Upstream Freshwater and Terrestrial Sources Are Differentially Reflected in the Bacterial Community Structure along a Small Arctic River and Its Estuary

. 2016 ; 7 () : 1474. [epub] 20160921

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27708629

Glacier melting and altered precipitation patterns influence Arctic freshwater and coastal ecosystems. Arctic rivers are central to Arctic water ecosystems by linking glacier meltwaters and precipitation with the ocean through transport of particulate matter and microorganisms. However, the impact of different water sources on the microbial communities in Arctic rivers and estuaries remains unknown. In this study we used 16S rRNA gene amplicon sequencing to assess a small river and its estuary on the Disko Island, West Greenland (69°N). Samples were taken in August when there is maximum precipitation and temperatures are high in the Disko Bay area. We describe the bacterial community through a river into the estuary, including communities originating in a glacier and a proglacial lake. Our results show that water from the glacier and lake transports distinct communities into the river in terms of diversity and community composition. Bacteria of terrestrial origin were among the dominating OTUs in the main river, while the glacier and lake supplied the river with water containing fewer terrestrial organisms. Also, more psychrophilic taxa were found in the community supplied by the lake. At the river mouth, the presence of dominant bacterial taxa from the lake and glacier was unnoticeable, but these taxa increased their abundances again further into the estuary. On average 23% of the estuary community consisted of indicator OTUs from different sites along the river. Environmental variables showed only weak correlations with community composition, suggesting that hydrology largely influences the observed patterns.

Zobrazit více v PubMed

Bowman J. P. (2007). Bioactive compound synthetic capacity and ecological significance of marine bacterial genus Pseudoalteromonas. Mar. Drugs 5, 220–241. 10.3390/md504220 PubMed DOI PMC

Bowman J. P., Nichols C. M., Gibson J. A. E. (2003). Algoriphagus ratkowskyi gen. nov., sp. nov., Brumimicrobium glaciale gen. nov., sp. nov., Cryomorpha ignava gen. nov., sp. nov. and Crocinitomix catalasitica gen. nov., sp. nov., novel flavobacteria isolated from various polar habitats. Int. J. Syst. Evol. Microbiol. 53, 1343–1355. 10.1099/ijs.0.02553-0 PubMed DOI

Caporaso J. G., Bittinger K., Bushman F. D., DeSantis T. Z., Andersen G. L., Knight R. (2010b). PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26, 266–267. 10.1093/bioinformatics/btp636 PubMed DOI PMC

Caporaso J. G., Kuczynski J., Stombaugh J., Bittinger K., Bushman F. D., Costello E. K., et al. . (2010a). QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336. 10.1038/nmeth.f.303 PubMed DOI PMC

Caporaso J. G., Lauber C. L., Walters W. A., Berg-Lyons D., Lozupone C. A., Turnbaugh P. J., et al. . (2011). Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. U.S.A. 108(Suppl. 1), 4516–4522. 10.1073/pnas.1000080107 PubMed DOI PMC

Chao A. (1984). Nonparametric estimation of the number of classes in a population. Scand. J. Stat. 11, 265–270.

Clarke K. R., Ainsworth M. (1993). A method of linking multivariate community structure to environmental variables. Mar. Ecol. Prog. Ser. 92, 205–219. 10.3354/meps092205 DOI

Crump B. C., Amaral-Zettler L. A., Kling G. W. (2012). Microbial diversity in arctic freshwaters is structured by inoculation of microbes from soils. ISME J. 6, 1629–1639. 10.1038/ismej.2012.9 PubMed DOI PMC

Crump B. C., Baross J. A. (2000). Archaeaplankton in the Columbia River, its estuary and the adjacent coastal ocean, USA. FEMS Microbiol. Ecol. 31, 231–239. 10.1111/j.1574-6941.2000.tb00688.x PubMed DOI

Crump B. C., Peterson B. J., Raymond P. A., Amon R. M. W., Rinehart A., McClelland J. W., et al. . (2009). Circumpolar synchrony in big river bacterioplankton. Proc. Natl. Acad. Sci. U.S.A. 106, 21208–21212. 10.1073/pnas.0906149106 PubMed DOI PMC

Crump R. C., Adams H. E., Hobbie J. E., Kling G. W. (2007). Biogeography of bacterioplankton in lakes and streams of an Arctic tundra catchment. Ecology 88, 1365–1378. 10.1890/06-0387 PubMed DOI

Decho A. W. (2000). Microbial biofilms in intertidal systems: an overview. Cont. Shelf Res. 20, 1257–1273. 10.1016/S0278-4343(00)00022-4 DOI

Dufrene M., Legendre P. (1997). Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monogr. 64, 345–366. 10.2307/2963459 DOI

Edgar R. C., Haas B. J., Clemente J. C., Quince C., Knight R. (2011). UCHIME improves sensitivity and speed of chimera detection. Bioinforma. Oxf. Engl. 27, 2194–2200. 10.1093/bioinformatics/btr381 PubMed DOI PMC

Fortunato C. S., Eiler A., Herfort L., Needoba J. A., Peterson T. D., Crump B. C. (2013). Determining indicator taxa across spatial and seasonal gradients in the Columbia River coastal margin. ISME J. 7, 1899–1911. 10.1038/ismej.2013.79 PubMed DOI PMC

Fortunato C. S., Herfort L., Zuber P., Baptista A. M., Crump B. C. (2012). Spatial variability overwhelms seasonal patterns in bacterioplankton communities across a river to ocean gradient. ISME J. 6, 554–563. 10.1038/ismej.2011.135 PubMed DOI PMC

Galand P. E., Lovejoy C., Pouliot J., Garneau M.-È., Vincent W. F. (2008). Microbial community diversity and heterotrophic production in a coastal Arctic ecosystem: a stamukhi lake and its source waters. Limnol. Oceanogr. 53, 813–823. 10.4319/lo.2008.53.2.0813 DOI

Galand P. E., Lovejoy C., Vincent W. F. (2006). Remarkably diverse and contrasting archaeal communities in a large arctic river and the coastal Arctic Ocean. Aquat. Microb. Ecol. 44, 115–126. 10.3354/ame044115 DOI

Garneau M.-È., Vincent W. F., Terrado R., Lovejoy C. (2009). Importance of particle-associated bacterial heterotrophy in a coastal Arctic ecosystem. J. Mar. Syst. 75, 185–197. 10.1016/j.jmarsys.2008.09.002 DOI

Garrity G., Brenner D. J., Staley J. T., Krieg N. R., Boone D. R., Vos P. D., et al. (2006). Bergey's Manual® of Systematic Bacteriology: Volume Two: The Proteobacteria. Berlin: Springer Science & Business Media.

Gosink J. J., Woese C. R., Staley J. T. (1998). Polaribacter gen. nov., with three new species, P. irgensii sp. nov., P. franzmannii sp. nov. and P. filamentus sp. nov., gas vacuolate polar marine bacteria of the Cytophaga-Flavobacterium-Bacteroides group and reclassification of “Flectobacillus glomeratus” as Polaribacter glomeratus comb. nov. Int. J. Syst. Bacteriol. 48(Pt 1), 223–235. 10.1099/00207713-48-1-223 PubMed DOI

Guo L., Ping C.-L., Macdonald R. W. (2007). Mobilization pathways of organic carbon from permafrost to arctic rivers in a changing climate. Geophys. Res. Lett. 34, L13603 10.1029/2007GL030689 DOI

Hawkings J. R., Wadham J. L., Tranter M., Lawson E., Sole A., Cowton T., et al. (2015). The effect of warming climate on nutrient and solute export from the Greenland Ice Sheet. Geochem. Perspect. Lett. 1, 94–104. 10.7185/geochemlet.1510 DOI

Kirchman D. L., Dittel A. I., Malmstrom R. R., Cottrell M. T. (2005). Biogeography of major bacterial groups in the Delaware Estuary. Limnol. Oceanogr. 50, 1697–1706. 10.4319/lo.2005.50.5.1697 DOI

Kling G. W., Kipphut G. W., Miller M. C. (1991). Arctic Lakes and Streams as Gas Conduits to the Atmosphere: implications for tundra carbon budgets. Science 251, 298–301. 10.1126/science.251.4991.298 PubMed DOI

Lawson E. C., Wadham J. L., Tranter M., Stibal M., Lis G. P., Butler C. E. H., et al. (2014). Greenland Ice Sheet exports labile organic carbon to the Arctic oceans. Biogeosciences 11, 4015–4028. 10.5194/bg-11-4015-2014 DOI

Lee K.-B., Liu C.-T., Anzai Y., Kim H., Aono T., Oyaizu H. (2005). The hierarchical system of the “Alphaproteobacteria”: description of Hyphomonadaceae fam. nov., Xanthobacteraceae fam. nov. and Erythrobacteraceae fam. nov. Int. J. Syst. Evol. Microbiol. 55, 1907–1919. 10.1099/ijs.0.63663-0 PubMed DOI

Lennon J. T., Jones S. E. (2011). Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat. Rev. Microbiol. 9, 119–130. 10.1038/nrmicro2504 PubMed DOI

Markussen T. N., Elberling B., Winter C., Andersen T. J. (2016). Flocculated meltwater particles control Arctic land-sea fluxes of labile iron. Sci. Rep. 6:24033. 10.1038/srep24033 PubMed DOI PMC

Meon B., Amon R. M. W. (2004). Heterotrophic bacterial activity and fluxes of dissolved free amino acids and glucose in the Arctic rivers Ob, Yenisei and the adjacent Kara Sea. Aquat. Microb. Ecol. 37, 121–135. 10.3354/ame037121 DOI

Mountfort D. O., Rainey F. A., Burghardt J., Kaspar H. F., Stackebrandt E. (1998). Psychromonas antarcticus gen. nov., sp. nov., a new aerotolerant anaerobic, halophilic psychrophile isolated from pond sediment of the McMurdo Ice Shelf, Antarctica. Arch. Microbiol. 169, 231–238. 10.1007/s002030050566 PubMed DOI

Mueller D. R., Vincent W. F., Jeffries M. O. (2003). Break-up of the largest Arctic ice shelf and associated loss of an epishelf lake. Geophys. Res. Lett. 30, 2031 10.1029/2003gl017931 DOI

Nelson C. E., Sadro S., Melack J. M. (2009). Contrasting the influences of stream inputs and landscape position on bacterioplankton community structure and dissolved organic matter composition in high-elevation lake chains. Limnol. Oceanogr. 54, 1292–1305. 10.4319/lo.2009.54.4.1292 DOI

Niño-García J. P., Ruiz-González C., del Giorgio P. A. (2016). Interactions between hydrology and water chemistry shape bacterioplankton biogeography across boreal freshwater networks. ISME J. 10, 1755–1766. 10.1038/ismej.2015.226 PubMed DOI PMC

Oksanen J., Blanchet F. G., Kindt R., Legendre P., Minchin P. R., O'Hara R. B., et al. (2015). vegan: Community Ecology Package. R package version 2.2–1. Available online at: http://CRAN.R-project.org/package=vegan

Patel R. K., Jain M. (2012). NGS QC Toolkit: a toolkit for quality control of next generation sequencing data. PLoS ONE 7:e30619. 10.1371/journal.pone.0030619 PubMed DOI PMC

Peter H., Sommaruga R. (2016). Shifts in diversity and function of lake bacterial communities upon glacier retreat. ISME J. 10, 1545–1554. 10.1038/ismej.2015.245 PubMed DOI PMC

Pujalte M. J., Lucena T., Ruvira M. A., Arahal D. R., Macián M. C. (2014). The Family Rhodobacteraceae in The Prokaryotes, eds Rosenberg E., DeLong E. F., Lory S., Stackebrandt E., Thompson F. (Berlin; Heidelberg: Springer; ), 439–512.

R Development Core Team (2008). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. Available online at: http://www.R-project.org

Ruiz-González C., Niño-García J. P., del Giorgio P. A. (2015). Terrestrial origin of bacterial communities in complex boreal freshwater networks. Ecol. Lett. 18, 1198–1206. 10.1111/ele.12499 PubMed DOI

Serreze M. C., Walsh J. E., Iii F. S. C., Osterkamp T., Dyurgerov M., Romanovsky V., et al. (2000). Observational evidence of recent change in the northern high-latitude environment. Clim. Change 46, 159–207. 10.1023/A:1005504031923 DOI

Shannon C. E. (1948). A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423.

Shivaji S., Reddy G. S. (2014). Phylogenetic analyses of the genus Glaciecola: emended description of the genus Glaciecola, transfer of Glaciecola mesophila, G. agarilytica, G. aquimarina, G. arctica, G. chathamensis, G. polaris and G. psychrophila to the genus Paraglaciecola gen. nov. as Paraglaciecola mesophila comb. nov., P. agarilytica comb. nov., P. aquimarina comb. nov., P. arctica comb. nov., P. chathamensis comb. nov., P. polaris comb. nov. and P. psychrophila comb. nov., and description of Paraglaciecola oceanifecundans sp. nov., isolated from the Southern Ocean. Int. J. Syst. Evol. Microbiol. 64, 3264–3275. 10.1099/ijs.0.065409-0 PubMed DOI

Sinclair L., Osman O. A., Bertilsson S., Eiler A. (2015). Microbial community composition and diversity via 16S rRNA gene amplicons: evaluating the illumina platform. PLoS ONE 10:e16955. 10.1371/journal.pone.0116955 PubMed DOI PMC

Sorokin D. Y. (1995). Sulfitobacter pontiacus gen. nov. sp. nov. - a new heterotrophic bacterium from the black sea, specialized on sulfite oxidation. Microbiology 64, 354–365.

Urakawa H., Kita-Tsukamoto K., Steven S. E., Ohwada K., Colwell R. R. (1998). A proposal to transfer Vibrio marinus (Russell 1891) to a new genus Moritella gen. nov. as Moritella marina comb. nov. FEMS Microbiol. Lett. 165, 373–378. 10.1111/j.1574-6968.1998.tb13173.x PubMed DOI

Vallieres C., Retamal L., Ramlal P., Osburn C. L., Vincent W. F. (2008). Bacterial production and microbial food web structure in a large arctic river and the coastal Arctic Ocean. J. Mar. Syst. 74, 756–773. 10.1016/j.jmarsys.2007.12.002 DOI

Van Landschoot A., De Ley J. (1983). Intra- and intergeneric similarities of the rRNA cistrons of Alteromonas, Marinomonas (gen. nov.) and some other gram-negative bacteria. J. Gen. Microbiol. 129, 3057–3074. 10.1099/00221287-129-10-3057 DOI

Wells L. E., Cordray M., Bowerman S., Miller L. A., Vincent W. F., Deming J. W. (2006). Archaea in particle-rich waters of the Beaufort Shelf and Franklin Bay, Canadian Arctic: Clues to an allochthonous origin? Limnol. Oceanogr. 51, 47–59. 10.4319/lo.2006.51.1.0047 DOI

Worldview (2013). The Earth Observing System Data and Information System (EOSDIS). NASA, USA. Available online at: https://worldview.earthdata.nasa.gov/

Yakimov M. M., Giuliano L., Gentile G., Crisafi E., Chernikova T. N., Abraham W.-R., et al. . (2003). Oleispira antarctica gen. nov., sp. nov., a novel hydrocarbonoclastic marine bacterium isolated from Antarctic coastal sea water. Int. J. Syst. Evol. Microbiol. 53, 779–785. 10.1099/ijs.0.02366-0 PubMed DOI

Yamada T., Sekiguchi Y., Hanada S., Imachi H., Ohashi A., Harada H., et al. . (2006). Anaerolinea thermolimosa sp. nov., Levilinea saccharolytica gen. nov., sp. nov. and Leptolinea tardivitalis gen. nov., sp. nov., novel filamentous anaerobes, and description of the new classes Anaerolineae classis nov. and Caldilineae classis nov. in the bacterial phylum Chloroflexi. Int. J. Syst. Evol. Microbiol. 56, 1331–1340. 10.1099/ijs.0.64169-0 PubMed DOI

Zhang J., Kobert K., Flouri T., Stamatakis A. (2014). PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30, 614–620. 10.1093/bioinformatics/btt593 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace