Excitation Energy Transfer between Higher Excited States of Photosynthetic Pigments: 1. Carotenoids Intercept and Remove B Band Excitations

. 2023 Oct 31 ; 8 (43) : 40005-40014. [epub] 20231016

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37929138

Chlorophylls (Chls) are known for fast, subpicosecond internal conversion (IC) from ultraviolet/blue-absorbing ("B" or "Soret" states) to the energetically lower, red light-absorbing Q states. Consequently, excitation energy transfer (EET) in photosynthetic pigment-protein complexes involving the B states has so far not been considered. We present, for the first time, a theoretical framework for the existence of B-B EET in tightly coupled Chl aggregates such as photosynthetic pigment-protein complexes. We show that according to a Förster resonance energy transport (FRET) scheme, unmodulated B-B EET has an unexpectedly high range. Unsuppressed, it could pose an existential threat: the damage potential of blue light for photochemical reaction centers (RCs) is well-known. This insight reveals so far undescribed roles for carotenoids (Crts, this article) and Chl b (next article in this series) of possibly vital importance. Our model system is the photosynthetic antenna pigment-protein complex (CP29). Here, we show that the B → Q IC is assisted by the optically allowed Crt state (S2): The sequence is B → S2 (Crt, unrelaxed) → S2 (Crt, relaxed) → Q. This sequence has the advantage of preventing ∼39% of Chl-Chl B-B EET since the Crt S2 state is a highly efficient FRET acceptor. The B-B EET range and thus the likelihood of CP29 to forward potentially harmful B excitations toward the RC are thus reduced. In contrast to the B band of Chls, most Crt energy donation is energetically located near the Q band, which allows for 74/80% backdonation (from lutein/violaxanthin) to Chls. Neoxanthin, on the other hand, likely donates in the B band region of Chl b, with 76% efficiency. Crts thus act not only in their currently proposed photoprotective roles but also as a crucial building block for any system that could otherwise deliver harmful "blue" excitations to the RCs.

Erratum v

PubMed

Zobrazit více v PubMed

Ferreira K. N.; Iverson T. M.; Maghlaoui K.; Barber J.; Iwata S. Architecture of the Photosynthetic Oxygen-Evolving Center. Science 2004, 303, 1831–1838. 10.1126/science.1093087. PubMed DOI

Lokstein H.; Renger G.; Götze J. Photosynthetic Light-Harvesting (Antenna) Complexes—Structures and Functions. Molecules 2021, 26, 3378.10.3390/molecules26113378. PubMed DOI PMC

Kuczynska P.; Jemiola-Rzeminska M.; Strzalka K. Photosynthetic Pigments in Diatoms. Mar. Drugs 2015, 13, 5847–5881. 10.3390/md13095847. PubMed DOI PMC

Nürnberg D. J.; et al. Photochemistry beyond the red limit in chlorophyll f–containing photosystems. Science 2018, 360, 1210–1213. 10.1126/science.aar8313. PubMed DOI

Graczyk A.; Żurek J. M.; Paterson M. J. On the linear and non-linear electronic spectroscopy of chlorophylls: a computational study. Photochem. Photobiol. Sci. 2013, 13, 103–111. 10.1039/c3pp50262g. PubMed DOI

Niedzwiedzki D. M.; Blankenship R. E. Singlet and triplet excited state properties of natural chlorophylls and bacteriochlorophylls. Photosynth. Res. 2010, 106, 227–238. 10.1007/s11120-010-9598-9. PubMed DOI

Renger G.; Renger T. Photosystem II: The machinery of photosynthetic water splitting. Photosynth. Res. 2008, 98, 53–80. 10.1007/s11120-008-9345-7. PubMed DOI

Vinyard D. J.; Ananyev G. M.; Charles Dismukes G. Photosystem II: The Reaction Center of Oxygenic Photosynthesis. Annu. Rev. Biochem. 2013, 82, 577–606. 10.1146/annurev-biochem-070511-100425. PubMed DOI

Polívka T.; Sundström V. Ultrafast Dynamics of Carotenoid Excited States–From Solution to Natural and Artificial Systems. Chem. Rev. 2004, 104, 2021–2072. 10.1021/cr020674n. PubMed DOI

Götze J. P.; Karasulu B.; Patil M.; Thiel W. Vibrational relaxation as the driving force for wavelength conversion in the peridinin–chlorophyll a-protein. Biochim. Biophys. Acta, Bioenerg. 2015, 1847, 1509–1517. 10.1016/j.bbabio.2015.07.011. PubMed DOI

Wagner N. L.; Greco J. A.; Enriquez M. M.; Frank H. A.; Birge R. R. The nature of the intramolecular charge transfer state in Peridinin. Biophys. J. 2013, 104, 1314–1325. 10.1016/j.bpj.2013.01.045. PubMed DOI PMC

Krikunova M.; Lokstein H.; Leupold D.; Hiller R. G.; Voigt B. Pigment-Pigment Interactions in PCP of Amphidinium carterae Investigated by Nonlinear Polarization Spectroscopy in the Frequency Domain. Biophys. J. 2006, 90, 261–271. 10.1529/biophysj.104.055350. PubMed DOI PMC

Kleima F. J.; et al. Peridinin Chlorophyll a Protein: Relating Structure and Steady-State Spectroscopy. Biochemistry 2000, 39, 5184–5195. 10.1021/bi992427s. PubMed DOI

Ostroumov E. E.; Götze J. P.; Reus M.; Lambrev P. H.; Holzwarth A. R. Characterization of fluorescent chlorophyll charge-transfer states as intermediates in the excited state quenching of light-harvesting complex II. Photosynth. Res. 2020, 144, 171–193. 10.1007/s11120-020-00745-8. PubMed DOI

Götze J. P.; Anders F.; Petry S.; Witte J. F.; Lokstein H. Spectral characterization of the main pigments in the plant photosynthetic apparatus by theory and experiment. Chem. Phys. 2022, 559, 11151710.1016/j.chemphys.2022.111517. DOI

May V.; Kühn O.. Charge and Energy Transfer Dynamics in Molecular Systems; Wiley-VCH Verlag GmbH & Co. KGaA, 2011. 10.1002/9783527633791 DOI

Forster T. 10th Spiers Memorial Lecture. Transfer mechanisms of electronic excitation. Discuss. Faraday Soc. 1959, 27, 7–17. 10.1039/DF9592700007. DOI

Krueger B. P.; Scholes G. D.; Fleming G. R. Calculation of Couplings and Energy-Transfer Pathways between the Pigments of LH2 by the ab Initio Transition Density Cube Method. J. Phys. Chem. B 1998, 102, 5378–5386. 10.1021/jp9811171. DOI

Beljonne D.; Curutchet C.; Scholes G. D.; Silbey R. J. Beyond Förster Resonance Energy Transfer in Biological and Nanoscale Systems. J. Phys. Chem. B 2009, 113, 6583–6599. 10.1021/jp900708f. PubMed DOI

Krueger B. P.; et al. Energy Transfer in the Peridinin Chlorophyll-a Protein of Amphidinium carterae Studied by Polarized Transient Absorption and Target Analysis. Biophys. J. 2001, 80, 2843–2855. 10.1016/S0006-3495(01)76251-0. PubMed DOI PMC

Croce R.; van Amerongen H. Light harvesting in oxygenic photosynthesis: Structural biology meets spectroscopy. Science 2020, 369, eaay205810.1126/science.aay2058. PubMed DOI

Jang S.; Newton M. D.; Silbey R. J. Multichromophoric Förster Resonance Energy Transfer from B800 to B850 in the Light Harvesting Complex 2: Evidence for Subtle Energetic Optimization by Purple Bacteria. J. Phys. Chem. B 2007, 111, 6807–6814. 10.1021/jp070111l. PubMed DOI

Bondarenko A. S.; Knoester J.; Jansen T. L. C. Comparison of methods to study excitation energy transfer in molecular multichromophoric systems. Chem. Phys. 2020, 529, 11047810.1016/j.chemphys.2019.110478. DOI

Petry S.; Tremblay J. C.; Götze J. P. Impact of structure, coupling scheme and state of interest on the energy transfer in CP29. J. Phys. Chem. B 2023, 127 (33), 7207–7219. 10.1021/acs.jpcb.3c01012. PubMed DOI

Leupold D.; et al. Two-Photon Excited Fluorescence from Higher Electronic States of Chlorophylls in Photosynthetic Antenna Complexes: A New Approach to Detect Strong Excitonic Chlorophyll a/b Coupling. Biophys. J. 2002, 82, 1580–1585. 10.1016/S0006-3495(02)75509-4. PubMed DOI PMC

Zheng F.; Fernandez-Alberti S.; Tretiak S.; Zhao Y. Photoinduced Intra- and Intermolecular Energy Transfer in Chlorophyll a Dimer. J. Phys. Chem. B 2017, 121, 5331–5339. 10.1021/acs.jpcb.7b02021. PubMed DOI

Jansen M. A. K.; Mattoo A. K.; Edelman M. D1-D2 protein degradation in the chloroplast. Eur. J. Biochem. 1999, 260, 527–532. 10.1046/j.1432-1327.1999.00196.x. PubMed DOI

Ohnishi N.; et al. Two-Step Mechanism of Photodamage to Photosystem II: Step 1 Occurs at the Oxygen-Evolving Complex and Step 2 Occurs at the Photochemical Reaction Center. Biochemistry 2005, 44, 8494–8499. 10.1021/bi047518q. PubMed DOI

Zavafer A. A theoretical framework of the hybrid mechanism of photosystem II photodamage. Photosynth. Res. 2021, 149, 107–120. 10.1007/s11120-021-00843-1. PubMed DOI

Macpherson A. N.; Gillbro T. Solvent Dependence of the Ultrafast S 2 – S 1 Internal Conversion Rate of β-Carotene. J. Phys. Chem. A 1998, 102, 5049–5058. 10.1021/jp980979z. DOI

Götze J. P. Vibrational Relaxation in Carotenoids as an Explanation for Their Rapid Optical Properties. J. Phys. Chem. B 2019, 123, 2203–2209. 10.1021/acs.jpcb.8b09841. PubMed DOI

Götze J. P.; Kröner D.; Banerjee S.; Karasulu B.; Thiel W. Carotenoids as a Shortcut for Chlorophyll Soret-to-Q Band Energy Flow. ChemPhysChem 2014, 15, 3392–3401. 10.1002/cphc.201402233. PubMed DOI

Nagae H.; Kakitani T.; Katoh T.; Mimuro M. Calculation of the excitation transfer matrix elements between the S2 or S1 state of carotenoid and the S2 or S1 state of bacteriochlorophyll. J. Chem. Phys. 1993, 98, 8012–8023. 10.1063/1.464555. DOI

Kasha M. Characterization of electronic transitions in complex molecules. Discuss. Faraday Soc. 1950, 9, 14.10.1039/df9500900014. DOI

Kasha M.; Rawls H. R.; Ashraf El-Bayoumi M. The exciton model in molecular spectroscopy. Pure Appl. Chem. 1965, 11, 371.10.1351/pac196511030371. DOI

Qi Q.; Taniguchi M.; Lindsey J. S. Heuristics from Modeling of Spectral Overlap in Förster Resonance Energy Transfer (FRET). J. Chem. Inf. Model. 2019, 59, 652–667. 10.1021/acs.jcim.8b00753. PubMed DOI

Medintz I.; Hildebrandt N.. FRET – Förster Resonance Energy Transfer; Wiley-VCH Verlag GmbH & Co. KGaA, 2013. 10.1002/9783527656028. DOI

Barer R.; Tkaczyk S. Refractive Index of Concentrated Protein Solutions. Nature 1954, 173, 821–822. 10.1038/173821b0. PubMed DOI

Du H.; Fuh R.-C. A.; Li J.; Corkan L. A.; Lindsey J. S. PhotochemCAD: A Computer-Aided Design and Research Tool in Photochemistry. Photochem. Photobiol. 1998, 68, 141–142. 10.1111/j.1751-1097.1998.tb02480.x. DOI

Akimoto S.; et al. Ultrafast Excitation Relaxation Dynamics of Lutein in Solution and in the Light-Harvesting Complexes II Isolated from Arabidopsis t haliana. J. Phys. Chem. B 2005, 109, 12612–12619. 10.1021/jp050595q. PubMed DOI

Zang L.-Y.; Sommerburg O.; van Kuijk F. J. G. Absorbance Changes of Carotenoids in Different Solvents. Free Radical Biol. Med. 1997, 23, 1086–1089. 10.1016/S0891-5849(97)00138-X. PubMed DOI

Frank H. A.; et al. Spectroscopic and Photochemical Properties of Open-Chain Carotenoids. J. Phys. Chem. B 2002, 106, 2083–2092. 10.1021/jp013321l. DOI

Cholnoky L.; Györgyfy K.; Szabolcs J.; Weedon B. C. L.; Waight E. S. Foliaxanthin. Chem. Commun. 1966, 0, 404–405. 10.1039/C19660000404. DOI

Zigmantas D.; Polívka T.; Hiller R. G.; Yartsev A.; Sundström V. Spectroscopic and Dynamic Properties of the Peridinin Lowest Singlet Excited States. J. Phys. Chem. A 2001, 105, 10296–10306. 10.1021/jp010022n. DOI

Zigmantas D.; Hiller R. G.; Yartsev A.; Sundström V.; Polívka T. Dynamics of Excited States of the Carotenoid Peridinin in Polar Solvents: Dependence on Excitation Wavelength, Viscosity, and Temperature. J. Phys. Chem. B 2003, 107, 5339–5348. 10.1021/jp0272318. DOI

Frank H. A.; Bautista J. A.; Josue J. S.; Young A. J. Mechanism of Nonphotochemical Quenching in Green Plants: Energies of the Lowest Excited Singlet States of Violaxanthin and Zeaxanthin. Biochemistry 2000, 39, 2831–2837. 10.1021/bi9924664. PubMed DOI

Su X.; et al. Structure and assembly mechanism of plant C2S2M2 -type PSII-LHCII supercomplex. Science 2017, 357, 815–820. 10.1126/science.aan0327. PubMed DOI

Schulte T.; Sharples F. P.; Hiller R. G.; Hofmann E. X-ray structure of the high-salt form of the peridinin-chlorophyll α-protein from the dinoflagellate Amphidinium carterae: Modulation of the spectral properties of pigments by the protein environment. Biochemistry 2009, 48, 4466–4475. 10.1021/bi802320q. PubMed DOI

Redeckas K.; Voiciuk V.; Zigmantas D.; Hiller R. G.; Vengris M. Unveiling the excited state energy transfer pathways in peridinin-chlorophyll a- protein by ultrafast multi-pulse transient absorption spectroscopy. Biochim. Biophys. Acta, Bioenerg. 2017, 1858, 297–307. 10.1016/j.bbabio.2017.01.014. PubMed DOI

Shima S.; et al. Two-Photon and Fluorescence Spectroscopy and the Effect of Environment on the Photochemical Properties of Peridinin in Solution and in the Peridinin-Chlorophyll-Protein from Amphidinium carterae. J. Phys. Chem. A 2003, 107, 8052–8066. 10.1021/jp022648z. DOI

Chatterjee N.; et al. Effect of structural modifications on the spectroscopic properties and dynamics of the excited states of peridinin. Arch. Biochem. Biophys. 2009, 483, 146–155. 10.1016/j.abb.2008.10.035. PubMed DOI PMC

Weber G.; Teale F. W. J. Determination of the absolute quantum yield of fluorescent solutions. Trans. Faraday Soc. 1957, 53, 646.10.1039/tf9575300646. DOI

Bricker W. P.; et al. Non-radiative relaxation of photoexcited chlorophylls: theoretical and experimental study. Sci. Rep. 2015, 5, 13625.10.1038/srep13625. PubMed DOI PMC

Strickler S. J.; Berg R. A. Relationship between Absorption Intensity and Fluorescence Lifetime of Molecules. J. Chem. Phys. 1962, 37, 814–822. 10.1063/1.1733166. DOI

Birks J. B.; Dyson D. J. The relations between the fluorescence and absorption properties of organic molecules. Proc. R. Soc. London, Ser. A 1963, 275, 135–148. 10.1098/rspa.1963.0159. DOI

Reiter S.; Bäuml L.; Hauer J.; de Vivie-Riedle R. Q-Band relaxation in chlorophyll: new insights from multireference quantum dynamics. Phys. Chem. Chem. Phys. 2022, 24, 27212–27223. 10.1039/D2CP02914F. PubMed DOI

Petry S.; Götze J. P. Effect of protein matrix on CP29 spectra and energy transfer pathways. Biochim. Biophys. Acta, Bioenerg. 2022, 1863, 14852110.1016/j.bbabio.2021.148521. PubMed DOI

Sirohiwal A.; Berraud-Pache R.; Neese F.; Izsák R.; Pantazis D. A. Accurate Computation of the Absorption Spectrum of Chlorophyll a with Pair Natural Orbital Coupled Cluster Methods. J. Phys. Chem. B 2020, 124, 8761–8771. 10.1021/acs.jpcb.0c05761. PubMed DOI PMC

Byrdin M.; Rimke I.; Schlodder E.; Stehlik D.; Roelofs T. A. Decay Kinetics and Quantum Yields of Fluorescence in Photosystem I from Synechococcus elongatus with P700 in the Reduced and Oxidized State: Are the Kinetics of Excited State Decay Trap-Limited or Transfer-Limited?. Biophys. J. 2000, 79, 992–1007. 10.1016/S0006-3495(00)76353-3. PubMed DOI PMC

van Amerongen H.; van Grondelle R. Understanding the Energy Transfer Function of LHCII, the Major Light-Harvesting Complex of Green Plants. J. Phys. Chem. B 2001, 105, 604–617. 10.1021/jp0028406. DOI

Young A. J.; Phillip D.; Ruban A. V.; Horton P.; Frank H. A. The xanthophyll cycle and carotenoid-mediated dissipation of excess excitation energy in photosynthesis. Pure Appl. Chem. 1997, 69, 2125.10.1351/pac199769102125. DOI

Hakala M.; Tuominen I.; Keränen M.; Tyystjärvi T.; Tyystjärvi E. Evidence for the role of the oxygen-evolving manganese complex in photoinhibition of Photosystem II. Biochim. Biophys. Acta, Bioenerg. 2005, 1706, 68–80. 10.1016/j.bbabio.2004.09.001. PubMed DOI

Götze J. P.; Lokstein H. Excitation Energy Transfer between Higher Excited States of Photosynthetic Pigments: 2. Chlorophyll b is a B Band Excitation Trap. ACS Omega 2023, 10.1021/acsomega.3c05896. PubMed DOI PMC

Krikunova M.; et al. Fluorescence of native and carotenoid-depleted LH2 from Chromatium minutissimum, originating from simultaneous two-photon absorption in the spectral range of the presumed (optically 'dark') S1 state of carotenoids. FEBS Lett. 2002, 528, 227–229. 10.1016/S0014-5793(02)03315-X. PubMed DOI

Schulte T.; Hiller R. G.; Hofmann E. X-ray structures of the peridinin-chlorophyll-protein reconstituted with different chlorophylls. FEBS Lett. 2010, 584, 973–978. 10.1016/j.febslet.2010.01.041. PubMed DOI

Crimi M.; et al. Time-resolved fluorescence analysis of the recombinant photosystem II antenna complex CP29. Effects of zeaxanthin, pH and phosphorylation. Eur. J. Biochem. 2001, 268, 260–267. 10.1046/j.1432-1033.2001.01874.x. PubMed DOI

Montané M.-H.; Kloppstech K. The family of light-harvesting-related proteins (LHCs, ELIPs, HLIPs): was the harvesting of light their primary function?. Gene 2000, 258, 1–8. 10.1016/S0378-1119(00)00413-3. PubMed DOI

Psencik J.; Hey D.; Grimm B.; Lokstein H. Photoprotection of Photosynthetic Pigments in Plant One-Helix Protein 1/2 Heterodimers. J. Phys. Chem. Lett. 2020, 11, 9387–9392. 10.1021/acs.jpclett.0c02660. PubMed DOI

Gueymard C. A. Parameterized transmittance model for direct beam and circumsolar spectral irradiance. Sol. Energy 2001, 71, 325–346. 10.1016/S0038-092X(01)00054-8. DOI

Granick S.Evolution of Heme and Chlorophyll. In Evolving Genes and Proteins; Bryson V.; Vogel H. J., Eds.; 67–68Academic Press, 1965. PubMed

Granick S. Speculations on the Origins and Evolution of PhotosynthesisS. Ann. N. Y. Acad. Sci. 1957, 69, 292–308. 10.1111/j.1749-6632.1957.tb49665.x. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Excitation Energy Transfer between Higher Excited States of Photosynthetic Pigments: 2. Chlorophyll b is a B Band Excitation Trap

. 2023 Oct 31 ; 8 (43) : 40015-40023. [epub] 20231016

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...