Patterns in Microbial Assemblages Exported From the Meltwater of Arctic and Sub-Arctic Glaciers
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32351489
PubMed Central
PMC7174618
DOI
10.3389/fmicb.2020.00669
Knihovny.cz E-zdroje
- Klíčová slova
- 16S rRNA gene, biogeography, cryosphere, glacial runoff, hydrology, polar stream,
- Publikační typ
- časopisecké články MeSH
Meltwater streams connect the glacial cryosphere with downstream ecosystems. Dissolved and particulate matter exported from glacial ecosystems originates from contrasting supraglacial and subglacial environments, and exported microbial cells have the potential to serve as ecological and hydrological indicators for glacial ecosystem processes. Here, we compare exported microbial assemblages from the meltwater of 24 glaciers from six (sub)Arctic regions - the southwestern Greenland Ice Sheet, Qeqertarsuaq (Disko Island) in west Greenland, Iceland, Svalbard, western Norway, and southeast Alaska - differing in their lithology, catchment size, and climatic characteristics, to investigate spatial and environmental factors structuring exported meltwater assemblages. We found that 16S rRNA gene sequences of all samples were dominated by the phyla Proteobacteria, Bacteroidetes, and Actinobacteria, with Verrucomicrobia also common in Greenland localities. Clustered OTUs were largely composed of aerobic and anaerobic heterotrophs capable of degrading a wide variety of carbon substrates. A small number of OTUs dominated all assemblages, with the most abundant being from the genera Polaromonas, Methylophilus, and Nitrotoga. However, 16-32% of a region's OTUs were unique to that region, and rare taxa revealed unique metabolic potentials and reflected differences between regions, such as the elevated relative abundances of sulfur oxidizers Sulfuricurvum sp. and Thiobacillus sp. at Svalbard sites. Meltwater alpha diversity showed a pronounced decrease with increasing latitude, and multivariate analyses of assemblages revealed significant regional clusters. Distance-based redundancy and correlation analyses further resolved associations between whole assemblages and individual OTUs with variables primarily corresponding with the sampled regions. Interestingly, some OTUs indicating specific metabolic processes were not strongly associated with corresponding meltwater characteristics (e.g., nitrification and inorganic nitrogen concentrations). Thus, while exported assemblage structure appears regionally specific, and probably reflects differences in dominant hydrological flowpaths, OTUs can also serve as indicators for more localized microbially mediated processes not captured by the traditional characterization of bulk meltwater hydrochemistry. These results collectively promote a better understanding of microbial distributions across the Arctic, as well as linkages between the terrestrial cryosphere habitats and downstream ecosystems.
Department of Ecology Faculty of Science Charles University Prague Czechia
Department of Environmental Sciences Western Norway University of Applied Sciences Sogndal Norway
Department of Natural Sciences University of Alaska Southeast Juneau AK United States
GFZ German Research Centre for Geosciences Potsdam Germany
School of Earth Sciences University of Bristol Bristol United Kingdom
Zobrazit více v PubMed
Achberger A. M., Christner B. C., Michaud A. B., Priscu J. C., Skidmore M. L., Vick-Majors T. J., et al. (2016). Microbial community structure of subglacial Lake Whillans, West Antarctica. PubMed DOI PMC
Andreassen L. M., Winsvold S. H., Paul F., Hausberg J. E. (2012). Inventory of norwegian glaciers.
Anesio A. M., Lutz S., Chrismas N. A. M., Benning L. G. (2017). The microbiome of glaciers and ice sheets. PubMed DOI PMC
Aronesty E. (2011).
Bhatia M. P., Das S. B., Xu L., Charette M. A., Wadham J. L., Kujawinski E. B. (2013a). Organic carbon export from the Greenland ice sheet. DOI
Bhatia M. P., Kujawinski E. B., Das S. B., Breier C. F., Henderson P. B., Charette M. A. (2013b). Greenland meltwater as a significant and potentially bioavailable source of iron to the ocean. DOI
Björnsson H., Pálsson F., Guðmundsson M. T. (2000). Surface and bedrock topography of the Mýrdalsjökull ice cap.
Björnsson H., Pálsson F., Sigurđsson O., Flowers G. E. (2003). Surges of glaciers in Iceland. DOI
Boddicker A. M., Mosier A. C. (2018). Genomic profiling of four cultivated PubMed DOI PMC
Boyd E. S., Hamilton T. L., Havig J. R., Skidmore M. L., Shock E. L. (2014). Chemolithotrophic primary production in a subglacial ecosystem. PubMed DOI PMC
Boyd E. S., Lange R. K., Mitchell A. C., Havig J. R., Hamilton T. L., Lafrenière M. J., et al. (2011). Diversity, abundance, and potential activity of nitrifying and nitrate-reducing microbial assemblages in a subglacial ecosystem. PubMed DOI PMC
Boyd E. S., Skidmore M., Mitchell A. C., Bakermans C., Peters J. W. (2010). Methanogenesis in subglacial sediments. PubMed DOI
Brown G., Sharp M., Tranter M. (1996). Subglacial chemical erosion: seasonal variations in solute provenance, Haut Glacier d’Arolla, Valais, Switzerland. DOI
Cameron K. A., Stibal M., Hawkings J. R., Mikkelsen A. B., Telling J., Kohler T. J., et al. (2017). Meltwater export of prokaryotic cells from the Greenland ice sheet. PubMed DOI
Cameron K. A., Stibal M., Zarsky J. D., Gözdereliler E., Schostag M., Jacobsen C. S. (2016). Supraglacial bacterial community structures vary across the Greenland ice sheet. PubMed DOI
Caporaso J. G., Lauber C. L., Walters W. A., Berg-Lyons D., Lozupone C. A., Turnbaugh P. J., et al. (2011). Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. PubMed DOI PMC
Carnahan E., Amundson J. M., Hood E. (2019). Impact of glacier loss and vegetation succession on annual basin runoff. DOI
Chu H., Fierer N., Lauber C. L., Caporaso J. G., Knight R., Grogan P. (2010). Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes. PubMed DOI
Cook J. M., Edwards A., Bulling M., Mur L. A., Cook S., Gokul J. K., et al. (2016). Metabolome-mediated biocryomorphic evolution promotes carbon fixation in Greenlandic cryoconite holes. PubMed DOI
Cruaud P., Vigneron A., Fradette M. S., Dorea C. C., Culley A. I., Rodriguez M. J., et al. (2019). Annual bacterial community cycle in a seasonally ice-covered river reflects environmental and climatic conditions. DOI
Darcy J. L., Lynch R. C., King A. J., Robeson M. S., Schmidt S. K. (2011). Global distribution of polaromonas phylotypes-evidence for a highly successful dispersal capacity. PubMed DOI PMC
Dieser M., Broemsen E. L., Cameron K. A., King G. M., Achberger A., Choquette K., et al. (2014). Molecular and biogeochemical evidence for methane cycling beneath the western margin of the Greenland Ice Sheet. PubMed DOI PMC
Dubnick A., Kazemi S., Sharp M., Wadham J., Hawkings J., Beaton A., et al. (2017a). Hydrological controls on glacially exported microbial assemblages. DOI
Dubnick A., Wadham J., Tranter M., Sharp M., Orwin J., Barker J., et al. (2017b). Trickle or treat: the dynamics of nutrient export from polar glaciers. DOI
Edgar R. C. (2013). UPARSE: highly accurate OTU sequences from microbial amplicon reads. PubMed DOI
Fell S. C., Carrivick J. L., Brown L. E. (2017). The multitrophic effects of climate change and glacier retreat in mountain rivers. PubMed DOI PMC
Fierer N., Jackson R. B. (2006). The diversity and biogeography of soil bacterial communities. PubMed DOI PMC
Franzetti A., Tatangelo V., Gandolfi I., Bertolini V., Bestetti G., Diolaiuti G., et al. (2013). Bacterial community structure on two alpine debris-covered glaciers and biogeography of PubMed DOI PMC
Fuhrman J. A., Steele J. A., Hewson I., Schwalbach M. S., Brown M. V., Green J. L., et al. (2008). A latitudinal diversity gradient in planktonic marine bacteria. PubMed DOI PMC
Gokul J. K., Cameron K. A., Irvine-Fynn T. D., Cook J. M., Hubbard A., Stibal M., et al. (2019). Illuminating the dynamic rare biosphere of the Greenland Ice Sheet’s Dark Zone. PubMed DOI
Goordial J., Davila A., Lacelle D., Pollard W., Marinova M. M., Greer C. W., et al. (2016). Nearing the cold-arid limits of microbial life in permafrost of an upper dry valley. PubMed DOI PMC
Graly J. A., Humphrey N. F., Landowski C. M., Harper J. T. (2014). Chemical weathering under the Greenland ice sheet. DOI
Hagen J. O., Liestøl O., Roland E., Jørgensen T. (1993). Glacier atlas of Svalbard and jan mayen.
Hamilton T. L., Peters J. W., Skidmore M. L., Boyd E. S. (2013). Molecular evidence for an active endogenous microbiome beneath glacial ice. PubMed DOI PMC
Hatton J. E., Hendry K. R., Hawkings J. R., Wadham J. L., Kohler T. J., Stibal M., et al. (2019a). Investigation of subglacial weathering under the Greenland Ice Sheet using silicon isotopes. DOI
Hatton J. E., Hendry K. R., Hawkings J. R., Wadham J. L., Opfergelt S., Kohler T. J., et al. (2019b). Silicon isotopes in Arctic and sub-Arctic glacial meltwaters: the role of the subglacial environment in the silicon cycle. PubMed DOI PMC
Hauptmann A. L., Markussen T. N., Stibal M., Olsen N. S., Elberling B., Balum J., et al. (2016). Upstream freshwater and terrestrial sources are differentially reflected in the bacterial community structure along a small Arctic river and its estuary. PubMed DOI PMC
Hawkings J. R., Wadham J. L., Benning L. G., Hendry K. R., Tranter M., Tedstone A., et al. (2017). Ice sheets as a missing source of silica to the polar oceans. PubMed DOI PMC
Hawkings J. R., Wadham J. L., Tranter M., Lawson E., Sole A., Cowton T., et al. (2015). The effect of warming climate on nutrient and solute export from the Greenland Ice Sheet. DOI
Henriksen N., Higgins A. K., Kalsbeek F., Pulvertaft T., Christopher R. (2009). “Greenland from Archaean to Quaternary: descriptive text to the 1995 Geological map of Greenland,’ 1: 2 500 000,” in
Hillebrand H. (2004). On the generality of the latitudinal diversity gradient. PubMed DOI
Hood E., Berner L. (2009). Effects of changing glacial coverage on the physical and biogeochemical properties of coastal streams in southeastern Alaska. DOI
Hood E., Fellman J., Spencer R. G., Hernes P. J., Edwards R., D’Amore D., et al. (2009). Glaciers as a source of ancient and labile organic matter to the marine environment. PubMed DOI
Hotaling S., Finn D. S., Joseph Giersch J., Weisrock D. W., Jacobsen D. (2017a). Climate change and alpine stream biology: progress, challenges, and opportunities for the future. PubMed DOI
Hotaling S., Hood E., Hamilton T. L. (2017b). Microbial ecology of mountain glacier ecosystems: biodiversity, ecological connections and implications of a warming climate. PubMed DOI
Hubbard B., Nienow P. (1997). Alpine subglacial hydrology. DOI
Huss M., Hock R. (2018). Global-scale hydrological response to future glacier mass loss. DOI
Irvine-Fynn T. D., Hodson A. J., Moorman B. J., Vatne G., Hubbard A. L. (2011). Polythermal glacier hydrology: a review. DOI
Katoh K., Standley D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. PubMed DOI PMC
Kohler T. J., Žárský J. D., Yde J. C., Lamarche-Gagnon G., Hawkings J. R., Tedstone A. J., et al. (2017). Carbon dating reveals a seasonal progression in the source of particulate organic carbon exported from the Greenland Ice Sheet. DOI
Lamarche-Gagnon G., Wadham J. L., Lollar B. S., Arndt S., Fietzek P., Beaton A. D., et al. (2019). Greenland melt drives continuous export of methane from its bed. PubMed DOI
Langford H., Hodson A., Banwart S., Bøggild C. (2010). The microstructure and biogeochemistry of arctic cryoconite granules. DOI
Lawson E. C., Wadham J. L., Tranter M., Stibal M., Lis G. P., Butler C. E., et al. (2014). Greenland Ice sheet exports labile organic carbon to the Arctic oceans. DOI
Lee S. Y., Eom Y. B. (2016). Analysis of microbial composition associated with freshwater and seawater. DOI
Lindbäck K., Pettersson R., Hubbard A. L., Doyle S. H., van As D., Mikkelsen A. B., et al. (2015). Subglacial water drainage, storage, and piracy beneath the Greenland ice sheet. DOI
Lynch M. D. J., Neufeld J. D. (2015). Ecology and exploration of the rare biosphere. PubMed DOI
Mateos-Rivera A., Yde J. C., Wilson B., Finster K. W., Reigstad L. J., Øvreås L. (2016). The effect of temperature change on the microbial diversity and community structure along the chronosequence of the sub-arctic glacier forefield of Styggedalsbreen (Norway). PubMed DOI
McMurdie P. J., Holmes S. (2013). phyloseq: an r package for reproducible interactive analysis and graphics of microbiome census data. PubMed DOI PMC
Meyer F., Paarmann D., D’Souza M., Olson R., Glass E. M., Kubal M., et al. (2008). The metagenomics RAST server–a public resource for the automatic phylogenetic and functional analysis of metagenomes. PubMed DOI PMC
Milner A. M., Khamis K., Battin T. J., Brittain J. E., Barrand N. E., Füreder L., et al. (2017). Glacier shrinkage driving global changes in downstream systems. PubMed DOI PMC
Mitchell A. C., Lafrenière M. J., Skidmore M. L., Boyd E. S. (2013). Influence of bedrock mineral composition on microbial diversity in a subglacial environment. DOI
Montross S. N., Skidmore M., Tranter M., Kivimäki A. L., Parkes R. J. (2013). A microbial driver of chemical weathering in glaciated systems. DOI
Oksanen J., Blanchet F. G., Friendly M., Kindt R., Legendre P., McGlinn D., et al. (2018).
O’Neel S., Hood E., Bidlack A. L., Fleming S. W., Arimitsu M. L., Arendt A., et al. (2015). Icefield-to-ocean linkages across the northern Pacific coastal temperate rainforest ecosystem. DOI
Palmer S., Shepherd A., Nienow P., Joughin I. (2011). Seasonal speedup of the Greenland Ice Sheet linked to routing of surface water. DOI
Pianka E. R. (1966). Latitudinal gradients in species diversity: a review of concepts. DOI
R Core Team (2017).
Raes E. J., Bodrossy L., van de Kamp J., Bissett A., Waite A. M. (2018). Marine bacterial richness increases towards higher latitudes in the eastern Indian Ocean. DOI
Rohde K. (1992). Latitudinal gradients in species diversity: the search for the primary cause. DOI
Schloss P. D., Westcott S. L., Ryabin T., Hall J. R., Hartmann M., Hollister E. B., et al. (2009). Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. PubMed DOI PMC
Sharp M., Parkes J., Cragg B., Fairchild I. J., Lamb H., Tranter M. (1999). Widespread bacterial populations at glacier beds and their relationship to rock weathering and carbon cycling. DOI
Sheik C. S., Stevenson E. I., Den Uyl P. A., Arendt C. A., Aciego S. M., Dick G. J. (2015). Microbial communities of the Lemon Creek Glacier show subtle structural variation yet stable phylogenetic composition over space and time. PubMed DOI PMC
Stachnik L., Yde J. C., Nawrot A., Uzarowicz L., Lepkowska E., Kozak K. (2019). Aluminium in glacial meltwater demonstrates an association with nutrient export (Werenskiöldbreen, Svalbard). DOI
Stamatakis A. (2014). RAxML Version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. PubMed DOI PMC
Stibal M., Hasan F., Wadham J. L., Sharp M. J., Anesio A. M. (2012a). Prokaryotic diversity in sediments beneath two polar glaciers with contrasting organic carbon substrates. PubMed DOI
Stibal M., Telling J., Cook J., Mak K. M., Hodson A., Anesio A. M. (2012b). Environmental controls on microbial abundance and activity on the Greenland ice sheet: a multivariate analysis approach. PubMed DOI
Stibal M., Wadham J. L., Lis G. P., Telling J., Pancost R. D., Dubnick A., et al. (2012c). Methanogenic potential of Arctic and Antarctic subglacial environments with contrasting organic carbon sources. DOI
Tranter M., Brown G. H., Hodson A. J., Gurnell A. M. (1996). Hydrochemistry as an indicator of subglacial drainage system structure: a comparison of alpine and sub-polar environments. DOI
Tranter M., Sharp M. J., Lamb H. R., Brown G. H., Hubbard B. P., Willis I. C. (2002). Geochemical weathering at the bed of Haut Glacier d’Arolla, Switzerland—a new model. DOI
Tranter M., Skidmore M., Wadham J. (2005). Hydrological controls on microbial communities in subglacial environments. DOI
Tweed F. S., Roberts M. J., Russell A. J. (2005). Hydrologic monitoring of supercooled meltwater from Icelandic glaciers. DOI
Van de Wal R. S. W., Russell A. J. (1994). A comparison of energy balance calculations, measured ablation and meltwater runoff near Søndre Strømfjord, West Greenland. DOI
Větrovský T., Baldrian P., Morais D. (2018). SEED 2: a user-friendly platform for amplicon high-throughput sequencing data analyses. PubMed DOI PMC
Vu V. Q. (2011).
Wadham J. L., Bottrell S., Tranter M., Raiswell R. (2004). Stable isotope evidence for microbial sulphate reduction at the bed of a polythermal high Arctic glacier. DOI
Wadham J. L., Tranter M., Skidmore M., Hodson A. J., Priscu J., Lyons W. B., et al. (2010). Biogeochemical weathering under ice: size matters. DOI
Warnes G. R., Bolker B., Bonebakker L., Gentleman R., Huber W., Liaw A., et al. (2019).
Whitaker D., Christman M. (2014).
Yde J. C., Riger-Kusk M., Christiansen H. H., Knudsen N. T., Humlum O. (2008). Hydrochemical characteristics of bulk meltwater from an entire ablation season, Longyearbreen, Svalbard. DOI
Žárský J. D., Kohler T. J., Yde J. C., Falteisek L., Lamarche-Gagnon G., Hawkings J. R., et al. (2018). Prokaryotic assemblages in suspended and subglacial sediments within a glacierized catchment on Qeqertarsuaq (Disko Island), west Greenland. PubMed DOI
Zemp M., Huss M., Thibert E., Eckert N., McNabb R., Huber J., et al. (2019). Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. PubMed DOI
Methylotrophic Communities Associated with a Greenland Ice Sheet Methane Release Hotspot
Storage and export of microbial biomass across the western Greenland Ice Sheet