Patterns in Microbial Assemblages Exported From the Meltwater of Arctic and Sub-Arctic Glaciers

. 2020 ; 11 () : 669. [epub] 20200415

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32351489

Meltwater streams connect the glacial cryosphere with downstream ecosystems. Dissolved and particulate matter exported from glacial ecosystems originates from contrasting supraglacial and subglacial environments, and exported microbial cells have the potential to serve as ecological and hydrological indicators for glacial ecosystem processes. Here, we compare exported microbial assemblages from the meltwater of 24 glaciers from six (sub)Arctic regions - the southwestern Greenland Ice Sheet, Qeqertarsuaq (Disko Island) in west Greenland, Iceland, Svalbard, western Norway, and southeast Alaska - differing in their lithology, catchment size, and climatic characteristics, to investigate spatial and environmental factors structuring exported meltwater assemblages. We found that 16S rRNA gene sequences of all samples were dominated by the phyla Proteobacteria, Bacteroidetes, and Actinobacteria, with Verrucomicrobia also common in Greenland localities. Clustered OTUs were largely composed of aerobic and anaerobic heterotrophs capable of degrading a wide variety of carbon substrates. A small number of OTUs dominated all assemblages, with the most abundant being from the genera Polaromonas, Methylophilus, and Nitrotoga. However, 16-32% of a region's OTUs were unique to that region, and rare taxa revealed unique metabolic potentials and reflected differences between regions, such as the elevated relative abundances of sulfur oxidizers Sulfuricurvum sp. and Thiobacillus sp. at Svalbard sites. Meltwater alpha diversity showed a pronounced decrease with increasing latitude, and multivariate analyses of assemblages revealed significant regional clusters. Distance-based redundancy and correlation analyses further resolved associations between whole assemblages and individual OTUs with variables primarily corresponding with the sampled regions. Interestingly, some OTUs indicating specific metabolic processes were not strongly associated with corresponding meltwater characteristics (e.g., nitrification and inorganic nitrogen concentrations). Thus, while exported assemblage structure appears regionally specific, and probably reflects differences in dominant hydrological flowpaths, OTUs can also serve as indicators for more localized microbially mediated processes not captured by the traditional characterization of bulk meltwater hydrochemistry. These results collectively promote a better understanding of microbial distributions across the Arctic, as well as linkages between the terrestrial cryosphere habitats and downstream ecosystems.

Zobrazit více v PubMed

Achberger A. M., Christner B. C., Michaud A. B., Priscu J. C., Skidmore M. L., Vick-Majors T. J., et al. (2016). Microbial community structure of subglacial Lake Whillans, West Antarctica. Front. Microbiol. 7:1457 10.3389/fmicb.2016.01457 PubMed DOI PMC

Andreassen L. M., Winsvold S. H., Paul F., Hausberg J. E. (2012). Inventory of norwegian glaciers. Rapport 38 1––236.

Anesio A. M., Lutz S., Chrismas N. A. M., Benning L. G. (2017). The microbiome of glaciers and ice sheets. NPJ Biofilms Microbiomes 3:10. 10.1038/s41522-017-0019-0 PubMed DOI PMC

Aronesty E. (2011). Command-Line Tools For Processing Biological Sequencing Data. Available online at: http://code.google.com/p/ea-utils (accessed December 27, 2019).

Bhatia M. P., Das S. B., Xu L., Charette M. A., Wadham J. L., Kujawinski E. B. (2013a). Organic carbon export from the Greenland ice sheet. Geochim. Cosmochim. Acta 109 329–344. 10.1016/j.gca.2013.02.006 DOI

Bhatia M. P., Kujawinski E. B., Das S. B., Breier C. F., Henderson P. B., Charette M. A. (2013b). Greenland meltwater as a significant and potentially bioavailable source of iron to the ocean. Nat. Geosci. 6 274–278. 10.1038/ngeo1746 DOI

Björnsson H., Pálsson F., Guðmundsson M. T. (2000). Surface and bedrock topography of the Mýrdalsjökull ice cap. Jökull 49 29–46.

Björnsson H., Pálsson F., Sigurđsson O., Flowers G. E. (2003). Surges of glaciers in Iceland. Ann. Glaciol. 36 82–90. 10.3189/172756403781816365 DOI

Boddicker A. M., Mosier A. C. (2018). Genomic profiling of four cultivated Candidatus Nitrotoga spp. predicts broad metabolic potential and environmental distribution. ISME J. 12 2864–2882. 10.1038/s41396-018-0240-8 PubMed DOI PMC

Boyd E. S., Hamilton T. L., Havig J. R., Skidmore M. L., Shock E. L. (2014). Chemolithotrophic primary production in a subglacial ecosystem. Appl. Environ. Microbiol. 80 6146–6153. 10.1128/AEM.01956-14 PubMed DOI PMC

Boyd E. S., Lange R. K., Mitchell A. C., Havig J. R., Hamilton T. L., Lafrenière M. J., et al. (2011). Diversity, abundance, and potential activity of nitrifying and nitrate-reducing microbial assemblages in a subglacial ecosystem. Appl. Environ. Microbiol. 77 4778–4787. 10.1128/AEM.00376-11 PubMed DOI PMC

Boyd E. S., Skidmore M., Mitchell A. C., Bakermans C., Peters J. W. (2010). Methanogenesis in subglacial sediments. Environ. Microbiol. Rep. 2 685–692. 10.1111/j.1758-2229.2010.00162.x PubMed DOI

Brown G., Sharp M., Tranter M. (1996). Subglacial chemical erosion: seasonal variations in solute provenance, Haut Glacier d’Arolla, Valais, Switzerland. Ann. Glaciol. 22 25–31. 10.3189/1996AoG22-1-25-31 DOI

Cameron K. A., Stibal M., Hawkings J. R., Mikkelsen A. B., Telling J., Kohler T. J., et al. (2017). Meltwater export of prokaryotic cells from the Greenland ice sheet. Environ. Microbiol. 19 524–534. 10.1111/1462-2920.13483 PubMed DOI

Cameron K. A., Stibal M., Zarsky J. D., Gözdereliler E., Schostag M., Jacobsen C. S. (2016). Supraglacial bacterial community structures vary across the Greenland ice sheet. FEMS Microbiol. Ecol. 92:fiv164. 10.1093/femsec/fiv164 PubMed DOI

Caporaso J. G., Lauber C. L., Walters W. A., Berg-Lyons D., Lozupone C. A., Turnbaugh P. J., et al. (2011). Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. 108 4516–4522. 10.1073/pnas.1000080107 PubMed DOI PMC

Carnahan E., Amundson J. M., Hood E. (2019). Impact of glacier loss and vegetation succession on annual basin runoff. Hydrol. Earth Syst. Sci. 23 1667–1681. 10.5194/hess-23-1667-2019 DOI

Chu H., Fierer N., Lauber C. L., Caporaso J. G., Knight R., Grogan P. (2010). Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes. Environ. Microbiol. 12 2998–3006. 10.1111/j.1462-2920.2010.02277.x PubMed DOI

Cook J. M., Edwards A., Bulling M., Mur L. A., Cook S., Gokul J. K., et al. (2016). Metabolome-mediated biocryomorphic evolution promotes carbon fixation in Greenlandic cryoconite holes. Environ. Microbiol. 18 4674–4686. 10.1111/1462-2920.13349 PubMed DOI

Cruaud P., Vigneron A., Fradette M. S., Dorea C. C., Culley A. I., Rodriguez M. J., et al. (2019). Annual bacterial community cycle in a seasonally ice-covered river reflects environmental and climatic conditions. Limnol. Oceanogr. 65 S21–S37. 10.1002/lno.11130 DOI

Darcy J. L., Lynch R. C., King A. J., Robeson M. S., Schmidt S. K. (2011). Global distribution of polaromonas phylotypes-evidence for a highly successful dispersal capacity. PLoS One 6:e23742. 10.1371/journal.pone.0023742 PubMed DOI PMC

Dieser M., Broemsen E. L., Cameron K. A., King G. M., Achberger A., Choquette K., et al. (2014). Molecular and biogeochemical evidence for methane cycling beneath the western margin of the Greenland Ice Sheet. ISME J. 8 2305–2316. 10.1038/ismej.2014.59 PubMed DOI PMC

Dubnick A., Kazemi S., Sharp M., Wadham J., Hawkings J., Beaton A., et al. (2017a). Hydrological controls on glacially exported microbial assemblages. J. Geophys. Res. Biogeosci. 122 1049–1061. 10.1002/2016JG003685 DOI

Dubnick A., Wadham J., Tranter M., Sharp M., Orwin J., Barker J., et al. (2017b). Trickle or treat: the dynamics of nutrient export from polar glaciers. Hydrol. Process. 31 1776–1789. 10.1002/hyp.11149 DOI

Edgar R. C. (2013). UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10 996–998. 10.1038/nmeth.2604 PubMed DOI

Fell S. C., Carrivick J. L., Brown L. E. (2017). The multitrophic effects of climate change and glacier retreat in mountain rivers. BioScience 67 897–911. 10.1093/biosci/bix107 PubMed DOI PMC

Fierer N., Jackson R. B. (2006). The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. U.S.A. 103 626–631. 10.1073/pnas.0507535103 PubMed DOI PMC

Franzetti A., Tatangelo V., Gandolfi I., Bertolini V., Bestetti G., Diolaiuti G., et al. (2013). Bacterial community structure on two alpine debris-covered glaciers and biogeography of Polaromonas phylotypes. ISME J. 7 1483–1492. 10.1038/ismej.2013.48 PubMed DOI PMC

Fuhrman J. A., Steele J. A., Hewson I., Schwalbach M. S., Brown M. V., Green J. L., et al. (2008). A latitudinal diversity gradient in planktonic marine bacteria. Proc. Natl. Acad. Sci. U.S.A. 105 7774–7778. 10.1073/pnas.0803070105 PubMed DOI PMC

Gokul J. K., Cameron K. A., Irvine-Fynn T. D., Cook J. M., Hubbard A., Stibal M., et al. (2019). Illuminating the dynamic rare biosphere of the Greenland Ice Sheet’s Dark Zone. FEMS Microbiol. Ecol. 95:fiz177. 10.1093/femsec/fiz177 PubMed DOI

Goordial J., Davila A., Lacelle D., Pollard W., Marinova M. M., Greer C. W., et al. (2016). Nearing the cold-arid limits of microbial life in permafrost of an upper dry valley. Antarctica. ISME J. 10 1613–1624. 10.1038/ismej.2015.239 PubMed DOI PMC

Graly J. A., Humphrey N. F., Landowski C. M., Harper J. T. (2014). Chemical weathering under the Greenland ice sheet. Geology 42 551–554. 10.1130/G35370.1 DOI

Hagen J. O., Liestøl O., Roland E., Jørgensen T. (1993). Glacier atlas of Svalbard and jan mayen. Nor. Polarinst. Medd. 129:141.

Hamilton T. L., Peters J. W., Skidmore M. L., Boyd E. S. (2013). Molecular evidence for an active endogenous microbiome beneath glacial ice. ISME J. 7 1402–1412. 10.1038/ismej.2013.31 PubMed DOI PMC

Hatton J. E., Hendry K. R., Hawkings J. R., Wadham J. L., Kohler T. J., Stibal M., et al. (2019a). Investigation of subglacial weathering under the Greenland Ice Sheet using silicon isotopes. Geochim. Cosmochim. Acta 247 191–206. 10.1016/j.gca.2018.12.033 DOI

Hatton J. E., Hendry K. R., Hawkings J. R., Wadham J. L., Opfergelt S., Kohler T. J., et al. (2019b). Silicon isotopes in Arctic and sub-Arctic glacial meltwaters: the role of the subglacial environment in the silicon cycle. Proc. Royal Soc. A 475 20190098. 10.1098/rspa.2019.0098 PubMed DOI PMC

Hauptmann A. L., Markussen T. N., Stibal M., Olsen N. S., Elberling B., Balum J., et al. (2016). Upstream freshwater and terrestrial sources are differentially reflected in the bacterial community structure along a small Arctic river and its estuary. Front. Microbiol. 7:1474 10.3389/fmicb.2016.01474 PubMed DOI PMC

Hawkings J. R., Wadham J. L., Benning L. G., Hendry K. R., Tranter M., Tedstone A., et al. (2017). Ice sheets as a missing source of silica to the polar oceans. Nat. Commun. 8:14198. 10.1038/ncomms14198 PubMed DOI PMC

Hawkings J. R., Wadham J. L., Tranter M., Lawson E., Sole A., Cowton T., et al. (2015). The effect of warming climate on nutrient and solute export from the Greenland Ice Sheet. Geochem. Perspect. Lett. 1 94–104. 10.7185/geochemlet.1510 DOI

Henriksen N., Higgins A. K., Kalsbeek F., Pulvertaft T., Christopher R. (2009). “Greenland from Archaean to Quaternary: descriptive text to the 1995 Geological map of Greenland,’ 1: 2 500 000,” in Geological Survey of Denmark and Greenland Bulletin 18, 2nd Edn. (Copenhagen: Geological Survey of Denmark and Greenland: ).

Hillebrand H. (2004). On the generality of the latitudinal diversity gradient. Am. Nat. 163 192–211. 10.1086/381004 PubMed DOI

Hood E., Berner L. (2009). Effects of changing glacial coverage on the physical and biogeochemical properties of coastal streams in southeastern Alaska. J. Geophys. Res. Biogeosci. 114:G03001 10.1029/2009JG000971 DOI

Hood E., Fellman J., Spencer R. G., Hernes P. J., Edwards R., D’Amore D., et al. (2009). Glaciers as a source of ancient and labile organic matter to the marine environment. Nature 462 1044–1047. 10.1038/nature08580 PubMed DOI

Hotaling S., Finn D. S., Joseph Giersch J., Weisrock D. W., Jacobsen D. (2017a). Climate change and alpine stream biology: progress, challenges, and opportunities for the future. Biol. Rev. 92 2024–2045. 10.1111/brv.12319 PubMed DOI

Hotaling S., Hood E., Hamilton T. L. (2017b). Microbial ecology of mountain glacier ecosystems: biodiversity, ecological connections and implications of a warming climate. Environ. Microbiol. 19 2935–2948. 10.1111/1462-2920.13766 PubMed DOI

Hubbard B., Nienow P. (1997). Alpine subglacial hydrology. Quat. Sci. Rev. 16 939–955. 10.1016/S0277-3791(97)00031-0 DOI

Huss M., Hock R. (2018). Global-scale hydrological response to future glacier mass loss. Nat. Clim. Change 8 135–140. 10.1038/s41558-017-0049-x DOI

Irvine-Fynn T. D., Hodson A. J., Moorman B. J., Vatne G., Hubbard A. L. (2011). Polythermal glacier hydrology: a review. Rev. Geophys. 49:RG4002 10.1029/2010RG000350 DOI

Katoh K., Standley D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30 772–780. 10.1093/molbev/mst010 PubMed DOI PMC

Kohler T. J., Žárský J. D., Yde J. C., Lamarche-Gagnon G., Hawkings J. R., Tedstone A. J., et al. (2017). Carbon dating reveals a seasonal progression in the source of particulate organic carbon exported from the Greenland Ice Sheet. Geophys. Res. Lett. 44 6209–6217. 10.1002/2017GL073219 DOI

Lamarche-Gagnon G., Wadham J. L., Lollar B. S., Arndt S., Fietzek P., Beaton A. D., et al. (2019). Greenland melt drives continuous export of methane from its bed. Nature 565 73–77. 10.1038/s41586-018-0800-0 PubMed DOI

Langford H., Hodson A., Banwart S., Bøggild C. (2010). The microstructure and biogeochemistry of arctic cryoconite granules. Ann. Glaciol. 51 87–94. 10.3189/172756411795932083 DOI

Lawson E. C., Wadham J. L., Tranter M., Stibal M., Lis G. P., Butler C. E., et al. (2014). Greenland Ice sheet exports labile organic carbon to the Arctic oceans. Biogeosciences 11 4015–4028. 10.5194/bg-11-4015-2014 DOI

Lee S. Y., Eom Y. B. (2016). Analysis of microbial composition associated with freshwater and seawater. Biomed. Sci. Lett. 22 150–159. 10.15616/BSL.2016.22.4.150 DOI

Lindbäck K., Pettersson R., Hubbard A. L., Doyle S. H., van As D., Mikkelsen A. B., et al. (2015). Subglacial water drainage, storage, and piracy beneath the Greenland ice sheet. Geophys. Res. Lett. 42 7606–7614. 10.1002/2015GL065393 DOI

Lynch M. D. J., Neufeld J. D. (2015). Ecology and exploration of the rare biosphere. Nat. Rev. Microbiol. 13 217–229. 10.1038/nrmicro3400 PubMed DOI

Mateos-Rivera A., Yde J. C., Wilson B., Finster K. W., Reigstad L. J., Øvreås L. (2016). The effect of temperature change on the microbial diversity and community structure along the chronosequence of the sub-arctic glacier forefield of Styggedalsbreen (Norway). FEMS Microbiol. Ecol. 92:fnw038. 10.1093/femsec/fiw038 PubMed DOI

McMurdie P. J., Holmes S. (2013). phyloseq: an r package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8:e61217. 10.1371/journal.pone.0061217 PubMed DOI PMC

Meyer F., Paarmann D., D’Souza M., Olson R., Glass E. M., Kubal M., et al. (2008). The metagenomics RAST server–a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9:386. 10.1186/1471-2105-9-386 PubMed DOI PMC

Milner A. M., Khamis K., Battin T. J., Brittain J. E., Barrand N. E., Füreder L., et al. (2017). Glacier shrinkage driving global changes in downstream systems. Proc. Natl. Acad. Sci. U.S.A. 114 9770–9778. 10.1073/pnas.1619807114 PubMed DOI PMC

Mitchell A. C., Lafrenière M. J., Skidmore M. L., Boyd E. S. (2013). Influence of bedrock mineral composition on microbial diversity in a subglacial environment. Geology 41 855–858. 10.1130/G34194.1 DOI

Montross S. N., Skidmore M., Tranter M., Kivimäki A. L., Parkes R. J. (2013). A microbial driver of chemical weathering in glaciated systems. Geology 41 215–218. 10.1130/G33572.1 DOI

Oksanen J., Blanchet F. G., Friendly M., Kindt R., Legendre P., McGlinn D., et al. (2018). vegan: Community Ecology Package. R Package Version 2.4-6. Available online at: https://CRAN.R-project.org/package=vegan (accessed December 27, 2019).

O’Neel S., Hood E., Bidlack A. L., Fleming S. W., Arimitsu M. L., Arendt A., et al. (2015). Icefield-to-ocean linkages across the northern Pacific coastal temperate rainforest ecosystem. BioScience 65 499–512. 10.1093/biosci/biv027 DOI

Palmer S., Shepherd A., Nienow P., Joughin I. (2011). Seasonal speedup of the Greenland Ice Sheet linked to routing of surface water. Earth Planet. Sc. Lett. 302 423–428. 10.1016/j.epsl.2010.12.037 DOI

Pianka E. R. (1966). Latitudinal gradients in species diversity: a review of concepts. Am. Nat. 100 33–46. 10.1086/282398 DOI

R Core Team (2017). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. Available online at: https://www.R-project.org/.

Raes E. J., Bodrossy L., van de Kamp J., Bissett A., Waite A. M. (2018). Marine bacterial richness increases towards higher latitudes in the eastern Indian Ocean. Limnol. Oceanogr. Lett. 3 10–19. 10.1002/lol2.10058 DOI

Rohde K. (1992). Latitudinal gradients in species diversity: the search for the primary cause. Oikos 64 514–527. 10.2307/3545569 DOI

Schloss P. D., Westcott S. L., Ryabin T., Hall J. R., Hartmann M., Hollister E. B., et al. (2009). Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75 7537–7541. 10.1128/AEM.01541-09 PubMed DOI PMC

Sharp M., Parkes J., Cragg B., Fairchild I. J., Lamb H., Tranter M. (1999). Widespread bacterial populations at glacier beds and their relationship to rock weathering and carbon cycling. Geology 27 107–110. 10.1130/0091-76131999027<0107:WBPAGB>2.3.CO;2 DOI

Sheik C. S., Stevenson E. I., Den Uyl P. A., Arendt C. A., Aciego S. M., Dick G. J. (2015). Microbial communities of the Lemon Creek Glacier show subtle structural variation yet stable phylogenetic composition over space and time. Front. Microbiol. 6:495 10.3389/fmicb.2015.00495 PubMed DOI PMC

Stachnik L., Yde J. C., Nawrot A., Uzarowicz L., Lepkowska E., Kozak K. (2019). Aluminium in glacial meltwater demonstrates an association with nutrient export (Werenskiöldbreen, Svalbard). Hydrol. Process. 33 1638–1657. 10.1002/hyp.13426 DOI

Stamatakis A. (2014). RAxML Version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30 1312–1313. 10.1093/bioinformatics/btu033 PubMed DOI PMC

Stibal M., Hasan F., Wadham J. L., Sharp M. J., Anesio A. M. (2012a). Prokaryotic diversity in sediments beneath two polar glaciers with contrasting organic carbon substrates. Extremophiles 16 255–265. 10.1007/s00792-011-0426-8 PubMed DOI

Stibal M., Telling J., Cook J., Mak K. M., Hodson A., Anesio A. M. (2012b). Environmental controls on microbial abundance and activity on the Greenland ice sheet: a multivariate analysis approach. Microb. Ecol. 63 74–84. 10.1007/s00248-011-9935-3 PubMed DOI

Stibal M., Wadham J. L., Lis G. P., Telling J., Pancost R. D., Dubnick A., et al. (2012c). Methanogenic potential of Arctic and Antarctic subglacial environments with contrasting organic carbon sources. Global Change Biol. 18 3332–3345. 10.1111/j.1365-2486.2012.02763.x DOI

Tranter M., Brown G. H., Hodson A. J., Gurnell A. M. (1996). Hydrochemistry as an indicator of subglacial drainage system structure: a comparison of alpine and sub-polar environments. Hydrol. Process. 10 541–556. 10.1002/(sici)1099-1085(199604)10:4<541::aid-hyp391>3.0.co;2-9 DOI

Tranter M., Sharp M. J., Lamb H. R., Brown G. H., Hubbard B. P., Willis I. C. (2002). Geochemical weathering at the bed of Haut Glacier d’Arolla, Switzerland—a new model. Hydrol. Process. 16 959–993. 10.1002/hyp.309 DOI

Tranter M., Skidmore M., Wadham J. (2005). Hydrological controls on microbial communities in subglacial environments. Hydrol. Process. 19 995–998. 10.1002/hyp.5854 DOI

Tweed F. S., Roberts M. J., Russell A. J. (2005). Hydrologic monitoring of supercooled meltwater from Icelandic glaciers. Quat. Sci. Rev. 24 2308–2318. 10.1016/j.quascirev.2004.11.020 DOI

Van de Wal R. S. W., Russell A. J. (1994). A comparison of energy balance calculations, measured ablation and meltwater runoff near Søndre Strømfjord, West Greenland. Glob. Planet. Change 9 29–38. 10.1016/0921-8181(94)90005-1 DOI

Větrovský T., Baldrian P., Morais D. (2018). SEED 2: a user-friendly platform for amplicon high-throughput sequencing data analyses. Bioinformatics 34 2292–2294. 10.1093/bioinformatics/bty071 PubMed DOI PMC

Vu V. Q. (2011). ggbiplot: A ggplot2 Based Biplot. R Package Version 0.55. Available online at: http://github.com/vqv/ggbiplot (accessed December 27, 2019).

Wadham J. L., Bottrell S., Tranter M., Raiswell R. (2004). Stable isotope evidence for microbial sulphate reduction at the bed of a polythermal high Arctic glacier. Earth Planet. Sc. Lett. 219 341–355. 10.1016/S0012-821X(03)00683-6 DOI

Wadham J. L., Tranter M., Skidmore M., Hodson A. J., Priscu J., Lyons W. B., et al. (2010). Biogeochemical weathering under ice: size matters. Global Biogeochem. Cycles 24:GB3025 10.1029/2009GB003688 DOI

Warnes G. R., Bolker B., Bonebakker L., Gentleman R., Huber W., Liaw A., et al. (2019). gplots: Various R Programming Tools for Plotting Data. R Package Version 3.0.1.1. Available online at: https://CRAN.R-project.org/package=gplots (accessed December 27, 2019).

Whitaker D., Christman M. (2014). Clustsig: Significant Cluster Analysis. R package Version 1.1. Available online at: https://CRAN.R-project.org/package=clustsig (accessed December 27, 2019).

Yde J. C., Riger-Kusk M., Christiansen H. H., Knudsen N. T., Humlum O. (2008). Hydrochemical characteristics of bulk meltwater from an entire ablation season, Longyearbreen, Svalbard. J. Glaciol. 54 259–272. 10.3189/002214308784886234 DOI

Žárský J. D., Kohler T. J., Yde J. C., Falteisek L., Lamarche-Gagnon G., Hawkings J. R., et al. (2018). Prokaryotic assemblages in suspended and subglacial sediments within a glacierized catchment on Qeqertarsuaq (Disko Island), west Greenland. FEMS Microbiol. Ecol. 94:fiy100. 10.1093/femsec/fiy100 PubMed DOI

Zemp M., Huss M., Thibert E., Eckert N., McNabb R., Huber J., et al. (2019). Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature 568:382. 10.1038/s41586-019-1071-0 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...