta. 1990;181:204–211. doi: 10.1007/BF02411539. PubMed DOI
Hobe S., Prytulla S., Kühlbrandt W., Paulsen H. Trimerization and crystallization of reconstituted light-harvesting chlorophyll a/b complex. EMBO J. 1994;13:3423–3429. doi: 10.1002/j.1460-2075.1994.tb06647.x. PubMed DOI PMC
Paulsen H. Pigment ligation to proteins of the photosynthetic apparatus in higher plants. Physiol. Plant. 1997;100:760–768. doi: 10.1111/j.1399-3054.1997.tb00003.x. DOI
Lokstein H., Tian L., Polle J.E., DellaPenna D. Xanthophyll biosynthetic mutants of Arabidopsis thaliana: Altered nonphotochemical quenching of chlorophyll fluorescence is due to changes in Photosystem II antenna size and stability. Biochim. Biophys. Acta Bioenerg. 2002;1553:309–319. doi: 10.1016/S0005-2728(02)00184-6. PubMed DOI
Pawlak K., Paul S., Liu C., Reus M., Yang C., Holzwarth A.R. On the PsbS-induced quenching in the plant major light-harvesting complex LHCII studied in proteoliposomes. Photosynth. Res. 2020;144:195–208. doi: 10.1007/s11120-020-00740-z. PubMed DOI
Ostroumov E.E., Götze J.P., Reus M., Lambrev P.H., Holzwarth A.R. Characterization of fluorescent chlorophyll charge-transfer states as intermediates in the excited state quenching of light-harvesting complex II. Photosynth. Res. 2020;144:171–193. doi: 10.1007/s11120-020-00745-8. PubMed DOI
Lokstein H., Härtel H., Hoffmann P., Woitke P., Renger G. The role of light-harvesting complex II in excess excitation energy dissipation: An in-vivo fluorescence study on the origin of high-energy quenching. J. Photochem. Photobiol. B Biol. 1994;26:175–184. doi: 10.1016/1011-1344(94)07032-6. DOI
Takahashi H., Iwai M., Minagawa J. Identification of the mobile light-harvesting complex II polypeptides for state transitions in Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. USA. 2006;103:477–482. doi: 10.1073/pnas.0509952103. PubMed DOI PMC
Iwai M., Yokono M., Inada N., Minagawa J. Live-cell imaging of photosystem II antenna dissociation during state transitions. Proc. Natl. Acad. Sci. USA. 2010;107:2337–2342. doi: 10.1073/pnas.0908808107. PubMed DOI PMC
Oxborough K., Lee P., Horton P. Regulation of thylakoid protein phosphorylation by high-energy-state quenching. FEBS Lett. 1987;221:211–214. doi: 10.1016/0014-5793(87)80927-4. DOI
Barber J., Andersson B. Too much of a good thing: Light can be bad for photosynthesis. Trends Biochem. Sci. 1992;17:61–66. doi: 10.1016/0968-0004(92)90503-2. PubMed DOI
Foote C.S. Definition of type I and type II photosensitized oxidation. Photochem. Photobiol. 1991;54:659. doi: 10.1111/j.1751-1097.1991.tb02071.x. PubMed DOI
Schödel R., Irrgang K.-D., Voigt J., Renger G. Rate of Carotenoid Triplet Formation in Solubilized Light-Harvesting Complex II (LHCII) from Spinach. Biophys. J. 1998;75:3143–3153. doi: 10.1016/S0006-3495(98)77756-2. PubMed DOI PMC
You Z.-Q., Hsu C.-P. Ab Inito Study on Triplet Excitation Energy Transfer in Photosynthetic Light-Harvesting Complexes. J. Phys. Chem. A. 2011;115:4092–4100. doi: 10.1021/jp200200x. PubMed DOI
Frank H.A., Bautista J.A., Josue J.S., Young A.J. Mechanism of nonphotochemical quenching in green plants: Energies of the lowest excited singlet states of violaxanthin and zeaxanthin. Biochemistry. 2000;39:2831–2837. doi: 10.1021/bi9924664. PubMed DOI
Härtel H., Lokstein H., Grimm B., Rank B. Kinetic Studies on the Xanthophyll Cycle in Barley Leaves (Influence of Antenna Size and Relations to Nonphotochemical Chlorophyll Fluorescence Quenching) Plant Physiol. 1996;110:471–482. doi: 10.1104/pp.110.2.471. PubMed DOI PMC
Frank H.A., Cua A., Chynwat V., Young A., Gosztola D., Wasielewski M.R. Photophysics of the carotenoids associated with the xanthophyll cycle in photosynthesis. Photosynth. Res. 1994;41:389–395. doi: 10.1007/BF02183041. PubMed DOI
Kröner D., Götze J.P. Modeling of a violaxanthin–chlorophyll b chromophore pair in its LHCII environment using CAM-B3LYP. J. Photochem. Photobiol. B Biol. 2012;109:12–19. doi: 10.1016/j.jphotobiol.2011.12.007. PubMed DOI
Dreuw A., Wormit M. Simple replacement of violaxanthin by zeaxanthin in LHC-II does not cause chlorophyll fluorescence quenching. J. Inorg. Biochem. 2008;102:458–465. doi: 10.1016/j.jinorgbio.2007.09.013. PubMed DOI
Götze J.P., Kröner D., Banerjee S., Karasulu B., Thiel W. Carotenoids as a Shortcut for Chlorophyll Soret-to-Q Band Energy Flow. ChemPhysChem. 2014;15:3392–3401. doi: 10.1002/cphc.201402233. PubMed DOI
Horton P., Wentworth M., Ruban A. Control of the light harvesting function of chloroplast membranes: The LHCII-aggregation model for non-photochemical quenching. FEBS Lett. 2005;579:4201–4206. doi: 10.1016/j.febslet.2005.07.003. PubMed DOI
Li X.-P., Björkman O., Shih C., Grossman A.R., Rosenquist M., Jansson S., Niyogi K.K. A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature. 2000;403:391–395. doi: 10.1038/35000131. PubMed DOI
Peers G., Truong T.B., Ostendorf E., Busch A.E., Elrad D., Grossman A.R., Hippler M., Niyogi K.K. An ancient light-harvesting protein is critical for the regulation of algal photosynthesis. Nature. 2009;462:518–521. doi: 10.1038/nature08587. PubMed DOI
Daskalakis V. Protein–protein interactions within photosystem II under photoprotection: The synergy between CP29 minor antenna, subunit S (PsbS) and zeaxanthin at all-atom resolution. Phys. Chem. Chem. Phys. 2018;20:11843–11855. doi: 10.1039/C8CP01226A. PubMed DOI
Miloslavina Y., Wehner A., Lambrev P.H., Wientjes E., Reus M., Garab G., Croce R., Holzwarth A.R. Far-red fluorescence: A direct spectroscopic marker for LHCII oligomer formation in non-photochemical quenching. FEBS Lett. 2008;582:3625–3631. doi: 10.1016/j.febslet.2008.09.044. PubMed DOI
Kell A., Feng X., Lin C., Yang Y., Li J., Reus M., Holzwarth A.R., Jankowiak R. Charge-Transfer Character of the Low-Energy Chl a Qy Absorption Band in Aggregated Light Harvesting Complexes II. J. Phys. Chem. B. 2014;118:6086–6091. doi: 10.1021/jp501735p. PubMed DOI
Razjivin A., Solov’Ev A., Kompanets V., Chekalin S., Moskalenko A., Lokstein H. The origin of the “dark” absorption band near 675 nm in the purple bacterial core light-harvesting complex LH1: Two-photon measurements of LH1 and its subunit B820. Photosynth. Res. 2019;140:207–213. doi: 10.1007/s11120-018-0602-0. PubMed DOI
Holt N.E., Zigmantas D., Valkunas L., Li X.-P., Niyogi K.K., Fleming G.R. Carotenoid Cation Formation and the Regulation of Photosynthetic Light Harvesting. Science. 2005;307:433–436. doi: 10.1126/science.1105833. PubMed DOI
Wormit M., Harbach P.H.P., Mewes J.-M., Amarie S., Wachtveitl J., Dreuw A. Excitation energy transfer and carotenoid radical cation formation in light harvesting complexes—A theoretical perspective. Biochim. Biophys. Acta Bioenerg. 2009;1787:738–746. doi: 10.1016/j.bbabio.2009.01.021. PubMed DOI
Bode S., Quentmeier C.C., Liao P.-N., Hafi N., Barros T., Wilk L., Bittner F., Walla P.J. On the regulation of photosynthesis by excitonic interactions between carotenoids and chlorophylls. Proc. Natl. Acad. Sci. USA. 2009;106:12311–12316. doi: 10.1073/pnas.0903536106. PubMed DOI PMC
Betke A., Lokstein H. Two-photon excitation spectroscopy of photosynthetic light-harvesting complexes and pigments. Faraday Discuss. 2019;216:494–506. doi: 10.1039/C8FD00198G. PubMed DOI
Šebelík V., Kuznetsova V., Lokstein H., Polívka T. Transient Absorption of Chlorophylls and Carotenoids after Two-Photon Excitation of LHCII. J. Phys. Chem. Lett. 2021;12:3176–3181. doi: 10.1021/acs.jpclett.1c00122. PubMed DOI
Gacek D.A., Betke A., Nowak J., Lokstein H., Walla P.J. Two-photon absorption and excitation spectroscopy of carotenoids, chlorophylls and pigment-protein complexes. Phys. Chem. Chem. Phys. 2021;23:8731–8738. doi: 10.1039/D1CP00656H. PubMed DOI
Wilson A., Ajlani G., Verbavatz J.-M., Vass I., Kerfeld C.A., Kirilovsky D. A Soluble Carotenoid Protein Involved in Phycobilisome-Related Energy Dissipation in Cyanobacteria. Plant Cell. 2006;18:992–1007. doi: 10.1105/tpc.105.040121. PubMed DOI PMC
Kirilovsky D., Kerfeld C.A. Cyanobacterial photoprotection by the orange carotenoid protein. Nat. Plants. 2016;2:16180. doi: 10.1038/nplants.2016.180. PubMed DOI
Leverenz R.L., Sutter M., Wilson A., Gupta S., Thurotte A., De Carbon C.B., Petzold C., Ralston C., Perreau F., Kirilovsky D., et al. A 12 A carotenoid translocation in a photoswitch associated with cyanobacterial photoprotection. Science. 2015;348:1463–1466. doi: 10.1126/science.aaa7234. PubMed DOI
Bondanza M., Cupellini L., Lipparini F., Mennucci B. The Multiple Roles of the Protein in the Photoactivation of Orange Carotenoid Protein. Chem. 2020;6:187–203. doi: 10.1016/j.chempr.2019.10.014. DOI
Boulay C., Wilson A., D’Haene S., Kirilovsky D. Identification of a protein required for recovery of full antenna capacity in OCP-related photoprotective mechanism in cyanobacteria. Proc. Natl. Acad. Sci. USA. 2010;107:11620–11625. doi: 10.1073/pnas.1002912107. PubMed DOI PMC
Reimers J.R., Biczysko M., Bruce D., Coker D.F., Frankcombe T.J., Hashimoto H., Hauer J., Jankowiak R., Kramer T., Linnanto J., et al. Challenges facing an understanding of the nature of low-energy excited states in photosynthesis. Biochim. Biophys. Acta Bioenerg. 2016;1857:1627–1640. doi: 10.1016/j.bbabio.2016.06.010. PubMed DOI
Lambert N., Chen Y.-N., Cheng Y.-C., Li C.-M., Chen G.-Y., Nori F. Quantum biology. Nat. Phys. 2012;9:10–18. doi: 10.1038/nphys2474. DOI
Cao J., Cogdell R.J., Coker D.F., Duan H.-G., Hauer J., Kleinekathöfer U., Jansen T.L.C., Mančal T., Miller R.J.D., Ogilvie J.P., et al. Quantum biology revisited. Sci. Adv. 2020;6:eaaz4888. doi: 10.1126/sciadv.aaz4888. PubMed DOI PMC
The biogenesis and maintenance of PSII: Recent advances and current challenges