Transcriptome and Proteome Analyses Reveal Stage-Specific DNA Damage Response in Embryos of Sturgeon (Acipenser ruthenus)

. 2022 Jun 07 ; 23 (12) : . [epub] 20220607

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35742841

Grantová podpora
GAČR 19-11140Y Czech Science Foundation
GAČR 19-11313S Czech Science Foundation
"CENAKVA" (LM2018099) Ministry of Education, Youth and Sports of the Czech Republic
"CENAKAVA Center Development" (CZ.1.05/2.1.00/19.0380) Ministry of Education, Youth and Sports of the Czech Republic
CZ.02.1.01/0.0/0.0/16_025/0007370 Ministry of Education, Youth and Sports of the Czech Republic
86652036 RVO CEP - Centrální evidence projektů

DNA damage during early life stages may have a negative effect on embryo development, inducing mortality and malformations that have long-lasting effects during adult life. Therefore, in the current study, we analyzed the effect of DNA damage induced by genotoxicants (camptothecin (CPT) and olaparib) at different stages of embryo development. The survival, DNA fragmentation, transcriptome, and proteome of the endangered sturgeon Acipenser ruthenus were analyzed. Sturgeons are non-model fish species that can provide new insights into the DNA damage response and embryo development. The transcriptomic and proteomic patterns changed significantly after exposure to genotoxicants in a stage-dependent manner. The results of this study indicate a correlation between phenotype formation and changes in transcriptomic and proteomic profiles. CPT and olaparib downregulated oxidative phosphorylation and metabolic pathways, and upregulated pathways involved in nucleotide excision repair, base excision repair, and homologous recombination. We observed the upregulated expression of zona pellucida sperm-binding proteins in all treatment groups, as well as the upregulation of several glycolytic enzymes. The analysis of gene expression revealed several markers of DNA damage response and adaptive stress response, which could be applied in toxicological studies on fish embryos. This study is the first complex analysis of the DNA damage response in endangered sturgeons.

Zobrazit více v PubMed

Canedo A., Rocha T.L. Zebrafish (Danio rerio) using as model for genotoxicity and DNA repair assessments: Historical review, current status and trends. Sci. Total Environ. 2021;762:144084. doi: 10.1016/j.scitotenv.2020.144084. PubMed DOI

Akcha F., Barranger A., Bachere E. Genotoxic and epigenetic effects of diuron in the Pacific oyster: In vitro evidence of interaction between DNA damage and DNA methylation. Environ. Sci. Pollut. Res. Int. 2021;28:8266–8280. doi: 10.1007/s11356-020-11021-6. PubMed DOI

Devaux A., Fiat L., Gillet C., Bony S. Reproduction impairment following paternal genotoxin exposure in brown trout (Salmo trutta) and Arctic charr (Salvelinus alpinus) Aquat. Toxicol. 2011;101:405–411. doi: 10.1016/j.aquatox.2010.11.017. PubMed DOI

Santos R., Palos-Ladeiro M., Besnard A., Porcher J.M., Bony S., Sanchez W., Devaux A. Relationship between DNA damage in sperm after ex vivo exposure and abnormal embryo development in the progeny of the three-spined stickleback. Reprod. Toxicol. 2013;36:6–11. doi: 10.1016/j.reprotox.2012.11.004. PubMed DOI

Kermi C., Lo Furno E., Maiorano D. Regulation of DNA Replication in Early Embryonic Cleavages. Genes. 2017;8:42. doi: 10.3390/genes8010042. PubMed DOI PMC

Chenevert J., Roca M., Besnardeau L., Ruggiero A., Nabi D., McDougall A., Copley R.R., Christians E., Castagnetti S. The Spindle Assembly Checkpoint Functions during Early Development in Non-Chordate Embryos. Cells. 2020;9:1087. doi: 10.3390/cells9051087. PubMed DOI PMC

Ikegami R., Hunter P., Yager T.D. Developmental activation of the capability to undergo checkpoint-induced apoptosis in the early zebrafish embryo. Dev. Biol. 1999;209:409–433. doi: 10.1006/dbio.1999.9243. PubMed DOI

Taylor E.M., Lehmann A.R. Conservation of eukaryotic DNA repair mechanisms. Int. J. Radiat. Biol. 1998;74:277–286. PubMed

Jaroudi S., SenGupta S. DNA repair in mammalian embryos. Mutat. Res. 2007;635:53–77. doi: 10.1016/j.mrrev.2006.09.002. PubMed DOI

Gazo I., Franek R., Sindelka R., Lebeda I., Shivaramu S., Psenicka M., Steinbach C. Ancient Sturgeons Possess Effective DNA Repair Mechanisms: Influence of Model Genotoxicants on Embryo Development of Sterlet, Acipenser ruthenus. Int. J. Mol. Sci. 2020;22:6. doi: 10.3390/ijms22010006. PubMed DOI PMC

Bemis W.E., Findeis E.K., Grande L. An overview of Acipenseriformes. Environ. Biol. Fishes. 1997;48:25–71. doi: 10.1023/A:1007370213924. DOI

Chandra G., Fopp-Bayat D. Trends in aquaculture and conservation of sturgeons: A review of molecular and cytogenetic tools. Rev. Aquac. 2021;13:119–137. doi: 10.1111/raq.12466. DOI

Du K., Stöck M., Kneitz S., Klopp C., Woltering J.M., Adolfi M.C., Feron R., Prokopov D., Makunin A., Kichigin I., et al. The sterlet sturgeon genome sequence and the mechanisms of segmental rediploidization. Nat. Ecol. Evol. 2020;4:841–852. doi: 10.1038/s41559-020-1166-x. PubMed DOI PMC

Vasil’eva E.D., Vasil’ev V.P., Ponomareva E.N., Lapukhin Y.A. Triple hybrids obtained by artificial hybridization of the Russian sturgeon Acipenser gueldenstaedtii with the hybrid of the starred sturgeon A. stellatus and the great sturgeon A. huso (Acipenseridae): The kind of inheritance of some morphological characters and fertility of the parental hybrid form. J. Ichthyol. 2010;50:605–617.

Gille D.A., Famula T.R., May B.P., Schreier A.D. Evidence for a maternal origin of spontaneous autopolyploidy in cultured white sturgeon (Acipenser transmontanus) Aquaculture. 2015;435:467–474. doi: 10.1016/j.aquaculture.2014.10.002. DOI

Van Eenennaam J.P., Fiske A.J., Leal M.J., Cooley-Rieders C., Todgham A.E., Conte F.S., Schreier A.D. Mechanical shock during egg de-adhesion and post-ovulatory ageing contribute to spontaneous autopolyploidy in white sturgeon culture (Acipenser transmontanus) Aquaculture. 2020;515:734530. doi: 10.1016/j.aquaculture.2019.734530. DOI

Lebeda I., Rab P., Majtanova Z., Flajshans M. Artificial whole genome duplication in paleopolyploid sturgeons yields highest documented chromosome number in vertebrates. Sci. Rep. 2020;10:19705. doi: 10.1038/s41598-020-76680-4. PubMed DOI PMC

Voskarides K., Dweep H., Chrysostomou C. Evidence that DNA repair genes, a family of tumor suppressor genes, are associated with evolution rate and size of genomes. Hum. Genom. 2019;13:26. doi: 10.1186/s40246-019-0210-x. PubMed DOI PMC

Lai K.P., Gong Z., Tse W.K.F. Zebrafish as the toxicant screening model: Transgenic and omics approaches. Aquat. Toxicol. 2021;234:105813. doi: 10.1016/j.aquatox.2021.105813. PubMed DOI

Schuttler A., Reiche K., Altenburger R., Busch W. The Transcriptome of the Zebrafish Embryo After Chemical Exposure: A Meta-Analysis. Toxicol. Sci. 2017;157:291–304. doi: 10.1093/toxsci/kfx045. PubMed DOI PMC

Marx-Stoelting P., Braeuning A., Buhrke T., Lampen A., Niemann L., Oelgeschlaeger M., Rieke S., Schmidt F., Heise T., Pfeil R., et al. Application of omics data in regulatory toxicology: Report of an international BfR expert workshop. Arch. Toxicol. 2015;89:2177–2184. doi: 10.1007/s00204-015-1602-x. PubMed DOI

Pfeiffer M.J., Taher L., Drexler H., Suzuki Y., Makalowski W., Schwarzer C., Wang B., Fuellen G., Boiani M. Differences in embryo quality are associated with differences in oocyte composition: A proteomic study in inbred mice. Proteomics. 2015;15:675–687. doi: 10.1002/pmic.201400334. PubMed DOI

Fernandez-Diez C., Gonzalez-Rojo S., Lombo M., Herraez M.P. Tolerance to paternal genotoxic damage promotes survival during embryo development in zebrafish (Danio rerio) Biol. Open. 2018;7:bio030130. doi: 10.1242/bio.030130. PubMed DOI PMC

Song Y., Nahrgang J., Tollefsen K.E. Transcriptomic analysis reveals dose-dependent modes of action of benzo(a)pyrene in polar cod (Boreogadus saida) Sci. Total Environ. 2019;653:176–189. doi: 10.1016/j.scitotenv.2018.10.261. PubMed DOI

Wang J.C. DNA topoisomerases. Annu. Rev. Biochem. 1996;65:635–692. doi: 10.1146/annurev.bi.65.070196.003223. PubMed DOI

Karapetian M., Tsikarishvili S., Kulikova N., Kurdadze A., Zaalishvili G. Genotoxic effects of topoisomerase poisoning and PARP inhibition on zebrafish embryos. DNA Repair (Amst) 2020;87:102772. doi: 10.1016/j.dnarep.2019.102772. PubMed DOI

Hengel S.R., Spies M.A., Spies M. Small-Molecule Inhibitors Targeting DNA Repair and DNA Repair Deficiency in Research and Cancer Therapy. Cell Chem. Biol. 2017;24:1101–1119. doi: 10.1016/j.chembiol.2017.08.027. PubMed DOI PMC

Vierstraete J., Fieuws C., Willaert A., Vral A., Claes K.B.M. Zebrafish as an in vivo screening tool to establish PARP inhibitor efficacy. DNA Repair (Amst) 2021;97:103023. doi: 10.1016/j.dnarep.2020.103023. PubMed DOI

Tsikarishvili S., Karapetian M., Kulikova N., Zaalishvili G. PARP inhibition suppresses topoisomerase 1 poisoning induced Caspase-3 dependent cell death in zebrafish embryos. Biochem. Biophys. Res. Commun. 2021;550:166–170. doi: 10.1016/j.bbrc.2021.03.005. PubMed DOI

Honjo Y., Ichinohe T. Stage-Specific Effects of Ionizing Radiation during Early Development. Int. J. Mol. Sci. 2020;21:3975. doi: 10.3390/ijms21113975. PubMed DOI PMC

Gordon W.E., Espinoza J.A., Leerberg D.M., Yelon D., Hamdoun A. Xenobiotic transporter activity in zebrafish embryo ionocytes. Aquat. Toxicol. 2019;212:88–97. doi: 10.1016/j.aquatox.2019.04.013. PubMed DOI PMC

Fischer S., Kluver N., Burkhardt-Medicke K., Pietsch M., Schmidt A.M., Wellner P., Schirmer K., Luckenbach T. Abcb4 acts as multixenobiotic transporter and active barrier against chemical uptake in zebrafish (Danio rerio) embryos. BMC Biol. 2013;11:69. doi: 10.1186/1741-7007-11-69. PubMed DOI PMC

Eachus H., Choi M.K., Ryu S. The Effects of Early Life Stress on the Brain and Behaviour: Insights From Zebrafish Models. Front. Cell Dev. Biol. 2021;9:657591. doi: 10.3389/fcell.2021.657591. PubMed DOI PMC

Vindas M.A., Fokos S., Pavlidis M., Hoglund E., Dionysopoulou S., Ebbesson L.O.E., Papandroulakis N., Dermon C.R. Early life stress induces long-term changes in limbic areas of a teleost fish: The role of catecholamine systems in stress coping. Sci. Rep. 2018;8:5638. doi: 10.1038/s41598-018-23950-x. PubMed DOI PMC

Reinhardt H.C., Schumacher B. The p53 network: Cellular and systemic DNA damage responses in aging and cancer. Trends Genet. 2012;28:128–136. doi: 10.1016/j.tig.2011.12.002. PubMed DOI PMC

Stacey D.W. Cyclin D1 serves as a cell cycle regulatory switch in actively proliferating cells. Curr. Opin. Cell Biol. 2003;15:158–163. doi: 10.1016/S0955-0674(03)00008-5. PubMed DOI

Choi E.H., Yoon S., Park K.S., Kim K.P. The Homologous Recombination Machinery Orchestrates Post-replication DNA Repair During Self-renewal of Mouse Embryonic Stem Cells. Sci. Rep. 2017;7:11610. doi: 10.1038/s41598-017-11951-1. PubMed DOI PMC

De Silva I.U., McHugh P.J., Clingen P.H., Hartley J.A. Defining the roles of nucleotide excision repair and recombination in the repair of DNA interstrand cross-links in mammalian cells. Mol. Cell Biol. 2000;20:7980–7990. doi: 10.1128/MCB.20.21.7980-7990.2000. PubMed DOI PMC

Kumar N., Moreno N.C., Feltes B.C., Menck C.F., Houten B.V. Cooperation and interplay between base and nucleotide excision repair pathways: From DNA lesions to proteins. Genet. Mol. Biol. 2020;43((Suppl. S1)):e20190104. doi: 10.1590/1678-4685-gmb-2019-0104. PubMed DOI PMC

Marconi D., Ranfley H., Menck C.F.M., Ferreira C.P., Câmara N.O.S. Interface of DNA Repair and Metabolism. Curr. Tissue Microenviron. Rep. 2020;1:209–220. doi: 10.1007/s43152-020-00018-5. DOI

Moretton A., Loizou J.I. Interplay between Cellular Metabolism and the DNA Damage Response in Cancer. Cancers. 2020;12:2051. doi: 10.3390/cancers12082051. PubMed DOI PMC

Xu K., Yin N., Peng M., Stamatiades E.G., Shyu A., Li P., Zhang X., Do M.H., Wang Z., Capistrano K.J., et al. Glycolysis fuels phosphoinositide 3-kinase signaling to bolster T cell immunity. Science. 2021;371:405–410. doi: 10.1126/science.abb2683. PubMed DOI PMC

Yilmaz O., Patinote A., Com E., Pineau C., Bobe J. Knock out of specific maternal vitellogenins in zebrafish (Danio rerio) evokes vital changes in egg proteomic profiles that resemble the phenotype of poor quality eggs. BMC Genom. 2021;22:308. doi: 10.1186/s12864-021-07606-1. PubMed DOI PMC

Gundel U., Benndorf D., von Bergen M., Altenburger R., Kuster E. Vitellogenin cleavage products as indicators for toxic stress in zebra fish embryos: A proteomic approach. Proteomics. 2007;7:4541–4554. doi: 10.1002/pmic.200700381. PubMed DOI

Sano K., Kawaguchi M., Katano K., Tomita K., Inokuchi M., Nagasawa T., Hiroi J., Kaneko T., Kitagawa T., Fujimoto T., et al. Comparison of Egg Envelope Thickness in Teleosts and its Relationship to the Sites of ZP Protein Synthesis. J. Exp. Zool. B Mol. Dev. Evol. 2017;328:240–258. doi: 10.1002/jez.b.22729. PubMed DOI

Hou D., Liu Z., Xu X., Liu Q., Zhang X., Kong B., Wei J.J., Gong Y., Shao C. Increased oxidative stress mediates the antitumor effect of PARP inhibition in ovarian cancer. Redox Biol. 2018;17:99–111. doi: 10.1016/j.redox.2018.03.016. PubMed DOI PMC

Wang X., Tanaka M., Krstin S., Peixoto H.S., Moura C.C.M., Wink M. Cytoskeletal interference—A new mode of action for the anticancer drugs camptothecin and topotecan. Eur. J. Pharmacol. 2016;789:265–274. doi: 10.1016/j.ejphar.2016.07.044. PubMed DOI

Ginsburg A.S., Dettlaff T.A. The Russian Sturgeon Acipenser Güldenstädti. Part I. Gametes And Early Development Up To Time Of Hatching. In: Dettlaff T.A., Vassetzky S.G., editors. Animal Species for Developmental Studies: Vertebrates. Springer; Boston, MA, USA: 1991. pp. 15–65.

Park C., Lee S.Y., Kim D., Nam Y. Embryonic Development of Siberian Sturgeon Acipenser baerii under Hatchery Conditions: An Image Guide with Embryological Descriptions. Fish. Aquat. Sci. 2013;16:15–23. doi: 10.5657/FAS.2013.0015. DOI

Bolger A.M., Lohse M., Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC

Kopylova E., Noe L., Touzet H. SortMeRNA: Fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics. 2012;28:3211–3217. doi: 10.1093/bioinformatics/bts611. PubMed DOI

Love M.I., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC

Raudvere U., Kolberg L., Kuzmin I., Arak T., Adler P., Peterson H., Vilo J. g:Profiler: A web server for functional enrichment analysis and conversions of gene lists (2019 update) Nucleic Acids Res. 2019;47:W191–W198. doi: 10.1093/nar/gkz369. PubMed DOI PMC

Gu Z., Hübschmann D. simplifyEnrichment: An R/Bioconductor package for Clustering and Visualizing Functional Enrichment Results. bioRxiv. 2020 doi: 10.1101/2020.10.27.312116. PubMed DOI PMC

Luo W., Brouwer C. Pathview: An R/Bioconductor package for pathway-based data integration and visualization. Bioinformatics. 2013;29:1830–1831. doi: 10.1093/bioinformatics/btt285. PubMed DOI PMC

Pei D.-S., Strauss P.R. Zebrafish as a model system to study DNA damage and repair. Mutat. Res. Fundam. Mol. Mech. Mutagenesis. 2013;743–744:151–159. doi: 10.1016/j.mrfmmm.2012.10.003. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

DNA repair genes play a variety of roles in the development of fish embryos

. 2023 ; 11 () : 1119229. [epub] 20230301

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace