Recently formed Antarctic lakes host less diverse benthic bacterial and diatom communities than their older counterparts
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37516444
PubMed Central
PMC10446143
DOI
10.1093/femsec/fiad087
PII: 7233717
Knihovny.cz E-zdroje
- Klíčová slova
- 16S rDNA, climate change, cryosphere, cyanobacteria, diatom, glacier,
- MeSH
- Bacteria genetika MeSH
- jezera mikrobiologie MeSH
- mikrobiota * MeSH
- rozsivky * genetika MeSH
- voda MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Antarktida MeSH
- Názvy látek
- voda MeSH
Glacier recession is creating new water bodies in proglacial forelands worldwide, including Antarctica. Yet, it is unknown how microbial communities of recently formed "young" waterbodies (originating decades to a few centuries ago) compare with established "old" counterparts (millennia ago). Here, we compared benthic microbial communities of different lake types on James Ross Island, Antarctic Peninsula, using 16S rDNA metabarcoding and light microscopy to explore bacterial and diatom communities, respectively. We found that the older lakes host significantly more diverse bacterial and diatom communities compared to the young ones. To identify potential mechanisms for these differences, linear models and dbRDA analyses suggested combinations of water temperature, pH, and conductivity to be the most important factors for diversity and community structuring, while differences in geomorphological and hydrological stability, though more difficult to quantify, are likely also influential. These results, along with an indicator species analysis, suggest that physical and chemical constraints associated with individual lakes histories are likely more influential to the assembly of the benthic microbial communities than lake age alone. Collectively, these results improve our understanding of microbial community drivers in Antarctic freshwaters, and help predict how the microbial landscape may shift with future habitat creation within a changing environment.
Zobrazit více v PubMed
Adrian R, O’Reilly CM, Zagarese Het al. Lakes as sentinels of climate change. Limnol Oceanogr. 2009;54:2283–97. PubMed PMC
Almela P, Justel A, Quesada A. Heterogeneity of microbial communities in soils from the Antarctic Peninsula region. Front Microbiol. 2021;12:1–13. PubMed PMC
Ambrožová K, Hrbáček F, Láska K. The summer surface energy budget of the ice-free area of northern James Ross Island and its impact on the ground thermal regime. Atmosphere. 2020;11:877.
Ambrožová K, Láska K, Hrbáček Fet al. Air temperature and lapse rate variation in the ice-free and glaciated areas of northern James Ross Island, Antarctic Peninsula, during 2013–2016. Int J Climatol. 2019;39:643–57.
Anderson MJ. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2001;26:32–46.
Apprill A, McNally S, Parsons Ret al. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat Microb Ecol. 2015;75:129–37.
Archer SDJ, McDonald IR, Herbold CWet al. Benthic microbial communities of coastal terrestrial and ice shelf Antarctic meltwater ponds. Front Microbiol. 2015;6:1–11. PubMed PMC
Barták M, Váczi P, Stachoň Zet al. Vegetation mapping of moss-dominated areas of northern part of James Ross Island (Antarctica) and a suggestion of protective measures. Czech Polar Rep. 2015;5:75–87.
Bates D, Mächler M, Bolker BMet al. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67. 10.18637/jss.v067.i01. DOI
Bielewicz S, Bell E, Kong Wet al. Protist diversity in a permanently ice-covered Antarctic Lake during the polar night transition. ISME J. 2011;5:1559–64. PubMed PMC
Bisanz JE. qiime2R: Importing QIIME2 artifacts and associated data into R sessions. 2018. https://github.com/jbisanz/qiime2R (published 2018; 12 January 2023, date last accessed).
Bokulich NA, Kaehler BD, Rideout JRet al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome. 2018;6:1–17. PubMed PMC
Bolyen E, Rideout JR, Dillon MRet al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7. PubMed PMC
Bourquin M, Busi SB, Fodelianakis Set al. The microbiome of cryospheric ecosystems. Nat Commun. 2022;13:1–9. PubMed PMC
Callahan BJ, McMurdie PJ, Rosen MJet al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3. PubMed PMC
Caporaso JG, Lauber CL, Walters WAet al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci USA. 2011;108:4516–22. PubMed PMC
Carrivick JL, Tweed FS. Proglacial Lakes: character, behaviour and geological importance. Quat Sci Rev. 2013;78:34–52.
Čejka T, Nývlt D, Kopalová Ket al. Timing of the neoglacial onset on the North-Eastern Antarctic Peninsula based on lacustrine archive from Lake Anónima, Vega Island. Glob Planet Change. 2020;184. 10.1016/j.gloplacha.2019.103050. DOI
Chattová B, Cahová T, Pinseel Eet al. Diversity, ecology, and community structure of the terrestrial diatom flora from Ulu Peninsula (James Ross Island, NE Antarctic Peninsula). Polar Biol. 2022;45:873–94.
da Rosa KK, de Oliveira MAG, Petsch Cet al. Expansion of glacial lakes on Nelson and King George Islands, Maritime Antarctica, from 1986 to 2020. Geocarto Int. 2022;37:4454–64.
Davies BJ, Glasser NF, Carrivick JLet al. Landscape evolution and ice-sheet behaviour in a semi-arid polar environment: James Ross Island, NE Antarctic Peninsula. Geol Soc Spec. 2013;381:353–95.
De Cáceres M, Legendre P. Associations between species and groups of sites: indices and statistical inference. Ecology. 2009;90:3566–74. PubMed
Decelle J, Romac S, Stern RFet al. PhytoREF: a reference database of the plastidial 16S rRNA gene of photosynthetic eukaryotes with curated taxonomy. Mol Ecol Resour. 2015;15:1435–45. PubMed
DeSantis TZ, Hugenholtz P, Larsen Net al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microb. 2006;72:5069–72. PubMed PMC
Dufrêne M, Legendre P. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr. 1997;67:345–66.
Ellis-Evans JC. Microbial diversity and function in antarctic freshwater ecosystems. Biodivers Conserv. 1996;5:1395–431.
Engel Z, Láska K, Kavan Jet al. Persistent mass loss of Triangular Glacier, James Ross Island, north-eastern Antarctic Peninsula. J Glaciol. 2022;69:1–13.
Fawley KP, Fawley MW. Observations on the diversity and ecology of freshwater nannochloropsis (Eustigmatophyceae), with descriptions of new taxa. Protist. 2007;158:325–36. PubMed
Fietz S, Bleiß W, Hepperle Det al. First record of
Flexas MM, Thompson AF, Schodlok MPet al. Antarctic Peninsula warming triggers enhanced basal melt rates throughout West Antarctica. Sci Adv. 2022;8:eabj9134. PubMed PMC
Franzmann PD. Examination of Antarctic prokaryotic diversity through molecular comparisons. Biodivers Conserv. 1996;5:1295–305.
Glassing A, Dowd SE, Galandiuk Set al. Inherent bacterial DNA contamination of extraction and sequencing reagents may affect interpretation of microbiota in low bacterial biomass samples. Gut Pathog. 2016;8:24–12. PubMed PMC
Jaccard P. Nouvelles Recherches Sur la Distribution Florale. Bull La Soc Vaudoise Des Sci Nat. 1908;44:223–70.
Jackson EE, Hawes I, Jungblut AD. 16S rRNA gene and 18S rRNA gene diversity in microbial mat communities in meltwater ponds on the McMurdo Ice Shelf, Antarctica. Polar Biol. 2021;44:823–36.
Jennings SJA, Davies BJ, Nývlt Det al. Geomorphology of Ulu Peninsula, James Ross Island, Antarctica. J Maps. 2021;17:125–39.
Kaplan Pastíriková L, Hrbáček F, Uxa Tet al. Permafrost table temperature and active layer thickness variability on James Ross Island, Antarctic Peninsula, in 2004–2021. Sci Tot Env. 2023;869:161690. 10.1016/j.scitotenv.2023.161690. PubMed DOI
Karlov DS, Marie D, Sumbatyan DAet al. Microbial communities within the water column of freshwater Lake Radok, East Antarctica: predominant 16S rDNA phylotypes and bacterial cultures. Polar Biol. 2017;40:823–36.
Kavan J, Nedbalová L, Nývlt Det al. Status and short-term environmental changes of lakes in the area of Devil’s Bay, Vega Island, Antarctic Peninsula. Antarct Sci. 2021;33:150–64.
Kavan J, Nývlt D, Láska Ket al. High-latitude dust deposition in snow on the glaciers of James Ross Island, Antarctica. Earth Surf Process Landforms. 2020;45:1569–78.
Kavan J. Water temperature regime of selected lakes on James Ross Island during 2015 austral summer. Czech Pol Reports. 2017;7:83–93.
Kiernan K, McConnell A. Glacier retreat and melt-lake expansion at Stephenson Glacier, Heard Island World Heritage Area. Polar Rec. 2002;38:297–308.
Kohler TJ, Vinšová P, Falteisek Let al. Patterns in microbial assemblages exported from the meltwater of arctic and sub-Arctic glaciers. Front Microbiol. 2020;11. 10.3389/fmicb.2020.00669. PubMed DOI PMC
Kopalová K, Nedbalová L, Nývlt Det al. Diversity, ecology and biogeography of the freshwater diatom communities from Ulu Peninsula (James Ross Island, NE Antarctic Peninsula). Polar Biol. 2013;36:933–48.
Kopalová K, Ochyra R, Nedbalová Let al. Moss inhabiting diatoms from two contrasting Maritime Antarctic islands. Plant Ecol Evol. 2014;147:67–84.
Kopalová K, Soukup J, Kohler TJet al. Habitat controls on limno-terrestrial diatom communities of Clearwater Mesa, James Ross Island, Maritime Antarctica. Polar Biol. 2019;42:1595–613.
Krienitz L, Hepperle D, Stich HBet al.
Laybourn-Parry J, Pearce D. Heterotrophic bacteria in Antarctic lacustrine and glacial environments. Polar Biol. 2016;39:2207–25.
Laybourn-Parry J, Pearce DA. The biodiversity and ecology of Antarctic lakes: models for evolution. Philos Trans R Soc B Biol Sci. 2007;362:2273–89. PubMed PMC
Lee JR, Raymond B, Bracegirdle TJet al. Climate change drives expansion of Antarctic ice-free habitat. Nature. 2017;547:49–54. PubMed
Lüdecke D, Ben-Shachar M, Patil Iet al. performance: an R package for assessment, comparison and testing of statistical models. J Open Source Softw. 2021;6:3139.
Lynch M, Neufeld J. Ecology and exploration of the rare biosphere. Nat Rev Micro. 2015;13:217–29. PubMed
Mandal S, Van Treuren W, White RAet al. Analysis of composition of microbiomes: a novel method for studying microbial composition. Microb Ecol Heal Dis. 2015;26:1–7. PubMed PMC
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10–2.
McMurdie PJ, Holmes S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:1–11. PubMed PMC
Mlčoch B, Nývlt D, Mixa P (eds.), Geological map of James Ross Island – Northern Part. 1 : 25000. Prague: Czech Geological Survey, 2020.
Mueller DR, Vincent WF. Microbial habitat dynamics and ablation control on the Ward Hunt Ice Shelf. Hydrol Process. 2006;20:857–76.
Nedbalová L, Nývlt D, Kopáček Jet al. Freshwater lakes of Ulu Peninsula, James Ross Island, north-east Antarctic Peninsula: origin, geomorphology and physical and chemical limnology. Antarct Sci. 2013;25:358–72.
Nývlt D, Braucher R, Engel Zet al. Timing of the Northern Prince Gustav Ice Stream retreat and the deglaciation of northern James Ross Island, Antarctic Peninsula during the last glacial-interglacial transition. Quat Res. 2014;82:441–9.
Oksanen AJ, Blanchet FG, Friendly Met al. Vegan: community ecology package. CRAN. 2020.
Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14. PubMed
Peeters K, Verleyen E, Hodgson DAet al. Heterotrophic bacterial diversity in aquatic microbial mat communities from Antarctica. Polar Biol. 2011;35:543–54.
Peter H, Jeppesen E, De Meester Let al. Changes in bacterioplankton community structure during early lake ontogeny resulting from the retreat of the Greenland Ice Sheet. ISME J. 2018;12:544–55. PubMed PMC
Pielou EC. The measurement of diversity in different types of biological collections. J Theor Biol. 1966;13:131–44.
Píšková A, Roman M, Bulínová Met al. Late-Holocene palaeoenvironmental changes at Lake Esmeralda (Vega Island, Antarctic Peninsula) based on a multi-proxy analysis of laminated lake sediment. Holocene. 2019;29:1155–75.
Quast C, Pruesse E, Yilmaz Pet al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:590–6. PubMed PMC
Quayle WC, Peck LS, Peat Het al. Extreme responses to climate change in Antarctic lakes. Science. 2002;295:645. PubMed
R Core Team . R: a language and environment for statistical computing. 2022.
Ramoneda J, Hawes I, Pascual-García Aet al. Importance of environmental factors over habitat connectivity in shaping bacterial communities in microbial mats and bacterioplankton in an Antarctic freshwater system. FEMS Microbiol Ecol. 2021;97:1–12. PubMed
Robeson MS, O’Rourke DR, Kaehler BDet al. RESCRIPt: reproducible sequence taxonomy reference database management. PLoS Comput Biol. 2021;17:e1009581. PubMed PMC
Rochera C, Justel A, Fernández-Valiente Eet al. Interannual meteorological variability and its effects on a lake from maritime Antarctica. Polar Biol. 2010;33:1615–28.
Roman M, Nedbalová L, Kohler TJet al. Lacustrine systems of Clearwater Mesa (James Ross Island, north-eastern Antarctic Peninsula): geomorphological setting and limnological characterization. Antarct Sci. 2019;31:169–88.
Sakaeva A, Sokol ER, Kohler TJet al. Evidence for dispersal and habitat controls on pond diatom communities from the McMurdo Sound Region of Antarctica. Polar Biol. 2016;39:2441–56.
Salter SJ, Cox MJ, Turek EMet al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 2014;12:87–12. PubMed PMC
Schulte NO, Khan AL, Smith EWet al. Blowin’ in the wind: dispersal, structure, and metacommunity dynamics of aeolian diatoms in the McMurdo Sound region, Antarctica. J Phycol. 2022;58:36–54. PubMed
Shannon CE, Weaver W. The Mathematical Theory of Communication. Champaign: University of Illinois Press, 1949.
Siegert M, Atkinson A, Banwell Aet al. The Antarctic Peninsula under a 1.5°C global warming scenario. Front Environ Sci. 2019;7:1–7.
Simionato D, Block MA, La Rocca Net al. The response of PubMed PMC
Sokol ER, Herbold CW, Lee CKet al. Local and regional influences over soil microbial metacommunities in the Transantarctic Mountains. Ecosphere. 2013;4:1–24.
Sommaruga R. When glaciers and ice sheets melt: consequences for planktonic organisms. J Plankton Res. 2015;37:509–18. PubMed PMC
Sone T, Fukui K, Strelin JAet al. Glacier lake outburst flood on James Ross Island, Antarctic Peninsula region. Pol Polar Res. 2007;28:3–12.
Sørensen T. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content. K Danske Vidensk Selsk. 1948;5:1–34.
Souffreau C, Vanormelingen P, Sabbe Ket al. Tolerance of resting cells of freshwater and terrestrial benthic diatoms to experimental desiccation and freezing is habitat-dependent. Phycologia. 2013;52:246–55.
Souffreau C, Vanormelingen P, Verleyen Eet al. Tolerance of benthic diatoms from temperate aquatic and terrestrial habitats to experimental desiccation and temperature stress. Phycologia. 2010;49:309–24.
Spaulding S, Van de Vijver B, Hodgson Det al. Diatoms as indicators of environmental change in Antarctic and subantarctic freshwaters. In: Smol JP, Stoermer EF (eds.), The Diatoms: Applications for the Environmental and Earth Sciences, 2nd edn.Cambridge: Cambridge University Press, 2010, 267–86.
Sterken M, Roberts SJ, Hodgson DAet al. Holocene glacial and climate history of Prince Gustav Channel, northeastern Antarctic Peninsula. Quat Sci Rev. 2012;31:93–111.
Tang Y, Horikoshi M, Li W. Ggfortify: unified interface to visualize statistical results of popular R packages. R J. 2016;8:478–89.
Tofilovska S, Wetzel CE, Ector Let al. Observation on
Turner J, Lu H, King Jet al. Extreme temperatures in the Antarctic. J Clim. 2021;34:2653–68.
Van der Werff A. A new method of concentrating and cleaning diatoms and other organisms. Int Vereinigung Für Theor Und Angew Limnol Verhandlungen. 1955;12:276–7.
Vaughan DG, Marshall GJ, Connolley WMet al. Recent rapid regional climate warming on the Antarctic Peninsula. Clim Change. 2003;60:243–74.
Villeneuve V, Vincent WF, Komárek J. Community structure and microhabitat characteristics of cyanobacterial mats in an extreme high Arctic environment: Ward Hunt Lake. Nova Hedwigia. 2001;123:199–224.
Vincent WF, Castenholz RW, Downes MTet al. Antarctic cyanobacteria: light, nutrients, and photosynthesis in the microbial mat environment. J Phycol. 1993;29:745–55.
Vincent WF, Laybourn-Parry J. Polar Lakes and Rivers. Oxford: Oxford University Press, 2008.
Vinšová P, Kohler TJ, Simpson MJet al. The biogeochemical legacy of Arctic subglacial sediments exposed by glacier retreat. Glob Biogeochem Cycles. 2022;36. 10.1029/2021GB007126. DOI
Williamson CE, Saros JE, Vincent WFet al. Lakes and reservoirs as sentinels, integrators, and regulators of climate change. Limnol Oceanogr. 2009;54:2273–82.
Zhang L, Jungblut AD, Hawes Iet al. Cyanobacterial diversity in benthic mats of the McMurdo Dry Valley lakes, Antarctica. Polar Biol. 2015;38:1097–110.
Zidarova R, Kopalová K, Van de Vijver B. Diatoms from the Antarctic Region, Maritime Antarctica. Iconogr Diatomol. 2016;24:504.