Ancient Sturgeons Possess Effective DNA Repair Mechanisms: Influence of Model Genotoxicants on Embryo Development of Sterlet, Acipenser ruthenus
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
GAČR 19-11140Y
Czech Science Foundation
LM2018099
Ministry of Education, Youth and Sports of the Czech Republic
CZ.02.1.01/0.0/0.0/16_025/0007370
Ministry of Education, Youth and Sports of the Czech Republic
86652036
RVO
CEP Register
CZ.1.05/1.1.00/02.0109
ERDF
PubMed
33374934
PubMed Central
PMC7792610
DOI
10.3390/ijms22010006
PII: ijms22010006
Knihovny.cz E-resources
- Keywords
- ATM, DNA damage repair, H2AX, embryo, genotoxicity, sturgeon,
- MeSH
- Benzo(a)pyrene toxicity MeSH
- Embryo, Nonmammalian drug effects embryology metabolism MeSH
- Embryonic Development drug effects genetics MeSH
- Etoposide toxicity MeSH
- DNA Fragmentation drug effects MeSH
- Camptothecin toxicity MeSH
- Comet Assay MeSH
- Mutagens toxicity MeSH
- DNA Repair * MeSH
- DNA Damage * MeSH
- Fishes embryology genetics MeSH
- Mutagenicity Tests methods MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Benzo(a)pyrene MeSH
- Etoposide MeSH
- Camptothecin MeSH
- Mutagens MeSH
DNA damage caused by exogenous or endogenous factors is a common challenge for developing fish embryos. DNA damage repair (DDR) pathways help organisms minimize adverse effects of DNA alterations. In terms of DNA repair mechanisms, sturgeons represent a particularly interesting model due to their exceptional genome plasticity. Sterlet (Acipenser ruthenus) is a relatively small species of sturgeon. The goal of this study was to assess the sensitivity of sterlet embryos to model genotoxicants (camptothecin, etoposide, and benzo[a]pyrene), and to assess DDR responses. We assessed the effects of genotoxicants on embryo survival, hatching rate, DNA fragmentation, gene expression, and phosphorylation of H2AX and ATM kinase. Exposure of sterlet embryos to 1 µM benzo[a]pyrene induced low levels of DNA damage accompanied by ATM phosphorylation and xpc gene expression. Conversely, 20 µM etoposide exposure induced DNA damage without activation of known DDR pathways. Effects of 10 nM camptothecin on embryo development were stage-specific, with early stages, before gastrulation, being most sensitive. Overall, this study provides foundational information for future investigation of sterlet DDR pathways.
See more in PubMed
Tubbs A., Nussenzweig A. Endogenous DNA damage as a source of genomic instability in cancer. Cell. 2017;168:644–656. doi: 10.1016/j.cell.2017.01.002. PubMed DOI PMC
Eisen J.A., Hanawalt P.C. A phylogenomic study of DNA repair genes, proteins, and processes. Mutat. Res. 1999;435:171–213. doi: 10.1016/S0921-8777(99)00050-6. PubMed DOI PMC
Kienzler A., Bony S., Devaux A. DNA repair activity in fish and interest in ecotoxicology: A review. Aquat. Toxicol. 2013;134–135:47–56. doi: 10.1016/j.aquatox.2013.03.005. PubMed DOI
Cayuela M.L., Claes K.B.M., Ferreira M.G., Henriques C.M., van Eeden F., Varga M., Vierstraete J., Mione M.C. The zebrafish as an emerging model to study DNA damage in aging, cancer and other diseases. Front. Cell Dev. Biol. 2018;6:178. doi: 10.3389/fcell.2018.00178. PubMed DOI PMC
Podhorecka M., Skladanowski A., Bozko P. H2AX Phosphorylation: Its role in DNA damage response and cancer therapy. J. Nucleic Acids. 2010;2010 doi: 10.4061/2010/920161. PubMed DOI PMC
Savic V., Yin B., Maas N.L., Bredemeyer A.L., Carpenter A.C., Helmink B.A., Yang-Iott K.S., Sleckman B.P., Bassing C.H. Formation of dynamic gamma-H2AX domains along broken DNA strands is distinctly regulated by ATM and MDC1 and dependent upon H2AX densities in chromatin. Mol. Cell. 2009;34:298–310. doi: 10.1016/j.molcel.2009.04.012. PubMed DOI PMC
Maréchal A., Zou L. DNA damage sensing by the ATM and ATR kinases. Cold Spring Harb. Perspect. Biol. 2013;5 doi: 10.1101/cshperspect.a012716. PubMed DOI PMC
Bakkenist C.J., Kastan M.B. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature. 2003;421:499–506. doi: 10.1038/nature01368. PubMed DOI
Fernandez-Diez C., Gonzalez-Rojo S., Lombo M., Herraez M.P. Tolerance to paternal genotoxic damage promotes survival during embryo development in zebrafish (Danio rerio) Biol. Open. 2018;7 doi: 10.1242/bio.030130. PubMed DOI PMC
Mirza-Aghazadeh-Attari M., Mohammadzadeh A., Yousefi B., Mihanfar A., Karimian A., Majidinia M. 53BP1: A key player of DNA damage response with critical functions in cancer. DNA Repair. 2019;73:110–119. doi: 10.1016/j.dnarep.2018.11.008. PubMed DOI
Soltani T., Safahieh A., Zolgharnain H., Matroodi S. Interactions of oxidative DNA damage and CYP1A gene expression with the liver enzymes in Klunzinger’s mullet exposed to benzo[a]pyrene. Toxicol. Rep. 2019;6:1097–1103. doi: 10.1016/j.toxrep.2019.10.013. PubMed DOI PMC
Corrales J., Fang X., Thornton C., Mei W., Barbazuk W.B., Duke M., Scheffler B.E., Willett K.L. Effects on specific promoter DNA methylation in zebrafish embryos and larvae following benzo[a]pyrene exposure. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2014;163:37–46. doi: 10.1016/j.cbpc.2014.02.005. PubMed DOI PMC
Weigt S., Huebler N., Strecker R., Braunbeck T., Broschard T.H. Zebrafish (Danio rerio) embryos as a model for testing proteratogens. Toxicology. 2011;281:25–36. doi: 10.1016/j.tox.2011.01.004. PubMed DOI
Gunz D., Hess M.T., Naegeli H. Recognition of DNA adducts by human nucleotide excision repair. Evidence for a thermodynamic probing mechanism. J. Biol. Chem. 1996;271:25089–25098. doi: 10.1074/jbc.271.41.25089. PubMed DOI
Wang J.C. DNA topoisomerases. Annu. Rev. Biochem. 1996;65:635–692. doi: 10.1146/annurev.bi.65.070196.003223. PubMed DOI
Karapetian M., Tsikarishvili S., Kulikova N., Kurdadze A., Zaalishvili G. Genotoxic effects of topoisomerase poisoning and PARP inhibition on zebrafish embryos. DNA Repair. 2020;87:102772. doi: 10.1016/j.dnarep.2019.102772. PubMed DOI
Chambers R.C., Davis D.D., Habeck E.A., Roy N.K., Wirgin I. Toxic effects of PCB126 and TCDD on shortnose sturgeon and Atlantic sturgeon. Environ. Toxicol. Chem. 2012;31:2324–2337. doi: 10.1002/etc.1953. PubMed DOI PMC
Havelka M., Bytyutskyy D., Symonova R., Rab P., Flajshans M. The second highest chromosome count among vertebrates is observed in cultured sturgeon and is associated with genome plasticity. Genet. Sel. Evol. 2016;48:12. doi: 10.1186/s12711-016-0194-0. PubMed DOI PMC
Bemis W.E., Findeis E.K., Grande L. An overview of Acipenseriformes. Environ. Biol. Fishes. 1997;48:25–71. doi: 10.1023/A:1007370213924. DOI
Vasil’eva E.D., Vasil’ev V.P., Ponomareva E.N., Lapukhin Y.A. Triple hybrids obtained by artificial hybridization of the Russian sturgeon Acipenser gueldenstaedtii with the hybrid of the starred sturgeon A. stellatus and the great sturgeon A. huso (Acipenseridae): The kind of inheritance of some morphological characters and fertility of the parental hybrid form. J. Ichthyol. 2010;50:605–617. doi: 10.1134/s0032945210080059. DOI
Gille D.A., Famula T.R., May B.P., Schreier A.D. Evidence for a maternal origin of spontaneous autopolyploidy in cultured white sturgeon (Acipenser transmontanus) Aquaculture. 2015;435:467–474. doi: 10.1016/j.aquaculture.2014.10.002. DOI
Van Eenennaam J.P., Fiske A.J., Leal M.J., Cooley-Rieders C., Todgham A.E., Conte F.S., Schreier A.D. Mechanical shock during egg de-adhesion and post-ovulatory ageing contribute to spontaneous autopolyploidy in white sturgeon culture (Acipenser transmontanus) Aquaculture. 2020;515:734530. doi: 10.1016/j.aquaculture.2019.734530. DOI
Kermi C., Lo Furno E., Maiorano D. Regulation of DNA replication in early embryonic cleavages. Genes. 2017;8:42. doi: 10.3390/genes8010042. PubMed DOI PMC
Park C., Lee S.Y., Kim D., Nam Y. Embryonic development of Siberian sturgeon Acipenser baerii under hatchery conditions: An image guide with embryological descriptions. Fish. Aquat. Sci. 2013;16:15–23. doi: 10.5657/FAS.2013.0015. DOI
Pocherniaieva K., Güralp H., Saito T., Pšenička M., Tichopád T., Janko K., Kašpar V. The timing and characterization of maternal to zygote transition and mid-blastula transition in sterlet Acipenser ruthenus and A. ruthenus x Acipenser gueldenstaedtii Hybrid. Turkish J. Fish. Aquat. Sci. 2019;19:167–174. doi: 10.4194/1303-2712-v19_2_09. DOI
Ikegami R., Hunter P., Yager T.D. Developmental activation of the capability to undergo checkpoint-induced apoptosis in the early zebrafish embryo. Dev. Biol. 1999;209:409–433. doi: 10.1006/dbio.1999.9243. PubMed DOI
Šrut M., Štambuk A., Bourdineaud J.-P., Klobučar G.I.V. Zebrafish genome instability after exposure to model genotoxicants. Ecotoxicology. 2015;24:887–902. doi: 10.1007/s10646-015-1432-x. PubMed DOI
Lin Y.C., Wu C.Y., Hu C.H., Pai T.W., Chen Y.R., Wang W.D. Integrated hypoxia signaling and oxidative stress in developmental neurotoxicity of Benzo[a]Pyrene in zebrafish embryos. Antioxidants. 2020;9:731. doi: 10.3390/antiox9080731. PubMed DOI PMC
Gao D., Lin J., Ou K., Chen Y., Li H., Dai Q., Yu Z., Zuo Z., Wang C. Embryonic exposure to benzo(a)pyrene inhibits reproductive capability in adult female zebrafish and correlation with DNA methylation. Environ. Pollut. 2018;240:403–411. doi: 10.1016/j.envpol.2018.04.139. PubMed DOI
Zhao Y., Wang X., Lin X., Zhao S., Lin J. Comparative developmental toxicity of eight typical organic pollutants to red sea bream (Pagrosomus major) embryos and larvae. Environ. Sci. Pollut. Res. Int. 2017;24:9067–9078. doi: 10.1007/s11356-016-6282-4. PubMed DOI
Le Bihanic F., Di Bucchianico S., Karlsson H.L., Dreij K. In vivo micronucleus screening in zebrafish by flow cytometry. Mutagenesis. 2016;31:643–653. doi: 10.1093/mutage/gew032. PubMed DOI
Kovacs R., Bakos K., Urbanyi B., Kovesi J., Gazsi G., Csepeli A., Appl A.J., Bencsik D., Csenki Z., Horvath A. Acute and sub-chronic toxicity of four cytostatic drugs in zebrafish. Environ. Sci. Pollut. Res. Int. 2016;23:14718–14729. doi: 10.1007/s11356-015-5036-z. PubMed DOI
Muslimovic A., Nystrom S., Gao Y., Hammarsten O. Numerical analysis of etoposide induced DNA breaks. PLoS ONE. 2009;4:e5859. doi: 10.1371/annotation/290cebfd-d5dc-4bd2-99b4-f4cf0be6c838. PubMed DOI PMC
Gemkow M.J., Dichter J., Arndt-Jovin D.J. Developmental regulation of DNA-topoisomerases during Drosophila embryogenesis. Exp. Cell Res. 2001;262:114–121. doi: 10.1006/excr.2000.5084. PubMed DOI
Tanaka T., Huang X., Halicka H.D., Zhao H., Traganos F., Albino A.P., Dai W., Darzynkiewicz Z. Cytometry of ATM activation and histone H2AX phosphorylation to estimate extent of DNA damage induced by exogenous agents. Cytometry A. 2007;71:648–661. doi: 10.1002/cyto.a.20426. PubMed DOI PMC
Kurose A., Tanaka T., Huang X., Traganos F., Dai W., Darzynkiewicz Z. Effects of hydroxyurea and aphidicolin on phosphorylation of ataxia telangiectasia mutated on Ser 1981 and histone H2AX on Ser 139 in relation to cell cycle phase and induction of apoptosis. Cytometry A. 2006;69:212–221. doi: 10.1002/cyto.a.20241. PubMed DOI
Ginsburg A.S., Dettlaff T.A. The Russian Sturgeon Acipenser Güldenstädti. Part I. Gametes and early development up to time of hatching. In: Dettlaff T.A., Vassetzky S.G., editors. Animal Species for Developmental Studies. Springer; Boston, MA, USA: 1991. pp. 15–65.
Kosmehl T., Hallare A.V., Braunbeck T., Hollert H. DNA damage induced by genotoxicants in zebrafish (Danio rerio) embryos after contact exposure to freeze-dried sediment and sediment extracts from Laguna Lake (The Philippines) as measured by the comet assay. Mutat. Res. 2008;650:1–14. doi: 10.1016/j.mrgentox.2007.09.009. PubMed DOI
Jaroudi S., SenGupta S. DNA repair in mammalian embryos. Mutat. Res. 2007;635:53–77. doi: 10.1016/j.mrrev.2006.09.002. PubMed DOI
DNA repair genes play a variety of roles in the development of fish embryos