Photosynthetic Light-Harvesting (Antenna) Complexes-Structures and Functions

. 2021 Jun 03 ; 26 (11) : . [epub] 20210603

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34204994

Grantová podpora
UNCE/SCI/010 Charles University Center of Nano- and Bio-Photonics
393271229 Deutsche Forschungsgemeinschaft

Chlorophylls and bacteriochlorophylls, together with carotenoids, serve, noncovalently bound to specific apoproteins, as principal light-harvesting and energy-transforming pigments in photosynthetic organisms. In recent years, enormous progress has been achieved in the elucidation of structures and functions of light-harvesting (antenna) complexes, photosynthetic reaction centers and even entire photosystems. It is becoming increasingly clear that light-harvesting complexes not only serve to enlarge the absorption cross sections of the respective reaction centers but are vitally important in short- and long-term adaptation of the photosynthetic apparatus and regulation of the energy-transforming processes in response to external and internal conditions. Thus, the wide variety of structural diversity in photosynthetic antenna "designs" becomes conceivable. It is, however, common for LHCs to form trimeric (or multiples thereof) structures. We propose a simple, tentative explanation of the trimer issue, based on the 2D world created by photosynthetic membrane systems.

Zobrazit více v PubMed

Renger G., editor. Primary Processes of Photosynthesis, Part 2: Principles and Apparatus. Royal Society of Chemistry; Cambridge, UK: 2007. DOI

Green B.R., Parson W.W., editors. Light-Harvesting Antennas in Photosynthesis. Springer; Dordrecht, The Netherlands: 2003. DOI

Tomo T., Allakhverdiev S.I., Mimuro M. Constitution and energetics of photosystem I and photosystem II in the chlorophyll d-dominated cyanobacterium Acaryochloris marina. J. Photochem. Photobiol. B Biol. 2011;104:333–340. doi: 10.1016/j.jphotobiol.2011.02.017. PubMed DOI

Murray J., Duncan J., Barber J. CP43-like chlorophyll binding proteins: Structural and evolutionary implications. Trends Plant Sci. 2006;11:152–158. doi: 10.1016/j.tplants.2006.01.007. PubMed DOI

Hoffman G.E., Sanchez-Puerta M.V., Delwiche C.F. Evolution of light-harvesting complex proteins from Chl c-containing algae. BMC Evol. Biol. 2011;11:101. doi: 10.1186/1471-2148-11-101. PubMed DOI PMC

Chen M., Schliep M., Willows R.D., Cai Z.-L., Neilan B.A., Scheer H. A Red-Shifted Chlorophyll. Science. 2010;329:1318–1319. doi: 10.1126/science.1191127. PubMed DOI

Miyashita H., Ikemoto H., Kurano N., Adachi K., Chihara M., Miyachi S. Chlorophyll d as a major pigment. Nature. 1996;383:402. doi: 10.1038/383402a0. DOI

Loughlin P., Lin Y., Chen M. Chlorophyll d and Acaryochloris marina: Current status. Photosynth. Res. 2013;116:277–293. doi: 10.1007/s11120-013-9829-y. PubMed DOI

Gan F., Zhang S., Rockwell N.C., Martin S.S., Lagarias J.C., Bryant D.A. Extensive remodeling of a cyanobacterial photosynthetic apparatus in far-red light. Science. 2014;345:1312–1317. doi: 10.1126/science.1256963. PubMed DOI

Nürnberg D.J., Morton J., Santabarbara S., Telfer A., Joliot P., Antonaru L.A., Ruban A.V., Cardona T., Krausz E., Boussac A., et al. Photochemistry beyond the red limit in chlorophyll f–containing photosystems. Science. 2018;360:1210–1213. doi: 10.1126/science.aar8313. PubMed DOI

Cherepanov D.A., Shelaev I.V., Gostev F.E., Aybush A.V., Mamedov M.D., Shen G., Nadtochenko V.A., Bryant D.A., Semenov A.Y., Golbeck J.H. Evidence that chlorophyll f functions solely as an antenna pigment in far-red-light photosystem I from Fischerella thermalis PCC 7521. Biochim. Biophys. Acta Bioenerg. 2020;1861:148184. doi: 10.1016/j.bbabio.2020.148184. PubMed DOI

Hashimoto H., Sugai Y., Uragami C., Gardiner A.T., Cogdell R.J. Natural and artificial light-harvesting systems utilizing the functions of carotenoids. J. Photochem. Photobiol. C Photochem. Rev. 2015;25:46–70. doi: 10.1016/j.jphotochemrev.2015.07.004. DOI

Fiedor L., Dudkowiak A., Pilch M. The origin of the dark S1 state in carotenoids: A comprehensive model. J. R. Soc. Interface. 2019;16 doi: 10.1098/rsif.2019.0191. PubMed DOI PMC

Arvidsson P.-O., Sundby C. A model for the topology of the chloroplast thylakoid membrane. Funct. Plant Biol. 1999;26:687–694. doi: 10.1071/PP99072. DOI

Pfeiffer S., Krupinska K. New Insights in Thylakoid Membrane Organization. Plant Cell Physiol. 2005;46:1443–1451. doi: 10.1093/pcp/pci156. PubMed DOI

Broess K., Trinkunas G., Van Hoek A., Croce R., van Amerongen H. Determination of the excitation migration time in Photosystem II. Biochim. Biophys. Acta Bioenerg. 2008;1777:404–409. doi: 10.1016/j.bbabio.2008.02.003. PubMed DOI

Renger G. The light reactions of photosynthesis. Curr. Sci. 2010;98:1305–1319.

Groot M.L., Pawlowicz N.P., van Wilderen L.J.G.W., Breton J., van Stokkum I.H.M., van Grondelle R. Initial electron donor and acceptor in isolated Photosystem II reaction centers identified with femtosecond mid-IR spectroscopy. Proc. Natl. Acad. Sci. USA. 2005;102:13087–13092. doi: 10.1073/pnas.0503483102. PubMed DOI PMC

Müller M.G., Niklas J., Lubitz W., Holzwarth A.R. Ultrafast Transient Absorption Studies on Photosystem I Reaction Centers from Chlamydomonas reinhardtii. 1. A New Interpretation of the Energy Trapping and Early Electron Transfer Steps in Photosystem I. Biophys. J. 2003;85:3899–3922. doi: 10.1016/S0006-3495(03)74804-8. PubMed DOI PMC

Holzwarth A.R., Müller M.G., Niklas J., Lubitz W. Ultrafast Transient Absorption Studies on Photosystem I Reaction Centers from Chlamydomonas reinhardtii. 2: Mutations near the P700 Reaction Center Chlorophylls Provide New Insight into the Nature of the Primary Electron Donor. Biophys. J. 2006;90:552–565. doi: 10.1529/biophysj.105.059824. PubMed DOI PMC

Holzwarth A.R., Müller M.G., Reus M., Nowaczyk M., Sander J., Rogner M. Kinetics and mechanism of electron transfer in intact photosystem II and in the isolated reaction center: Pheophytin is the primary electron acceptor. Proc. Natl. Acad. Sci. USA. 2006;103:6895–6900. doi: 10.1073/pnas.0505371103. PubMed DOI PMC

Renger G., Renger T. Photosystem II: The machinery of photosynthetic water splitting. Photosynth. Res. 2008;98:53–80. doi: 10.1007/s11120-008-9345-7. PubMed DOI

Novoderezhkin V.I., Romero E., Dekker J.P., van Grondelle R. Multiple Charge-Separation Pathways in Photosystem II: Modeling of Transient Absorption Kinetics. ChemPhysChem. 2011;12:681–688. doi: 10.1002/cphc.201000830. PubMed DOI

Giera W., Ramesh V., Webber A.N., van Stokkum I., van Grondelle R., Gibasiewicz K. Effect of the P700 pre-oxidation and point mutations near A0 on the reversibility of the primary charge separation in Photosystem I from Chlamydomonas reinhardtii. Biochim. Biophys. Acta Bioenerg. 2010;1797:106–112. doi: 10.1016/j.bbabio.2009.09.006. PubMed DOI

Mitchell P. Conduction of protons through membranes of mitochondria and bacteria by uncouplers of oxidative phosphorylation. Biochem. J. 1961;81:24.

Mitchell P. Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol. Rev. 1966;41:445–501. doi: 10.1111/j.1469-185X.1966.tb01501.x. PubMed DOI

Junge W. Photophosphorylation. In: Renger G., editor. Primary Processes of Photosynthesis, Part 2: Principles and Apparatus. Royal Society of Chemistry; Cambridge, UK: 2007. pp. 447–487. DOI

Jansson S. The light-harvesting chlorophyll ab-binding proteins. Biochim. Biophys. Acta Bioenerg. 1994;1184:1–19. doi: 10.1016/0005-2728(94)90148-1. PubMed DOI

Pan X., Ma J., Su X., Cao P., Chang W., Liu Z., Zhang X., Li M. Structure of the maize photosystem I supercomplex with light-harvesting complexes I and II. Science. 2018;360:1109–1113. doi: 10.1126/science.aat1156. PubMed DOI

Wei X., Su X., Cao P., Liu X., Chang W., Li M., Zhang X., Liu Z. Structure of spinach photosystem II–LHCII supercomplex at 3.2 Å resolution. Nature. 2016;534:69–74. doi: 10.1038/nature18020. PubMed DOI

Ben-Shem A., Frolow F., Nelson N. Crystal structure of plant photosystem I. Nature. 2003;426:630–635. doi: 10.1038/nature02200. PubMed DOI

Croce R., van Amerongen H. Light-harvesting in photosystem I. Photosynth. Res. 2013;116:153–166. doi: 10.1007/s11120-013-9838-x. PubMed DOI PMC

Mazor Y., Borovikova A., Caspy I., Nelson N. Structure of the plant photosystem I supercomplex at 2.6 Å resolution. Nat. Plants. 2017;3:17014. doi: 10.1038/nplants.2017.14. PubMed DOI

Liu Z., Yan H., Wang K., Kuang T., Zhang J., Gui L., An X., Chang W. Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution. Nature. 2004;428:287–292. doi: 10.1038/nature02373. PubMed DOI

Standfuss J., Van Scheltinga A.C.T., Lamborghini M., Kühlbrandt W. Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 Å resolution. EMBO J. 2005;24:919–928. doi: 10.1038/sj.emboj.7600585. PubMed DOI PMC

Pan X., Li M., Wan T., Wang L., Jia C., Hou Z., Zhao X., Zhang J., Chang W. Structural insights into energy regulation of light-harvesting complex CP29 from spinach. Nat. Struct. Mol. Biol. 2011;18:309–315. doi: 10.1038/nsmb.2008. PubMed DOI

Schubert A., Beenken W.J., Stiel H., Voigt B., Leupold D., Lokstein H. Excitonic Coupling of Chlorophylls in the Plant Light-Harvesting Complex LHC-II. Biophys. J. 2002;82:1030–1039. doi: 10.1016/S0006-3495(02)75462-3. PubMed DOI PMC

Kühlbrandt W., Wang D.N., Fujiyoshi Y. Atomic model of plant light-harvesting complex by electron crystallography. Nature. 1994;367:614–621. doi: 10.1038/367614a0. PubMed DOI

Rogl H., Schödel R., Lokstein H., Kühlbrandt W., Schubert A. Assignment of Spectral Substructures to Pigment-Binding Sites in Higher Plant Light-Harvesting Complex LHC-II. Biochemistry. 2002;41:2281–2287. doi: 10.1021/bi015875k. PubMed DOI

Krikunova M., Voigt B., Lokstein H. Direct evidence for excitonically coupled chlorophylls a and b in LHC II of higher plants by nonlinear polarization spectroscopy in the frequency domain. Biochim. Biophys. Acta Bioenerg. 2002;1556:1–5. doi: 10.1016/S0005-2728(02)00326-2. PubMed DOI

Pieper J., Irrgang K.-D. Nature of low-energy exciton levels in light-harvesting complex II of green plants as revealed by satellite hole structure. Photosynth. Res. 2020;146:279–285. doi: 10.1007/s11120-020-00752-9. PubMed DOI

Lokstein H., Leupold D., Voigt B., Nowak F., Ehlert J., Hoffmann P., Garab G. Nonlinear polarization spectroscopy in the frequency domain of light-harvesting complex II: Absorption band substructure and exciton dynamics. Biophys. J. 1995;69:1536–1543. doi: 10.1016/S0006-3495(95)80025-1. PubMed DOI PMC

Voigt B., Krikunova M., Lokstein H. Influence of detergent concentration on aggregation and spectroscopic properties of light-harvesting complex II. Photosynth. Res. 2007;95:317–325. doi: 10.1007/s11120-007-9250-5. PubMed DOI

Ginsberg N.S., Davis J., Ballottari M., Cheng Y.-C., Bassi R., Fleming G.R. Solving structure in the CP29 light harvesting complex with polarization-phased 2D electronic spectroscopy. Proc. Natl. Acad. Sci. USA. 2011;108:3848–3853. doi: 10.1073/pnas.1012054108. PubMed DOI PMC

Jurinovich S., Viani L., Prandi I.G., Renger T., Mennucci B. Towards an ab initio description of the optical spectra of light-harvesting antennae: Application to the CP29 complex of photosystem II. Phys. Chem. Chem. Phys. 2015;17:14405–14416. doi: 10.1039/C4CP05647G. PubMed DOI

König C., Neugebauer J. First-principles calculation of electronic spectra of light-harvesting complex II. Phys. Chem. Chem. Phys. 2011;13:10475–10490. doi: 10.1039/c0cp02808h. PubMed DOI

Jang S.J., Mennucci B. Delocalized excitons in natural light-harvesting complexes. Rev. Mod. Phys. 2018;90:035003. doi: 10.1103/RevModPhys.90.035003. DOI

Dreuw A., Harbach P.H.P., Mewes J.M., Wormit M. Quantum chemical excited state calculations on pigment–protein complexes require thorough geometry re-optimization of experimental crystal structures. Theor. Chem. Acc. 2009;125:419–426. doi: 10.1007/s00214-009-0680-3. DOI

Götze J.P., Thiel W. TD-DFT and DFT/MRCI study of electronic excitations in Violaxanthin and Zeaxanthin. Chem. Phys. 2013;415:247–255. doi: 10.1016/j.chemphys.2013.01.030. DOI

König C., Neugebauer J. Quantum Chemical Description of Absorption Properties and Excited-State Processes in Photosynthetic Systems. ChemPhysChem. 2011;13:386–425. doi: 10.1002/cphc.201100408. PubMed DOI

Curutchet C., Mennucci B. Quantum Chemical Studies of Light Harvesting. Chem. Rev. 2016;117:294–343. doi: 10.1021/acs.chemrev.5b00700. PubMed DOI

Liguori N., Croce R., Marrink S.J., Thallmair S. Molecular dynamics simulations in photosynthesis. Photosynth. Res. 2020;144:273–295. doi: 10.1007/s11120-020-00741-y. PubMed DOI PMC

Cupellini L., Bondanza M., Nottoli M., Mennucci B. Successes & challenges in the atomistic modeling of light-harvesting and its photoregulation. Biochim. Biophys. Acta Bioenerg. 2020;1861:148049. doi: 10.1016/j.bbabio.2019.07.004. PubMed DOI

Renger T., Müh F. Understanding photosynthetic light-harvesting: A bottom up theoretical approach. Phys. Chem. Chem. Phys. 2013;15:3348–3371. doi: 10.1039/C3CP43439G. PubMed DOI

Sláma V., Cupellini L., Mennucci B. Exciton properties and optical spectra of light harvesting complex II from a fully atomistic description. Phys. Chem. Chem. Phys. 2020;22:16783–16795. doi: 10.1039/D0CP02492A. PubMed DOI

Zouni A., Witt H.-T., Kern J., Fromme P., Krauss N., Saenger W., Orth P.P. Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution. Nature. 2001;409:739–743. doi: 10.1038/35055589. PubMed DOI

Umena Y., Kawakami K., Shen J.-R., Kamiya N. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature. 2011;473:55–60. doi: 10.1038/nature09913. PubMed DOI

Fromme P., Grotjohann I. Bioenergetic Processes of Cyanobacteria. Springer; Dordrecht, The Netherlands: 2011. Structure of Cyanobacterial Photosystems I and II; pp. 285–335. DOI

Malavath T., Caspy I., Netzer-El S.Y., Klaiman D., Nelson N. Structure and function of wild-type and subunit-depleted photosystem I in Synechocystis. Biochim. Biophys. Acta Bioenerg. 2018;1859:645–654. doi: 10.1016/j.bbabio.2018.02.002. PubMed DOI

Hatazaki S., Sharma D.K., Hirata S., Nose K., Iyoda T., Kölsch A., Lokstein H., Vacha M. Identification of Short- and Long-Wavelength Emitting Chlorophylls in Cyanobacterial Photosystem I by Plasmon-Enhanced Single-Particle Spectroscopy at Room Temperature. J. Phys. Chem. Lett. 2018;9:6669–6675. doi: 10.1021/acs.jpclett.8b03064. PubMed DOI

Kerfeld C.A. Structure and Function of the Water-Soluble Carotenoid-Binding Proteins of Cyanobacteria. Photosynth. Res. 2004;81:215–225. doi: 10.1023/B:PRES.0000036886.60187.c8. PubMed DOI

Hofmann E., Wrench P.M., Sharples F.P., Hiller R.G., Welte W., Diederichs K. Structural Basis of Light Harvesting by Carotenoids: Peridinin-Chlorophyll-Protein from Amphidinium carterae. Science. 1996;272:1788–1791. doi: 10.1126/science.272.5269.1788. PubMed DOI

Krikunova M., Lokstein H., Leupold D., Hiller R.G., Voigt B. Pigment-Pigment Interactions in PCP of Amphidinium carterae Investigated by Nonlinear Polarization Spectroscopy in the Frequency Domain. Biophys. J. 2006;90:261–271. doi: 10.1529/biophysj.104.055350. PubMed DOI PMC

Leupold D., Lokstein H., Scheer H. Excitation Energy Transfer between (Bacterio) Chlorophylls—The Role of Excitonic Coupling. In: Grimm B., Porra R.J., Rüdiger W., Scheer H., editors. Chlorophylls and Bacteriochlorophylls. Springer; Dordrecht, The Netherlands: 2006. pp. 413–430. DOI

Damjanović A., Ritz T., Schulten K. Excitation Transfer in the Peridinin-Chlorophyll-Protein of Amphidinium carterae. Biophys. J. 2000;79:1695–1705. doi: 10.1016/S0006-3495(00)76422-8. PubMed DOI PMC

Krueger B.P., Lampoura S.S., Van Stokkum I.H., Papagiannakis E., Salverda J.M., Gradinaru C., Rutkauskas D., Hiller R.G., Van Grondelle R. Energy Transfer in the Peridinin Chlorophyll-a Protein of Amphidinium carterae Studied by Polarized Transient Absorption and Target Analysis. Biophys. J. 2001;80:2843–2855. doi: 10.1016/S0006-3495(01)76251-0. PubMed DOI PMC

Zigmantas D., Polivka T., Hiller R.G., Yartsev A., Sundström V. Spectroscopic and Dynamic Properties of the Peridinin Lowest Singlet Excited States. J. Phys. Chem. A. 2001;105:10296–10306. doi: 10.1021/jp010022n. DOI

Zigmantas D., Hiller R.G., Sundstrom V., Polivka T. Carotenoid to chlorophyll energy transfer in the peridinin-chlorophyll-a-protein complex involves an intramolecular charge transfer state. Proc. Natl. Acad. Sci. USA. 2002;99:16760–16765. doi: 10.1073/pnas.262537599. PubMed DOI PMC

Zigmantas D., Hiller R.G., Sharples F.P., Frank H.A., Sundström V., Polivka T. Effect of a conjugated carbonyl group on the photophysical properties of carotenoids. Phys. Chem. Chem. Phys. 2004;6:3009–3016. doi: 10.1039/B315786E. DOI

Shima S., Ilagan R.P., Gillespie N., Sommer B.J., Hiller R.G., Sharples F.P., Frank H.A., Birge R.R. Two-Photon and Fluorescence Spectroscopy and the Effect of Environment on the Photochemical Properties of Peridinin in Solution and in the Peridinin-Chlorophyll-Protein from Amphidinium carterae. J. Phys. Chem. A. 2003;107:8052–8066. doi: 10.1021/jp022648z. DOI

Polívka T., Sundström V. Ultrafast Dynamics of Carotenoid Excited States—From Solution to Natural and Artificial Systems. Chem. Rev. 2004;104:2021–2072. doi: 10.1021/cr020674n. PubMed DOI

Kleima F.J., Wendling M., Hofmann E., Peterman E.J.G., van Grondelle A.R., van Amerongen H. Peridinin Chlorophyll a Protein: Relating Structure and Steady-State Spectroscopy. Biochemistry. 2000;39:5184–5195. doi: 10.1021/bi992427s. PubMed DOI

Ilagan R.P., Shima S., Melkozernov A., Lin S., Blankenship R.E., Sharples F.P., Hiller R.G., Birge R.R., Frank H.A. Spectroscopic Properties of the Main-Form and High-Salt Peridinin—Chlorophyll a Proteins from Amphidinium carterae. Biochemistry. 2004;43:1478–1487. doi: 10.1021/bi0357964. PubMed DOI

Wörmke S., Mackowski S., Brotosudarmo T., Jung C., Zumbusch A., Ehrl M., Scheer H., Hofmann E., Hiller R., Bräuchle C. Monitoring fluorescence of individual chromophores in peridinin–chlorophyll–protein complex using single molecule spectroscopy. Biochim. Biophys. Acta Bioenerg. 2007;1767:956–964. doi: 10.1016/j.bbabio.2007.05.004. PubMed DOI

Vinklárek I.S., Bornemann T.L.V., Lokstein H., Hofmann E., Alster J., Pšenčík J. Temperature Dependence of Chlorophyll Triplet Quenching in Two Photosynthetic Light-Harvesting Complexes from Higher Plants and Dinoflagellates. J. Phys. Chem. B. 2018;122:8834–8845. doi: 10.1021/acs.jpcb.8b06751. PubMed DOI

Wagner N.L., Greco J.A., Enriquez M.M., Frank H.A., Birge R.R. The Nature of the Intramolecular Charge Transfer State in Peridinin. Biophys. J. 2013;104:1314–1325. doi: 10.1016/j.bpj.2013.01.045. PubMed DOI PMC

Götze J.P., Karasulu B., Patil M., Thiel W. Vibrational relaxation as the driving force for wavelength conversion in the peridinin–chlorophyll a-protein. Biochim. Biophys. Acta Bioenerg. 2015;1847:1509–1517. doi: 10.1016/j.bbabio.2015.07.011. PubMed DOI

Knecht S., Marian C.M., Kongsted J., Mennucci B. On the Photophysics of Carotenoids: A Multireference DFT Study of Peridinin. J. Phys. Chem. B. 2013;117:13808–13815. doi: 10.1021/jp4078739. PubMed DOI

Ghosh S., Bishop M.M., Roscioli J.D., LaFountain A.M., Frank H.A., Beck W.F. Excitation Energy Transfer by Coherent and Incoherent Mechanisms in the Peridinin–Chlorophyll a Protein. J. Phys. Chem. Lett. 2017;8:463–469. doi: 10.1021/acs.jpclett.6b02881. PubMed DOI

Parson W.W. Functional Patterns of Reaction Centers in Anoxygenic Photosynthetic Bacteria. In: Renger G., editor. Primary Processes of Photosynthesis, Part 2: Principles and Apparatus. Royal Society of Chemistry; Cambridge, UK: 2007. pp. 57–109. DOI

Peschek G.A., Bernroitner M., Sari S., Pairer M., Obinger C. Life Implies Work: A Holistic Account of Our Microbial Biosphere Focussing on the Bioenergetic Processes of Cyanobacteria, the Ecologically Most Successful Organisms on Our Earth. In: Peschek G.A., Obinger C., Renger G., editors. Bioenergetic Processes of Cyanobacteria. Springer; Dordrecht, The Netherlands: 2011. pp. 3–70. DOI

Cogdell R.J., Gall A., Köhler J. The architecture and function of the light-harvesting apparatus of purple bacteria: From single molecules to in vivo membranes. Q. Rev. Biophys. 2006;39:227–324. doi: 10.1017/S0033583506004434. PubMed DOI

Hunter C.N., Daldal F., Thurnauer M.C., Beatty J.T., editors. The Purple Phototrophic Bacteria. Springer; Dordrecht, The Netherlands: 2009. DOI

Gabrielsen M., Gardiner A.T., Cogdell R.J. Peripheral Complexes of Purple Bacteria. In: Hunter C.N., Daldal F., Thurnauer M.C., Beatty J.T., editors. The Purple Phototrophic Bacteria. Springer; Dordrecht, The Netherlands: 2009. pp. 135–153. DOI

Law C.J., Cogdell R.J. The Light-Harvesting System of Purple Anoxygenic Photosynthetic Bacteria. In: Renger G., editor. Primary Processes of Photosynthesis, Part 1: Principles and Apparatus. Royal Society of Chemistry; Cambridge, UK: 2007. pp. 205–259. DOI

Roszak A.W., Howard T.D., Southall J., Gardiner A.T., Law C.J., Isaacs N.W., Cogdell R.J. Crystal Structure of the RC-LH1 Core Complex from Rhodopseudomonas palustris. Science. 2003;302:1969–1972. doi: 10.1126/science.1088892. PubMed DOI

Cherezov V., Clogston J., Papiz M.Z., Caffrey M. Room to Move: Crystallizing Membrane Proteins in Swollen Lipidic Mesophases. J. Mol. Biol. 2006;357:1605–1618. doi: 10.1016/j.jmb.2006.01.049. PubMed DOI

Leupold D., Stiel H., Teuchner K., Nowak F., Sandner W., Ücker B., Scheer H. Size Enhancement of Transition Dipoles to One- and Two-Exciton Bands in a Photosynthetic Antenna. Phys. Rev. Lett. 1996;77:4675–4678. doi: 10.1103/PhysRevLett.77.4675. PubMed DOI

Leupold D., Voigt B., Beenken W., Stiel H. Pigment-protein architecture in the light-harvesting antenna complexes of purple bacteria: Does the crystal structure reflect the native pigment-protein arrangement? FEBS Lett. 2000;480:73–78. doi: 10.1016/S0014-5793(00)01892-5. PubMed DOI

Leupold D., Stiel H., Ehlert J., Nowak F., Teuchner K., Voigt B., Bandilla M., Ücker B., Scheer H. Photophysical characterization of the B800-depleted light harvesting complex B850 of Rhodobacter sphaeroides. Chem. Phys. Lett. 1999;301:537–545. doi: 10.1016/S0009-2614(99)00061-5. DOI

Krikunova M., Kummrow A., Voigt B., Rini M., Lokstein H., Moskalenko A., Scheer H., Razjivin A., Leupold D. Fluorescence of native and carotenoid-depleted LH2 from Chromatium minutissimum, originating from simultaneous two-photon absorption in the spectral range of the presumed (optically ’dark’) S(1) state of carotenoids. FEBS Lett. 2002;528:227–229. doi: 10.1016/S0014-5793(02)03315-X. PubMed DOI

Stepanenko I., Kompanetz V., Makhneva Z., Chekalin S., Moskalenko A., Razjivin A. Two-Photon Excitation Spectroscopy of Carotenoid-Containing and Carotenoid-Depleted LH2 Complexes from Purple Bacteria. J. Phys. Chem. B. 2009;113:11720–11723. doi: 10.1021/jp906565m. PubMed DOI

Theiss C., Leupold D., Moskalenko A.A., Razjivin A.P., Eichler H.J., Lokstein H. Femtosecond Spectroscopy of Native and Carotenoidless Purple-Bacterial LH2 Clarifies Functions of Carotenoids. Biophys. J. 2008;94:4808–4811. doi: 10.1529/biophysj.107.121681. PubMed DOI PMC

Shibl M.F., Schulze J., Al-Marri M.J., Kühn O. Multilayer-MCTDH approach to the energy transfer dynamics in the LH2 antenna complex. J. Phys. B At. Mol. Opt. Phys. 2017;50:184001. doi: 10.1088/1361-6455/aa8374. DOI

Ramos F.C., Nottoli M., Cupellini L., Mennucci B. The molecular mechanisms of light adaption in light-harvesting complexes of purple bacteria revealed by a multiscale modeling. Chem. Sci. 2019;10:9650–9662. doi: 10.1039/C9SC02886B. PubMed DOI PMC

Cupellini L., Jurinovich S., Campetella M., Caprasecca S., Guido C.A., Kelly S.M., Gardiner A.T., Cogdell R., Mennucci B. An Ab Initio Description of the Excitonic Properties of LH2 and Their Temperature Dependence. J. Phys. Chem. B. 2016;120:11348–11359. doi: 10.1021/acs.jpcb.6b06585. PubMed DOI

Nottoli M., Jurinovich S., Cupellini L., Gardiner A.T., Cogdell R., Mennucci B. The role of charge-transfer states in the spectral tuning of antenna complexes of purple bacteria. Photosynth. Res. 2018;137:215–226. doi: 10.1007/s11120-018-0492-1. PubMed DOI

Pšenčík J., Ikonen T., Laurinmäki P., Merckel M., Butcher S., Serimaa R., Tuma R. Lamellar Organization of Pigments in Chlorosomes, the Light Harvesting Complexes of Green Photosynthetic Bacteria. Biophys. J. 2004;87:1165–1172. doi: 10.1529/biophysj.104.040956. PubMed DOI PMC

Griebenow K., Holzwarth A.R., van Mourik F., van Grondelle R. Pigment organization and energy transfer in green bacteria. 2. Circular and linear dichroism spectra of protein-containing and protein-free chlorosomes isolated from Chloroflexus aurantiacus strain Ok-70-fl. Biochim. Biophys. Acta Bioenerg. 1991;1058:194–202. doi: 10.1016/S0005-2728(05)80237-3. DOI

Dostál J., Vácha F., Pšenčík J., Zigmantas D. 2D Electronic Spectroscopy Reveals Excitonic Structure in the Baseplate of a Chlorosome. J. Phys. Chem. Lett. 2014;5:1743–1747. doi: 10.1021/jz5005279. PubMed DOI

Matthews B., Fenna R., Bolognesi M., Schmid M., Olson J. Structure of a bacteriochlorophyll a-protein from the green photosynthetic bacterium Prosthecochloris aestuarii. J. Mol. Biol. 1979;131:259–285. doi: 10.1016/0022-2836(79)90076-7. PubMed DOI

Olson J.M. The FMO Protein. Photosynth. Res. 2004;80:181–187. doi: 10.1023/B:PRES.0000030428.36950.43. PubMed DOI

Camara-Artigas A., Blankenship R.E., Allen J.P. The structure of the FMO protein from Chlorobium tepidum at 2.2 Å resolution. Photosynth. Res. 2003;75:49–55. doi: 10.1023/A:1022406703110. PubMed DOI

Tronrud D., Wen J., Gay L., Blankenship R.E. The structural basis for the difference in absorbance spectra for the FMO antenna protein from various green sulfur bacteria. Photosynth. Res. 2009;100:79–87. doi: 10.1007/s11120-009-9430-6. PubMed DOI

Alster J., Kabeláč M., Tuma R., Pšenčík J., Burda J. Computational study of short-range interactions in bacteriochlorophyll aggregates. Comput. Theor. Chem. 2012;998:87–97. doi: 10.1016/j.comptc.2012.07.001. DOI

Busch M.S.A., Müh F., Madjet M.E.-A., Renger T. The Eighth Bacteriochlorophyll Completes the Excitation Energy Funnel in the FMO Protein. J. Phys. Chem. Lett. 2010;2:93–98. doi: 10.1021/jz101541b. PubMed DOI

Mühlbacher L., Kleinekathöfer U. Preparational Effects on the Excitation Energy Transfer in the FMO Complex. J. Phys. Chem. B. 2012;116:3900–3906. doi: 10.1021/jp301444q. PubMed DOI

Jurinovich S., Curutchet C., Mennucci B. The Fenna-Matthews-Olson Protein Revisited: A Fully Polarizable (TD)DFT/MM Description. ChemPhysChem. 2014;15:3194–3204. doi: 10.1002/cphc.201402244. PubMed DOI

Bold B.M., Sokolov M., Maity S., Wanko M., Dohmen P.M., Kranz J.J., Kleinekathöfer U., Höfener S., Elstner M. Benchmark and performance of long-range corrected time-dependent density functional tight binding (LC-TD-DFTB) on rhodopsins and light-harvesting complexes. Phys. Chem. Chem. Phys. 2020;22:10500–10518. doi: 10.1039/C9CP05753F. PubMed DOI

Liu X., Kuhn O. Vibrational and vibronic coherences in the dynamics of the FMO complex. Chem. Phys. 2016;481:272–280. doi: 10.1016/j.chemphys.2016.03.021. DOI

Dostál J., Pšenčík J., Zigmantas D. In situ mapping of the energy flow through the entire photosynthetic apparatus. Nat. Chem. 2016;8:705–710. doi: 10.1038/nchem.2525. PubMed DOI

MacColl R. Cyanobacterial Phycobilisomes. J. Struct. Biol. 1998;124:311–334. doi: 10.1006/jsbi.1998.4062. PubMed DOI

Adir N. Elucidation of the molecular structures of components of the phycobilisome: Reconstructing a giant. Photosynth. Res. 2005;85:15–32. doi: 10.1007/s11120-004-2143-y. PubMed DOI

Adir N., Bar-Zvi S., Harris D. The amazing phycobilisome. Biochim. Biophys. Acta Bioenerg. 2020;1861:148047. doi: 10.1016/j.bbabio.2019.07.002. PubMed DOI

Fromme R., Brune D., Fromme P. High resolution structure of C-Phycocyanin from Thermosynechococcus elongatus. 2010 to be published.

Kehoe D.M., Gutu A. Responding to Color: The Regulation of Complementary Chromatic Adaptation. Annu. Rev. Plant Biol. 2006;57:127–150. doi: 10.1146/annurev.arplant.57.032905.105215. PubMed DOI

Dolganov N.A., Bhaya D., Grossman A.R. Cyanobacterial protein with similarity to the chlorophyll a/b binding proteins of higher plants: Evolution and regulation. Proc. Natl. Acad. Sci. USA. 1995;92:636–640. doi: 10.1073/pnas.92.2.636. PubMed DOI PMC

Montané M.-H., Kloppstech K. The family of light-harvesting-related proteins (LHCs, ELIPs, HLIPs): Was the harvesting of light their primary function? Gene. 2000;258:1–8. doi: 10.1016/S0378-1119(00)00413-3. PubMed DOI

Engelken J., Brinkmann H., Adamska I. Taxonomic distribution and origins of the extended LHC (light-harvesting complex) antenna protein superfamily. BMC Evol. Biol. 2010;10:233. doi: 10.1186/1471-2148-10-233. PubMed DOI PMC

Psencik J., Hey D., Grimm B., Lokstein H. Photoprotection of Photosynthetic Pigments in Plant One-Helix Protein 1/2 Heterodimers. J. Phys. Chem. Lett. 2020;11:9387–9392. doi: 10.1021/acs.jpclett.0c02660. PubMed DOI

Pakrasi H.B., Riethman H.C., Sherman L.A. Organization of pigment proteins in the photosystem II complex of the cyanobacterium Anacystis nidulans R2. Proc. Natl. Acad. Sci. USA. 1985;82:6903–6907. doi: 10.1073/pnas.82.20.6903. PubMed DOI PMC

Burnap R.L., Troyan T., Sherman L.A. The Highly Abundant Chlorophyll-Protein Complex of Iron-Deficient Synechococcus sp. PCC7942 (CP43′) Is Encoded by the isiA Gene. Plant Physiol. 1993;103:893–902. doi: 10.1104/pp.103.3.893. PubMed DOI PMC

Bibby T.S., Nield J., Barber J. Iron deficiency induces the formation of an antenna ring around trimeric photosystem I in cyanobacteria. Nature. 2001;412:743–745. doi: 10.1038/35089098. PubMed DOI

Sandström S., Park Y.-I., Öquist G., Gustafsson P. CP43′, the isiA Gene Product, Functions as an Excitation Energy Dissipator in the Cyanobacterium Synechococcus sp. PCC 7942. Photochem. Photobiol. 2001;74:431–437. doi: 10.1562/0031-8655(2001)074<0431:CTIGPF>2.0.CO;2. PubMed DOI

Ihalainen J.A., D’Haene S., Yeremenko N., Van Roon H., Arteni A.A., Boekema E.J., Van Grondelle R., Matthijs H.C.P., Dekker J.P. Aggregates of the Chlorophyll-Binding Protein IsiA (CP43′) Dissipate Energy in Cyanobacteria. Biochemistry. 2005;44:10846–10853. doi: 10.1021/bi0510680. PubMed DOI

Bibby T.S., Nield J., Partensky F., Barber J. Antenna ring around photosystem I. Nature. 2001;413:590. doi: 10.1038/35098153. PubMed DOI

Bibby T.S., Nield J., Chen M., Larkum A.W.D., Barber J. Structure of a photosystem II supercomplex isolated from Prochloron didemni retaining its chlorophyll a/b light-harvesting system. Proc. Natl. Acad. Sci. USA. 2003;100:9050–9054. doi: 10.1073/pnas.1532271100. PubMed DOI PMC

Plumley F.G., Schmidt G.W. Reconstitution of chlorophyll a/b light-harvesting complexes: Xanthophyll-dependent assembly and energy transfer. Proc. Natl. Acad. Sci. USA. 1987;84:146–150. doi: 10.1073/pnas.84.1.146. PubMed DOI PMC

Paulsen H., Rümler U., Rüdiger W. Reconstitution of pigment-containing complexes from light-harvesting chlorophyll a/b-binding protein overexpressed in Escherichia coli. Planta. 1990;181:204–211. doi: 10.1007/BF02411539. PubMed DOI

Hobe S., Prytulla S., Kühlbrandt W., Paulsen H. Trimerization and crystallization of reconstituted light-harvesting chlorophyll a/b complex. EMBO J. 1994;13:3423–3429. doi: 10.1002/j.1460-2075.1994.tb06647.x. PubMed DOI PMC

Paulsen H. Pigment ligation to proteins of the photosynthetic apparatus in higher plants. Physiol. Plant. 1997;100:760–768. doi: 10.1111/j.1399-3054.1997.tb00003.x. DOI

Lokstein H., Tian L., Polle J.E., DellaPenna D. Xanthophyll biosynthetic mutants of Arabidopsis thaliana: Altered nonphotochemical quenching of chlorophyll fluorescence is due to changes in Photosystem II antenna size and stability. Biochim. Biophys. Acta Bioenerg. 2002;1553:309–319. doi: 10.1016/S0005-2728(02)00184-6. PubMed DOI

Pawlak K., Paul S., Liu C., Reus M., Yang C., Holzwarth A.R. On the PsbS-induced quenching in the plant major light-harvesting complex LHCII studied in proteoliposomes. Photosynth. Res. 2020;144:195–208. doi: 10.1007/s11120-020-00740-z. PubMed DOI

Ostroumov E.E., Götze J.P., Reus M., Lambrev P.H., Holzwarth A.R. Characterization of fluorescent chlorophyll charge-transfer states as intermediates in the excited state quenching of light-harvesting complex II. Photosynth. Res. 2020;144:171–193. doi: 10.1007/s11120-020-00745-8. PubMed DOI

Lokstein H., Härtel H., Hoffmann P., Woitke P., Renger G. The role of light-harvesting complex II in excess excitation energy dissipation: An in-vivo fluorescence study on the origin of high-energy quenching. J. Photochem. Photobiol. B Biol. 1994;26:175–184. doi: 10.1016/1011-1344(94)07032-6. DOI

Takahashi H., Iwai M., Minagawa J. Identification of the mobile light-harvesting complex II polypeptides for state transitions in Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. USA. 2006;103:477–482. doi: 10.1073/pnas.0509952103. PubMed DOI PMC

Iwai M., Yokono M., Inada N., Minagawa J. Live-cell imaging of photosystem II antenna dissociation during state transitions. Proc. Natl. Acad. Sci. USA. 2010;107:2337–2342. doi: 10.1073/pnas.0908808107. PubMed DOI PMC

Oxborough K., Lee P., Horton P. Regulation of thylakoid protein phosphorylation by high-energy-state quenching. FEBS Lett. 1987;221:211–214. doi: 10.1016/0014-5793(87)80927-4. DOI

Barber J., Andersson B. Too much of a good thing: Light can be bad for photosynthesis. Trends Biochem. Sci. 1992;17:61–66. doi: 10.1016/0968-0004(92)90503-2. PubMed DOI

Foote C.S. Definition of type I and type II photosensitized oxidation. Photochem. Photobiol. 1991;54:659. doi: 10.1111/j.1751-1097.1991.tb02071.x. PubMed DOI

Schödel R., Irrgang K.-D., Voigt J., Renger G. Rate of Carotenoid Triplet Formation in Solubilized Light-Harvesting Complex II (LHCII) from Spinach. Biophys. J. 1998;75:3143–3153. doi: 10.1016/S0006-3495(98)77756-2. PubMed DOI PMC

You Z.-Q., Hsu C.-P. Ab Inito Study on Triplet Excitation Energy Transfer in Photosynthetic Light-Harvesting Complexes. J. Phys. Chem. A. 2011;115:4092–4100. doi: 10.1021/jp200200x. PubMed DOI

Frank H.A., Bautista J.A., Josue J.S., Young A.J. Mechanism of nonphotochemical quenching in green plants: Energies of the lowest excited singlet states of violaxanthin and zeaxanthin. Biochemistry. 2000;39:2831–2837. doi: 10.1021/bi9924664. PubMed DOI

Härtel H., Lokstein H., Grimm B., Rank B. Kinetic Studies on the Xanthophyll Cycle in Barley Leaves (Influence of Antenna Size and Relations to Nonphotochemical Chlorophyll Fluorescence Quenching) Plant Physiol. 1996;110:471–482. doi: 10.1104/pp.110.2.471. PubMed DOI PMC

Frank H.A., Cua A., Chynwat V., Young A., Gosztola D., Wasielewski M.R. Photophysics of the carotenoids associated with the xanthophyll cycle in photosynthesis. Photosynth. Res. 1994;41:389–395. doi: 10.1007/BF02183041. PubMed DOI

Kröner D., Götze J.P. Modeling of a violaxanthin–chlorophyll b chromophore pair in its LHCII environment using CAM-B3LYP. J. Photochem. Photobiol. B Biol. 2012;109:12–19. doi: 10.1016/j.jphotobiol.2011.12.007. PubMed DOI

Dreuw A., Wormit M. Simple replacement of violaxanthin by zeaxanthin in LHC-II does not cause chlorophyll fluorescence quenching. J. Inorg. Biochem. 2008;102:458–465. doi: 10.1016/j.jinorgbio.2007.09.013. PubMed DOI

Götze J.P., Kröner D., Banerjee S., Karasulu B., Thiel W. Carotenoids as a Shortcut for Chlorophyll Soret-to-Q Band Energy Flow. ChemPhysChem. 2014;15:3392–3401. doi: 10.1002/cphc.201402233. PubMed DOI

Horton P., Wentworth M., Ruban A. Control of the light harvesting function of chloroplast membranes: The LHCII-aggregation model for non-photochemical quenching. FEBS Lett. 2005;579:4201–4206. doi: 10.1016/j.febslet.2005.07.003. PubMed DOI

Li X.-P., Björkman O., Shih C., Grossman A.R., Rosenquist M., Jansson S., Niyogi K.K. A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature. 2000;403:391–395. doi: 10.1038/35000131. PubMed DOI

Peers G., Truong T.B., Ostendorf E., Busch A.E., Elrad D., Grossman A.R., Hippler M., Niyogi K.K. An ancient light-harvesting protein is critical for the regulation of algal photosynthesis. Nature. 2009;462:518–521. doi: 10.1038/nature08587. PubMed DOI

Daskalakis V. Protein–protein interactions within photosystem II under photoprotection: The synergy between CP29 minor antenna, subunit S (PsbS) and zeaxanthin at all-atom resolution. Phys. Chem. Chem. Phys. 2018;20:11843–11855. doi: 10.1039/C8CP01226A. PubMed DOI

Miloslavina Y., Wehner A., Lambrev P.H., Wientjes E., Reus M., Garab G., Croce R., Holzwarth A.R. Far-red fluorescence: A direct spectroscopic marker for LHCII oligomer formation in non-photochemical quenching. FEBS Lett. 2008;582:3625–3631. doi: 10.1016/j.febslet.2008.09.044. PubMed DOI

Kell A., Feng X., Lin C., Yang Y., Li J., Reus M., Holzwarth A.R., Jankowiak R. Charge-Transfer Character of the Low-Energy Chl a Qy Absorption Band in Aggregated Light Harvesting Complexes II. J. Phys. Chem. B. 2014;118:6086–6091. doi: 10.1021/jp501735p. PubMed DOI

Razjivin A., Solov’Ev A., Kompanets V., Chekalin S., Moskalenko A., Lokstein H. The origin of the “dark” absorption band near 675 nm in the purple bacterial core light-harvesting complex LH1: Two-photon measurements of LH1 and its subunit B820. Photosynth. Res. 2019;140:207–213. doi: 10.1007/s11120-018-0602-0. PubMed DOI

Holt N.E., Zigmantas D., Valkunas L., Li X.-P., Niyogi K.K., Fleming G.R. Carotenoid Cation Formation and the Regulation of Photosynthetic Light Harvesting. Science. 2005;307:433–436. doi: 10.1126/science.1105833. PubMed DOI

Wormit M., Harbach P.H.P., Mewes J.-M., Amarie S., Wachtveitl J., Dreuw A. Excitation energy transfer and carotenoid radical cation formation in light harvesting complexes—A theoretical perspective. Biochim. Biophys. Acta Bioenerg. 2009;1787:738–746. doi: 10.1016/j.bbabio.2009.01.021. PubMed DOI

Bode S., Quentmeier C.C., Liao P.-N., Hafi N., Barros T., Wilk L., Bittner F., Walla P.J. On the regulation of photosynthesis by excitonic interactions between carotenoids and chlorophylls. Proc. Natl. Acad. Sci. USA. 2009;106:12311–12316. doi: 10.1073/pnas.0903536106. PubMed DOI PMC

Betke A., Lokstein H. Two-photon excitation spectroscopy of photosynthetic light-harvesting complexes and pigments. Faraday Discuss. 2019;216:494–506. doi: 10.1039/C8FD00198G. PubMed DOI

Šebelík V., Kuznetsova V., Lokstein H., Polívka T. Transient Absorption of Chlorophylls and Carotenoids after Two-Photon Excitation of LHCII. J. Phys. Chem. Lett. 2021;12:3176–3181. doi: 10.1021/acs.jpclett.1c00122. PubMed DOI

Gacek D.A., Betke A., Nowak J., Lokstein H., Walla P.J. Two-photon absorption and excitation spectroscopy of carotenoids, chlorophylls and pigment-protein complexes. Phys. Chem. Chem. Phys. 2021;23:8731–8738. doi: 10.1039/D1CP00656H. PubMed DOI

Wilson A., Ajlani G., Verbavatz J.-M., Vass I., Kerfeld C.A., Kirilovsky D. A Soluble Carotenoid Protein Involved in Phycobilisome-Related Energy Dissipation in Cyanobacteria. Plant Cell. 2006;18:992–1007. doi: 10.1105/tpc.105.040121. PubMed DOI PMC

Kirilovsky D., Kerfeld C.A. Cyanobacterial photoprotection by the orange carotenoid protein. Nat. Plants. 2016;2:16180. doi: 10.1038/nplants.2016.180. PubMed DOI

Leverenz R.L., Sutter M., Wilson A., Gupta S., Thurotte A., De Carbon C.B., Petzold C., Ralston C., Perreau F., Kirilovsky D., et al. A 12 A carotenoid translocation in a photoswitch associated with cyanobacterial photoprotection. Science. 2015;348:1463–1466. doi: 10.1126/science.aaa7234. PubMed DOI

Bondanza M., Cupellini L., Lipparini F., Mennucci B. The Multiple Roles of the Protein in the Photoactivation of Orange Carotenoid Protein. Chem. 2020;6:187–203. doi: 10.1016/j.chempr.2019.10.014. DOI

Boulay C., Wilson A., D’Haene S., Kirilovsky D. Identification of a protein required for recovery of full antenna capacity in OCP-related photoprotective mechanism in cyanobacteria. Proc. Natl. Acad. Sci. USA. 2010;107:11620–11625. doi: 10.1073/pnas.1002912107. PubMed DOI PMC

Reimers J.R., Biczysko M., Bruce D., Coker D.F., Frankcombe T.J., Hashimoto H., Hauer J., Jankowiak R., Kramer T., Linnanto J., et al. Challenges facing an understanding of the nature of low-energy excited states in photosynthesis. Biochim. Biophys. Acta Bioenerg. 2016;1857:1627–1640. doi: 10.1016/j.bbabio.2016.06.010. PubMed DOI

Lambert N., Chen Y.-N., Cheng Y.-C., Li C.-M., Chen G.-Y., Nori F. Quantum biology. Nat. Phys. 2012;9:10–18. doi: 10.1038/nphys2474. DOI

Cao J., Cogdell R.J., Coker D.F., Duan H.-G., Hauer J., Kleinekathöfer U., Jansen T.L.C., Mančal T., Miller R.J.D., Ogilvie J.P., et al. Quantum biology revisited. Sci. Adv. 2020;6:eaaz4888. doi: 10.1126/sciadv.aaz4888. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...