Transcriptome and Proteome Analyses Reveal Stage-Specific DNA Damage Response in Embryos of Sturgeon (Acipenser ruthenus)
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GAČR 19-11140Y
Czech Science Foundation
GAČR 19-11313S
Czech Science Foundation
"CENAKVA" (LM2018099)
Ministry of Education, Youth and Sports of the Czech Republic
"CENAKAVA Center Development" (CZ.1.05/2.1.00/19.0380)
Ministry of Education, Youth and Sports of the Czech Republic
CZ.02.1.01/0.0/0.0/16_025/0007370
Ministry of Education, Youth and Sports of the Czech Republic
86652036
RVO
CEP - Centrální evidence projektů
PubMed
35742841
PubMed Central
PMC9223696
DOI
10.3390/ijms23126392
PII: ijms23126392
Knihovny.cz E-zdroje
- Klíčová slova
- DNA damage response, embryo, fish, omics, sturgeon,
- MeSH
- poškození DNA MeSH
- proteom * metabolismus MeSH
- proteomika MeSH
- ryby metabolismus MeSH
- sperma MeSH
- transkriptom * MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- proteom * MeSH
DNA damage during early life stages may have a negative effect on embryo development, inducing mortality and malformations that have long-lasting effects during adult life. Therefore, in the current study, we analyzed the effect of DNA damage induced by genotoxicants (camptothecin (CPT) and olaparib) at different stages of embryo development. The survival, DNA fragmentation, transcriptome, and proteome of the endangered sturgeon Acipenser ruthenus were analyzed. Sturgeons are non-model fish species that can provide new insights into the DNA damage response and embryo development. The transcriptomic and proteomic patterns changed significantly after exposure to genotoxicants in a stage-dependent manner. The results of this study indicate a correlation between phenotype formation and changes in transcriptomic and proteomic profiles. CPT and olaparib downregulated oxidative phosphorylation and metabolic pathways, and upregulated pathways involved in nucleotide excision repair, base excision repair, and homologous recombination. We observed the upregulated expression of zona pellucida sperm-binding proteins in all treatment groups, as well as the upregulation of several glycolytic enzymes. The analysis of gene expression revealed several markers of DNA damage response and adaptive stress response, which could be applied in toxicological studies on fish embryos. This study is the first complex analysis of the DNA damage response in endangered sturgeons.
Zobrazit více v PubMed
Canedo A., Rocha T.L. Zebrafish (Danio rerio) using as model for genotoxicity and DNA repair assessments: Historical review, current status and trends. Sci. Total Environ. 2021;762:144084. doi: 10.1016/j.scitotenv.2020.144084. PubMed DOI
Akcha F., Barranger A., Bachere E. Genotoxic and epigenetic effects of diuron in the Pacific oyster: In vitro evidence of interaction between DNA damage and DNA methylation. Environ. Sci. Pollut. Res. Int. 2021;28:8266–8280. doi: 10.1007/s11356-020-11021-6. PubMed DOI
Devaux A., Fiat L., Gillet C., Bony S. Reproduction impairment following paternal genotoxin exposure in brown trout (Salmo trutta) and Arctic charr (Salvelinus alpinus) Aquat. Toxicol. 2011;101:405–411. doi: 10.1016/j.aquatox.2010.11.017. PubMed DOI
Santos R., Palos-Ladeiro M., Besnard A., Porcher J.M., Bony S., Sanchez W., Devaux A. Relationship between DNA damage in sperm after ex vivo exposure and abnormal embryo development in the progeny of the three-spined stickleback. Reprod. Toxicol. 2013;36:6–11. doi: 10.1016/j.reprotox.2012.11.004. PubMed DOI
Kermi C., Lo Furno E., Maiorano D. Regulation of DNA Replication in Early Embryonic Cleavages. Genes. 2017;8:42. doi: 10.3390/genes8010042. PubMed DOI PMC
Chenevert J., Roca M., Besnardeau L., Ruggiero A., Nabi D., McDougall A., Copley R.R., Christians E., Castagnetti S. The Spindle Assembly Checkpoint Functions during Early Development in Non-Chordate Embryos. Cells. 2020;9:1087. doi: 10.3390/cells9051087. PubMed DOI PMC
Ikegami R., Hunter P., Yager T.D. Developmental activation of the capability to undergo checkpoint-induced apoptosis in the early zebrafish embryo. Dev. Biol. 1999;209:409–433. doi: 10.1006/dbio.1999.9243. PubMed DOI
Taylor E.M., Lehmann A.R. Conservation of eukaryotic DNA repair mechanisms. Int. J. Radiat. Biol. 1998;74:277–286. PubMed
Jaroudi S., SenGupta S. DNA repair in mammalian embryos. Mutat. Res. 2007;635:53–77. doi: 10.1016/j.mrrev.2006.09.002. PubMed DOI
Gazo I., Franek R., Sindelka R., Lebeda I., Shivaramu S., Psenicka M., Steinbach C. Ancient Sturgeons Possess Effective DNA Repair Mechanisms: Influence of Model Genotoxicants on Embryo Development of Sterlet, Acipenser ruthenus. Int. J. Mol. Sci. 2020;22:6. doi: 10.3390/ijms22010006. PubMed DOI PMC
Bemis W.E., Findeis E.K., Grande L. An overview of Acipenseriformes. Environ. Biol. Fishes. 1997;48:25–71. doi: 10.1023/A:1007370213924. DOI
Chandra G., Fopp-Bayat D. Trends in aquaculture and conservation of sturgeons: A review of molecular and cytogenetic tools. Rev. Aquac. 2021;13:119–137. doi: 10.1111/raq.12466. DOI
Du K., Stöck M., Kneitz S., Klopp C., Woltering J.M., Adolfi M.C., Feron R., Prokopov D., Makunin A., Kichigin I., et al. The sterlet sturgeon genome sequence and the mechanisms of segmental rediploidization. Nat. Ecol. Evol. 2020;4:841–852. doi: 10.1038/s41559-020-1166-x. PubMed DOI PMC
Vasil’eva E.D., Vasil’ev V.P., Ponomareva E.N., Lapukhin Y.A. Triple hybrids obtained by artificial hybridization of the Russian sturgeon Acipenser gueldenstaedtii with the hybrid of the starred sturgeon A. stellatus and the great sturgeon A. huso (Acipenseridae): The kind of inheritance of some morphological characters and fertility of the parental hybrid form. J. Ichthyol. 2010;50:605–617.
Gille D.A., Famula T.R., May B.P., Schreier A.D. Evidence for a maternal origin of spontaneous autopolyploidy in cultured white sturgeon (Acipenser transmontanus) Aquaculture. 2015;435:467–474. doi: 10.1016/j.aquaculture.2014.10.002. DOI
Van Eenennaam J.P., Fiske A.J., Leal M.J., Cooley-Rieders C., Todgham A.E., Conte F.S., Schreier A.D. Mechanical shock during egg de-adhesion and post-ovulatory ageing contribute to spontaneous autopolyploidy in white sturgeon culture (Acipenser transmontanus) Aquaculture. 2020;515:734530. doi: 10.1016/j.aquaculture.2019.734530. DOI
Lebeda I., Rab P., Majtanova Z., Flajshans M. Artificial whole genome duplication in paleopolyploid sturgeons yields highest documented chromosome number in vertebrates. Sci. Rep. 2020;10:19705. doi: 10.1038/s41598-020-76680-4. PubMed DOI PMC
Voskarides K., Dweep H., Chrysostomou C. Evidence that DNA repair genes, a family of tumor suppressor genes, are associated with evolution rate and size of genomes. Hum. Genom. 2019;13:26. doi: 10.1186/s40246-019-0210-x. PubMed DOI PMC
Lai K.P., Gong Z., Tse W.K.F. Zebrafish as the toxicant screening model: Transgenic and omics approaches. Aquat. Toxicol. 2021;234:105813. doi: 10.1016/j.aquatox.2021.105813. PubMed DOI
Schuttler A., Reiche K., Altenburger R., Busch W. The Transcriptome of the Zebrafish Embryo After Chemical Exposure: A Meta-Analysis. Toxicol. Sci. 2017;157:291–304. doi: 10.1093/toxsci/kfx045. PubMed DOI PMC
Marx-Stoelting P., Braeuning A., Buhrke T., Lampen A., Niemann L., Oelgeschlaeger M., Rieke S., Schmidt F., Heise T., Pfeil R., et al. Application of omics data in regulatory toxicology: Report of an international BfR expert workshop. Arch. Toxicol. 2015;89:2177–2184. doi: 10.1007/s00204-015-1602-x. PubMed DOI
Pfeiffer M.J., Taher L., Drexler H., Suzuki Y., Makalowski W., Schwarzer C., Wang B., Fuellen G., Boiani M. Differences in embryo quality are associated with differences in oocyte composition: A proteomic study in inbred mice. Proteomics. 2015;15:675–687. doi: 10.1002/pmic.201400334. PubMed DOI
Fernandez-Diez C., Gonzalez-Rojo S., Lombo M., Herraez M.P. Tolerance to paternal genotoxic damage promotes survival during embryo development in zebrafish (Danio rerio) Biol. Open. 2018;7:bio030130. doi: 10.1242/bio.030130. PubMed DOI PMC
Song Y., Nahrgang J., Tollefsen K.E. Transcriptomic analysis reveals dose-dependent modes of action of benzo(a)pyrene in polar cod (Boreogadus saida) Sci. Total Environ. 2019;653:176–189. doi: 10.1016/j.scitotenv.2018.10.261. PubMed DOI
Wang J.C. DNA topoisomerases. Annu. Rev. Biochem. 1996;65:635–692. doi: 10.1146/annurev.bi.65.070196.003223. PubMed DOI
Karapetian M., Tsikarishvili S., Kulikova N., Kurdadze A., Zaalishvili G. Genotoxic effects of topoisomerase poisoning and PARP inhibition on zebrafish embryos. DNA Repair (Amst) 2020;87:102772. doi: 10.1016/j.dnarep.2019.102772. PubMed DOI
Hengel S.R., Spies M.A., Spies M. Small-Molecule Inhibitors Targeting DNA Repair and DNA Repair Deficiency in Research and Cancer Therapy. Cell Chem. Biol. 2017;24:1101–1119. doi: 10.1016/j.chembiol.2017.08.027. PubMed DOI PMC
Vierstraete J., Fieuws C., Willaert A., Vral A., Claes K.B.M. Zebrafish as an in vivo screening tool to establish PARP inhibitor efficacy. DNA Repair (Amst) 2021;97:103023. doi: 10.1016/j.dnarep.2020.103023. PubMed DOI
Tsikarishvili S., Karapetian M., Kulikova N., Zaalishvili G. PARP inhibition suppresses topoisomerase 1 poisoning induced Caspase-3 dependent cell death in zebrafish embryos. Biochem. Biophys. Res. Commun. 2021;550:166–170. doi: 10.1016/j.bbrc.2021.03.005. PubMed DOI
Honjo Y., Ichinohe T. Stage-Specific Effects of Ionizing Radiation during Early Development. Int. J. Mol. Sci. 2020;21:3975. doi: 10.3390/ijms21113975. PubMed DOI PMC
Gordon W.E., Espinoza J.A., Leerberg D.M., Yelon D., Hamdoun A. Xenobiotic transporter activity in zebrafish embryo ionocytes. Aquat. Toxicol. 2019;212:88–97. doi: 10.1016/j.aquatox.2019.04.013. PubMed DOI PMC
Fischer S., Kluver N., Burkhardt-Medicke K., Pietsch M., Schmidt A.M., Wellner P., Schirmer K., Luckenbach T. Abcb4 acts as multixenobiotic transporter and active barrier against chemical uptake in zebrafish (Danio rerio) embryos. BMC Biol. 2013;11:69. doi: 10.1186/1741-7007-11-69. PubMed DOI PMC
Eachus H., Choi M.K., Ryu S. The Effects of Early Life Stress on the Brain and Behaviour: Insights From Zebrafish Models. Front. Cell Dev. Biol. 2021;9:657591. doi: 10.3389/fcell.2021.657591. PubMed DOI PMC
Vindas M.A., Fokos S., Pavlidis M., Hoglund E., Dionysopoulou S., Ebbesson L.O.E., Papandroulakis N., Dermon C.R. Early life stress induces long-term changes in limbic areas of a teleost fish: The role of catecholamine systems in stress coping. Sci. Rep. 2018;8:5638. doi: 10.1038/s41598-018-23950-x. PubMed DOI PMC
Reinhardt H.C., Schumacher B. The p53 network: Cellular and systemic DNA damage responses in aging and cancer. Trends Genet. 2012;28:128–136. doi: 10.1016/j.tig.2011.12.002. PubMed DOI PMC
Stacey D.W. Cyclin D1 serves as a cell cycle regulatory switch in actively proliferating cells. Curr. Opin. Cell Biol. 2003;15:158–163. doi: 10.1016/S0955-0674(03)00008-5. PubMed DOI
Choi E.H., Yoon S., Park K.S., Kim K.P. The Homologous Recombination Machinery Orchestrates Post-replication DNA Repair During Self-renewal of Mouse Embryonic Stem Cells. Sci. Rep. 2017;7:11610. doi: 10.1038/s41598-017-11951-1. PubMed DOI PMC
De Silva I.U., McHugh P.J., Clingen P.H., Hartley J.A. Defining the roles of nucleotide excision repair and recombination in the repair of DNA interstrand cross-links in mammalian cells. Mol. Cell Biol. 2000;20:7980–7990. doi: 10.1128/MCB.20.21.7980-7990.2000. PubMed DOI PMC
Kumar N., Moreno N.C., Feltes B.C., Menck C.F., Houten B.V. Cooperation and interplay between base and nucleotide excision repair pathways: From DNA lesions to proteins. Genet. Mol. Biol. 2020;43((Suppl. S1)):e20190104. doi: 10.1590/1678-4685-gmb-2019-0104. PubMed DOI PMC
Marconi D., Ranfley H., Menck C.F.M., Ferreira C.P., Câmara N.O.S. Interface of DNA Repair and Metabolism. Curr. Tissue Microenviron. Rep. 2020;1:209–220. doi: 10.1007/s43152-020-00018-5. DOI
Moretton A., Loizou J.I. Interplay between Cellular Metabolism and the DNA Damage Response in Cancer. Cancers. 2020;12:2051. doi: 10.3390/cancers12082051. PubMed DOI PMC
Xu K., Yin N., Peng M., Stamatiades E.G., Shyu A., Li P., Zhang X., Do M.H., Wang Z., Capistrano K.J., et al. Glycolysis fuels phosphoinositide 3-kinase signaling to bolster T cell immunity. Science. 2021;371:405–410. doi: 10.1126/science.abb2683. PubMed DOI PMC
Yilmaz O., Patinote A., Com E., Pineau C., Bobe J. Knock out of specific maternal vitellogenins in zebrafish (Danio rerio) evokes vital changes in egg proteomic profiles that resemble the phenotype of poor quality eggs. BMC Genom. 2021;22:308. doi: 10.1186/s12864-021-07606-1. PubMed DOI PMC
Gundel U., Benndorf D., von Bergen M., Altenburger R., Kuster E. Vitellogenin cleavage products as indicators for toxic stress in zebra fish embryos: A proteomic approach. Proteomics. 2007;7:4541–4554. doi: 10.1002/pmic.200700381. PubMed DOI
Sano K., Kawaguchi M., Katano K., Tomita K., Inokuchi M., Nagasawa T., Hiroi J., Kaneko T., Kitagawa T., Fujimoto T., et al. Comparison of Egg Envelope Thickness in Teleosts and its Relationship to the Sites of ZP Protein Synthesis. J. Exp. Zool. B Mol. Dev. Evol. 2017;328:240–258. doi: 10.1002/jez.b.22729. PubMed DOI
Hou D., Liu Z., Xu X., Liu Q., Zhang X., Kong B., Wei J.J., Gong Y., Shao C. Increased oxidative stress mediates the antitumor effect of PARP inhibition in ovarian cancer. Redox Biol. 2018;17:99–111. doi: 10.1016/j.redox.2018.03.016. PubMed DOI PMC
Wang X., Tanaka M., Krstin S., Peixoto H.S., Moura C.C.M., Wink M. Cytoskeletal interference—A new mode of action for the anticancer drugs camptothecin and topotecan. Eur. J. Pharmacol. 2016;789:265–274. doi: 10.1016/j.ejphar.2016.07.044. PubMed DOI
Ginsburg A.S., Dettlaff T.A. The Russian Sturgeon Acipenser Güldenstädti. Part I. Gametes And Early Development Up To Time Of Hatching. In: Dettlaff T.A., Vassetzky S.G., editors. Animal Species for Developmental Studies: Vertebrates. Springer; Boston, MA, USA: 1991. pp. 15–65.
Park C., Lee S.Y., Kim D., Nam Y. Embryonic Development of Siberian Sturgeon Acipenser baerii under Hatchery Conditions: An Image Guide with Embryological Descriptions. Fish. Aquat. Sci. 2013;16:15–23. doi: 10.5657/FAS.2013.0015. DOI
Bolger A.M., Lohse M., Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Kopylova E., Noe L., Touzet H. SortMeRNA: Fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics. 2012;28:3211–3217. doi: 10.1093/bioinformatics/bts611. PubMed DOI
Love M.I., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC
Raudvere U., Kolberg L., Kuzmin I., Arak T., Adler P., Peterson H., Vilo J. g:Profiler: A web server for functional enrichment analysis and conversions of gene lists (2019 update) Nucleic Acids Res. 2019;47:W191–W198. doi: 10.1093/nar/gkz369. PubMed DOI PMC
Gu Z., Hübschmann D. simplifyEnrichment: An R/Bioconductor package for Clustering and Visualizing Functional Enrichment Results. bioRxiv. 2020 doi: 10.1101/2020.10.27.312116. PubMed DOI PMC
Luo W., Brouwer C. Pathview: An R/Bioconductor package for pathway-based data integration and visualization. Bioinformatics. 2013;29:1830–1831. doi: 10.1093/bioinformatics/btt285. PubMed DOI PMC
Pei D.-S., Strauss P.R. Zebrafish as a model system to study DNA damage and repair. Mutat. Res. Fundam. Mol. Mech. Mutagenesis. 2013;743–744:151–159. doi: 10.1016/j.mrfmmm.2012.10.003. PubMed DOI
DNA repair genes play a variety of roles in the development of fish embryos