Excitation Energy Transfer between Higher Excited States of Photosynthetic Pigments: 2. Chlorophyll b is a B Band Excitation Trap
Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
37929150
PubMed Central
PMC10620878
DOI
10.1021/acsomega.3c05896
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Chlorophylls (Chls) are known for fast, subpicosecond internal conversion (IC) from ultraviolet/blue absorbing ("B" or "Soret" states) to the energetically lower, red light-absorbing Q states. Consequently, excitation energy transfer (EET) in photosynthetic pigment-protein complexes involving the B states has so far not been considered. We present, for the first time, a theoretical framework for the existence of B-B EET in tightly coupled Chl aggregates such as photosynthetic pigment-protein complexes. We show that according to a Förster resonance energy transport (FRET) scheme, unmodulated B-B EET has an unexpectedly high range. Unsuppressed, it could pose an existential threat-the damage potential of blue light for photochemical reaction centers (RCs) is well-known. This insight reveals so-far undescribed roles for carotenoids (Crts, cf. previous article in this series) and Chl b (this article) of possibly vital importance. Our model system is the photosynthetic antenna pigment-protein complex (CP29). The focus of the study is on the role of Chl b for EET in the Q and B bands. Further, the initial excited pigment distribution in the B band is computed for relevant solar irradiation and wavelength-centered laser pulses. It is found that both accessory pigment classes compete efficiently with Chl a absorption in the B band, leaving only 40% of B band excitations for Chl a. B state population is preferentially relocated to Chl b after excitation of any Chls, due to a near-perfect match of Chl b B band absorption with Chl a B state emission spectra. This results in an efficient depletion of the Chl a population (0.66 per IC/EET step, as compared to 0.21 in a Chl a-only system). Since Chl b only occurs in the peripheral antenna complexes of plants and algae, and RCs contain only Chl a, this would automatically trap potentially dangerous B state population in the antennae, preventing forwarding to the RCs.
See more in PubMed
Müller P.; Li X.-P.; Niyogi K. K. Non-Photochemical Quenching. A Response to Excess Light Energy. Plant Physiol. 2001, 125, 1558–1566. 10.1104/pp.125.4.1558. PubMed DOI PMC
Jahns P.; Holzwarth A. R. The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochim. Biophys. Acta, Bioenerg. 2012, 1817, 182–193. 10.1016/j.bbabio.2011.04.012. PubMed DOI
Ruban A. V.; Berera R.; Ilioaia C.; van Stokkum I. H. M.; Kennis J. T. M.; Pascal A. A.; van Amerongen H.; Robert B.; Horton P.; van Grondelle R. Identification of a mechanism of photoprotective energy dissipation in higher plants. Nature 2007, 450, 575–578. 10.1038/nature06262. PubMed DOI
Aro E.-M.; Virgin I.; Andersson B. Photoinhibition of Photosystem II. Inactivation, protein damage and turnover. Biochim. Biophys. Acta, Bioenerg. 1993, 1143, 113–134. 10.1016/0005-2728(93)90134-2. PubMed DOI
Murata N.; Takahashi S.; Nishiyama Y.; Allakhverdiev S. I. Photoinhibition of photosystem II under environmental stress. Biochim. Biophys. Acta, Bioenerg. 2007, 1767, 414–421. 10.1016/j.bbabio.2006.11.019. PubMed DOI
Nishiyama Y.; et al. Oxidative stress inhibits the repair of photodamage to the photosynthetic machinery. EMBO J. 2001, 20, 5587–5594. 10.1093/emboj/20.20.5587. PubMed DOI PMC
Melis A. Photosystem-II damage and repair cycle in chloroplasts: what modulates the rate of photodamage in vivo?. Trends Plant Sci. 1999, 4, 130–135. 10.1016/S1360-1385(99)01387-4. PubMed DOI
Jansen M. A. K.; Mattoo A. K.; Edelman M. D1-D2 protein degradation in the chloroplast. Eur. J. Biochem. 2001, 260, 527–532. 10.1046/j.1432-1327.1999.00196.x. PubMed DOI
Ohnishi N.; Allakhverdiev S. I.; Takahashi S.; Higashi S.; Watanabe M.; Nishiyama Y.; Murata N. Two-Step Mechanism of Photodamage to Photosystem II: Step 1 Occurs at the Oxygen-Evolving Complex and Step 2 Occurs at the Photochemical Reaction Center. Biochemistry 2005, 44, 8494–8499. 10.1021/bi047518q. PubMed DOI
Vass I. Molecular mechanisms of photodamage in the Photosystem II complex. Biochim. Biophys. Acta, Bioenerg. 2012, 1817, 209–217. 10.1016/j.bbabio.2011.04.014. PubMed DOI
Turcsányi E.; Vass I. Inhibition of Photosynthetic Electron Transport by UV-A Radiation Targets the Photosystem II Complex. Photochem. Photobiol. 2000, 72, 513.10.1562/0031-8655(2000)072<0513:iopetb>2.0.co;2. PubMed DOI
Mueller N. D.; Gerber J. S.; Johnston M.; Ray D. K.; Ramankutty N.; Foley J. A. Closing yield gaps through nutrient and water management. Nature 2012, 490, 254–257. 10.1038/nature11420. PubMed DOI
Maeder P.; Fliessbach A.; Dubois D.; Gunst L.; Fried P.; Niggli U. Soil Fertility and Biodiversity in Organic Farming. Science 2002, 296, 1694–1697. 10.1126/science.1071148. PubMed DOI
Cordell D.; Drangert J.-O.; White S. The story of phosphorus: Global food security and food for thought. Glob. Environ. Chang. 2009, 19, 292–305. 10.1016/j.gloenvcha.2008.10.009. DOI
Lokstein H.; Härtel H.; Hoffmann P.; Woitke P.; Renger G. The role of light-harvesting complex II in excess excitation energy dissipation: An in-vivo fluorescence study on the origin of high-energy quenching. J. Photochem. Photobiol., B 1994, 26, 175–184. 10.1016/1011-1344(94)07032-6. DOI
Frank H. A.; Bautista J. A.; Josue J. S.; Young A. J. Mechanism of Nonphotochemical Quenching in Green Plants: Energies of the Lowest Excited Singlet States of Violaxanthin and Zeaxanthin. Biochemistry 2000, 39, 2831–2837. 10.1021/bi9924664. PubMed DOI
Ostroumov E. E.; Götze J. P.; Reus M.; Lambrev P. H.; Holzwarth A. R. Characterization of fluorescent chlorophyll charge-transfer states as intermediates in the excited state quenching of light-harvesting complex II. Photosynth. Res. 2020, 144, 171–193. 10.1007/s11120-020-00745-8. PubMed DOI
Adolphs J.; Renger T. How Proteins Trigger Excitation Energy Transfer in the FMO Complex of Green Sulfur Bacteria. Biophys. J. 2006, 91, 2778–2797. 10.1529/biophysj.105.079483. PubMed DOI PMC
Renger T.; Madjet M. E.-A.; Schmidt am Busch M.; Adolphs J.; Müh F. Structure-based modeling of energy transfer in photosynthesis. Photosynth. Res. 2013, 116, 367–388. 10.1007/s11120-013-9893-3. PubMed DOI
Gueymard C. A. The sun’s total and spectral irradiance for solar energy applications and solar radiation models. Sol. Energy 2004, 76, 423–453. 10.1016/j.solener.2003.08.039. DOI
Gouterman M. Spectra of porphyrins. J. Mol. Spectrosc. 1961, 6, 138–163. 10.1016/0022-2852(61)90236-3. DOI
Wang J.; Lu W.; Tong Y.; Yang Q. Leaf Morphology, Photosynthetic Performance, Chlorophyll Fluorescence, Stomatal Development of Lettuce (Lactuca sativa L.) Exposed to Different Ratios of Red Light to Blue Light. Front. Plant Sci. 2016, 7, 250.10.3389/fpls.2016.00250. PubMed DOI PMC
Shi Y.; Liu J.-Y.; Han K.-L. Investigation of the internal conversion time of the chlorophyll a from S3, S2 to S1. Chem. Phys. Lett. 2005, 410, 260–263. 10.1016/j.cplett.2005.05.017. DOI
Zheng F.; Fernandez-Alberti S.; Tretiak S.; Zhao Y. Photoinduced Intra- and Intermolecular Energy Transfer in Chlorophyll a Dimer. J. Phys. Chem. B 2017, 121, 5331–5339. 10.1021/acs.jpcb.7b02021. PubMed DOI
Bricker W. P.; Shenai P. M.; Ghosh A.; Liu Z.; Enriquez M. G. M.; Lambrev P. H.; Tan H. S.; Lo C. S.; Tretiak S.; Fernandez-Alberti S.; et al. Non-radiative relaxation of photoexcited chlorophylls: theoretical and experimental study. Sci. Rep. 2015, 5, 13625.10.1038/srep13625. PubMed DOI PMC
Gruber E.; Kjær C.; Nielsen S. B.; Andersen L. H. Intrinsic Photophysics of Light-harvesting Charge-tagged Chlorophyll a and b Pigments. Chem.—Eur. J. 2019, 25, 9153–9158. 10.1002/chem.201901786. PubMed DOI
Sirohiwal A.; Berraud-Pache R.; Neese F.; Izsák R.; Pantazis D. A. Accurate Computation of the Absorption Spectrum of Chlorophyll a with Pair Natural Orbital Coupled Cluster Methods. J. Phys. Chem. B 2020, 124, 8761–8771. 10.1021/acs.jpcb.0c05761. PubMed DOI PMC
Graczyk A.; Żurek J. M.; Paterson M. J. On the linear and non-linear electronic spectroscopy of chlorophylls: a computational study. Photochem. Photobiol. Sci. 2013, 13, 103–111. 10.1039/c3pp50262g. PubMed DOI
Götze J. P.; Anders F.; Petry S.; Witte J. F.; Lokstein H. Spectral characterization of the main pigments in the plant photosynthetic apparatus by theory and experiment. Chem. Phys. 2022, 559, 111517.10.1016/j.chemphys.2022.111517. DOI
Broess K.; Trinkunas G.; van Hoek A.; Croce R.; van Amerongen H. Determination of the excitation migration time in Photosystem II. Biochim. Biophys. Acta, Bioenerg. 2008, 1777, 404–409. 10.1016/j.bbabio.2008.02.003. PubMed DOI
Broess K.; Trinkunas G.; van der Weij-de Wit C. D.; Dekker J. P.; van Hoek A.; van Amerongen H. Excitation Energy Transfer and Charge Separation in Photosystem II Membranes Revisited. Biophys. J. 2006, 91, 3776–3786. 10.1529/biophysj.106.085068. PubMed DOI PMC
Cupellini L.; Jurinovich S.; Campetella M.; Caprasecca S.; Guido C. A.; Kelly S. M.; Gardiner A. T.; Cogdell R.; Mennucci B. An Ab Initio Description of the Excitonic Properties of LH2 and Their Temperature Dependence. J. Phys. Chem. B 2016, 120, 11348–11359. 10.1021/acs.jpcb.6b06585. PubMed DOI
Cupellini L.; Bondanza M.; Nottoli M.; Mennucci B. Successes, challenges in the atomistic modeling of light-harvesting and its photoregulation. Biochim. Biophys. Acta, Bioenerg. 2020, 1861, 148049.10.1016/j.bbabio.2019.07.004. PubMed DOI
Jurinovich S.; Viani L.; Prandi I. G.; Renger T.; Mennucci B. Towards an ab initio description of the optical spectra of light-harvesting antennae: application to the CP29 complex of photosystem II. Phys. Chem. Chem. Phys. 2015, 17, 14405–14416. 10.1039/C4CP05647G. PubMed DOI
Renger T.; May V.; Kühn O. Ultrafast excitation energy transfer dynamics in photosynthetic pigment-protein complexes. Phys. Rep. 2001, 343, 137–254. 10.1016/S0370-1573(00)00078-8. DOI
Nakano A.; Osuka A.; Yamazaki T.; Nishimura Y.; Akimoto S.; Yamazaki I.; Itaya A.; Murakami M.; Miyasaka H. Modified windmill porphyrin arrays: Coupled light-harvesting and charge separation, conformational relaxation in the S1 state, and S2-S2 energy transfer. Chem.—Eur. J. 2001, 7, 3134–3151. 10.1002/1521-3765(20010716)7:14<3134::AID-CHEM3134>3.0.CO;2-3. PubMed DOI
Nakano A.; Yasuda Y.; Yamazaki T.; Akimoto S.; Yamazaki I.; Miyasaka H.; Itaya A.; Murakami M.; Osuka A. Intramolecular Energy Transfer in S 1 - and S 2 -States of Porphyrin Trimers. J. Phys. Chem. A 2001, 105, 4822–4833. 10.1021/jp010596s. DOI
Karolczak J.; Kowalska D.; Lukaszewicz A.; Maciejewski A.; Steer R. P. Photophysical Studies of Porphyrins and Metalloporphyrins: Accurate Measurements of Fluorescence Spectra and Fluorescence Quantum Yields for Soret Band Excitation of Zinc Tetraphenylporphyrin. J. Phys. Chem. A 2004, 108, 4570–4575. 10.1021/jp049898v. DOI
Götze J. P.; Lokstein H. Excitation Energy Transfer between Higher Excited States of Photosynthetic Pigments: 1. Carotenoids Intercept and Remove B Band Excitations. ACS Omega 2023, 10.1021/acsomega.3c05895. PubMed DOI PMC
Petry S.; Tremblay J. C.; Götze J. P. Impact of structure, coupling scheme and state of interest on the energy transfer in CP29. J. Phys. Chem. B 2023, 127, 7207–7219. 10.1021/acs.jpcb.3c01012. PubMed DOI
Nelson T.; Fernandez-Alberti S.; Chernyak V.; Roitberg A. E.; Tretiak S. Nonadiabatic Excited-State Molecular Dynamics Modeling of Photoinduced Dynamics in Conjugated Molecules. J. Phys. Chem. B 2011, 115, 5402–5414. 10.1021/jp109522g. PubMed DOI
May V.; Kühn O.. Charge and Energy Transfer Dynamics in Molecular Systems; Wiley-VCH Verlag GmbH, Co. KGaA, 2011.
Leupold D.; Teuchner K.; Ehlert J.; Irrgang K. D.; Renger G.; Lokstein H. Two-Photon Excited Fluorescence from Higher Electronic States of Chlorophylls in Photosynthetic Antenna Complexes: A New Approach to Detect Strong Excitonic Chlorophyll a/b Coupling. Biophys. J. 2002, 82, 1580–1585. 10.1016/S0006-3495(02)75509-4. PubMed DOI PMC
Leupold D.; Teuchner K.; Ehlert J.; Irrgang K. D.; Renger G.; Lokstein H. Stepwise two-photon excited fluorescence from higher excited states of chlorophylls in photosynthetic antenna complexes. J. Biol. Chem. 2006, 281, 25381–25387. 10.1074/jbc.M600080200. PubMed DOI
Petry S.; Götze J. P. Effect of protein matrix on CP29 spectra and energy transfer pathways. Biochim. Biophys. Acta, Bioenerg. 2022, 1863, 148521.10.1016/j.bbabio.2021.148521. PubMed DOI
Su X.; Ma J.; Wei X.; Cao P.; Zhu D.; Chang W.; Liu Z.; Zhang X.; Li M. Structure and assembly mechanism of plant C 2 S 2 M 2 -type PSII-LHCII supercomplex. Science 2017, 357, 815–820. 10.1126/science.aan0327. PubMed DOI
Főrster T. 10th Spiers Memorial Lecture. Transfer mechanisms of electronic excitation. Discuss. Faraday Soc. 1959, 27, 7–17. 10.1039/DF9592700007. DOI
Niedzwiedzki D. M.; Blankenship R. E. Singlet and triplet excited state properties of natural chlorophylls and bacteriochlorophylls. Photosynth. Res. 2010, 106, 227–238. 10.1007/s11120-010-9598-9. PubMed DOI
Macpherson A. N.; Gillbro T. Solvent Dependence of the Ultrafast S 2 -S 1 Internal Conversion Rate of β-Carotene. J. Phys. Chem. A 1998, 102, 5049–5058. 10.1021/jp980979z. DOI
Krueger B. P.; Scholes G. D.; Fleming G. R. Calculation of Couplings and Energy-Transfer Pathways between the Pigments of LH2 by the ab Initio Transition Density Cube Method. J. Phys. Chem. B 1998, 102, 5378–5386. 10.1021/jp9811171. DOI
Qi Q.; Taniguchi M.; Lindsey J. S. Heuristics from Modeling of Spectral Overlap in Förster Resonance Energy Transfer (FRET). J. Chem. Inf. Model. 2019, 59, 652–667. 10.1021/acs.jcim.8b00753. PubMed DOI
Barer R.; Tkaczyk S. Refractive Index of Concentrated Protein Solutions. Nature 1954, 173, 821–822. 10.1038/173821b0. PubMed DOI
Cignoni E.; Cupellini L.; Mennucci B. A fast method for electronic couplings in embedded multichromophoric systems. J. Phys.: Condens. Matter 2022, 34, 304004.10.1088/1361-648X/ac6f3c. PubMed DOI
Birks J. B.; Dyson D. J. The relations between the fluorescence and absorption properties of organic molecules. Proc. R. Soc. London, Ser. A 1963, 275, 135–148. 10.1098/rspa.1963.0159. DOI
Strickler S. J.; Berg R. A. Relationship between Absorption Intensity and Fluorescence Lifetime of Molecules. J. Chem. Phys. 1962, 37, 814–822. 10.1063/1.1733166. DOI
Du H.; Fuh R.-C. A.; Li J.; Corkan L. A.; Lindsey J. S. PhotochemCAD: A Computer-Aided Design and Research Tool in Photochemistry. Photochem. Photobiol. 1998, 68, 141–142. 10.1562/0031-8655(1998)068<0141:pacada>2.3.co;2. DOI
Akimoto S.; Yokono M.; Ohmae M.; Yamazaki I.; Tanaka A.; Higuchi M.; Tsuchiya T.; Miyashita H.; Mimuro M. Ultrafast Excitation Relaxation Dynamics of Lutein in Solution and in the Light-Harvesting Complexes II Isolated from Arabidopsis t haliana. J. Phys. Chem. B 2005, 109, 12612–12619. 10.1021/jp050595q. PubMed DOI
Zang L.-Y.; Sommerburg O.; van Kuijk F. J. G. Absorbance Changes of Carotenoids in Different Solvents. Free Radic. Biol. Med. 1997, 23, 1086–1089. 10.1016/S0891-5849(97)00138-X. PubMed DOI
Frank H. A.; Josue J. S.; Bautista J. A.; van der Hoef I.; Jansen F. J.; Lugtenburg J.; Wiederrecht G.; Christensen R. L. Spectroscopic and Photochemical Properties of Open-Chain Carotenoids. J. Phys. Chem. B 2002, 106, 2083–2092. 10.1021/jp013321l. DOI
Cholnoky L.; Györgyfy K.; Szabolcs J.; Weedon B. C. L.; Waight E. S. Foliaxanthin. Chem. Commun. 1966, 404–405. 10.1039/C19660000404. DOI
Pan X.; Li M.; Wan T.; Wang L.; Jia C.; Hou Z.; Zhao X.; Zhang J.; Chang W. Structural insights into energy regulation of light-harvesting complex CP29 from spinach. Nat. Struct. Mol. Biol. 2011, 18, 309–315. 10.1038/nsmb.2008. PubMed DOI
Lambert J. H.Photometria sive de mensura et gradibus luminis, colorum et umbrae; Eberhard Klett, 1760.
Beer A. Bestimmung der Absorption des rothen Lichts in farbigen Flüssigkeiten. Ann. Phys. 1852, 162, 78–88. 10.1002/andp.18521620505. DOI
Connolly J. S.; Janzen A. F.; Samuel E. B. Fluorescence lifetimes of chlorophyll a: solvent, concentration and oxygen dependence. Photochem. Photobiol. 1982, 36, 559–563. 10.1111/j.1751-1097.1982.tb04416.x. DOI
Byrdin M.; Rimke I.; Schlodder E.; Stehlik D.; Roelofs T. A. Decay Kinetics and Quantum Yields of Fluorescence in Photosystem I from Synechococcus elongatus with P700 in the Reduced and Oxidized State: Are the Kinetics of Excited State Decay Trap-Limited or Transfer-Limited?. Biophys. J. 2000, 79, 992–1007. 10.1016/S0006-3495(00)76353-3. PubMed DOI PMC
Crimi M.; Dorra D.; Bösinger C. S.; Giuffra E.; Holzwarth A. R.; Bassi R. Time-resolved fluorescence analysis of the recombinant photosystem II antenna complex CP29. Effects of zeaxanthin, pH and phosphorylation. Eur. J. Biochem. 2001, 268, 260–267. 10.1046/j.1432-1033.2001.01874.x. PubMed DOI
Polívka T.; Sundström V. Ultrafast Dynamics of Carotenoid Excited States-From Solution to Natural and Artificial Systems. Chem. Rev. 2004, 104, 2021–2072. 10.1021/cr020674n. PubMed DOI