Review and Chemoinformatic Analysis of Ferroptosis Modulators with a Focus on Natural Plant Products

. 2023 Jan 04 ; 28 (2) : . [epub] 20230104

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid36677534

Ferroptosis is a regular cell death pathway that has been proposed as a suitable therapeutic target in cancer and neurodegenerative diseases. Since its definition in 2012, a few hundred ferroptosis modulators have been reported. Based on a literature search, we collected a set of diverse ferroptosis modulators and analyzed them in terms of their structural features and physicochemical and drug-likeness properties. Ferroptosis modulators are mostly natural products or semisynthetic derivatives. In this review, we focused on the abundant subgroup of polyphenolic modulators, primarily phenylpropanoids. Many natural polyphenolic antioxidants have antiferroptotic activities acting through at least one of the following effects: ROS scavenging and/or iron chelation activities, increased GPX4 and NRF2 expression, and LOX inhibition. Some polyphenols are described as ferroptosis inducers acting through the generation of ROS, intracellular accumulation of iron (II), or the inhibition of GPX4. However, some molecules have a dual mode of action depending on the cell type (cancer versus neural cells) and the (micro)environment. The latter enables their successful use (e.g., apigenin, resveratrol, curcumin, and EGCG) in rationally designed, multifunctional nanoparticles that selectively target cancer cells through ferroptosis induction.

Zobrazit více v PubMed

Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021;71:209–249. doi: 10.3322/caac.21660. PubMed DOI

Attwood M.M., Fabbro D., Sokolov A.V., Knapp S., Schioth H.B. Trends in kinase drug discovery: Targets, indications and inhibitor design. Nat. Rev. Drug Discov. 2021;20:839–861. doi: 10.1038/s41573-021-00252-y. PubMed DOI

Carioli G., Bertuccio P., Boffetta P., Levi F., La Vecchia C., Negri E., Malvezzi M. European cancer mortality predictions for the year 2020 with a focus on prostate cancer. Ann. Oncol. 2020;31:650–658. doi: 10.1016/j.annonc.2020.02.009. PubMed DOI

Pistritto G., Trisciuoglio D., Ceci C., Garufi A., D’Orazi G. Apoptosis as anticancer mechanism: Function and dysfunction of its modulators and targeted therapeutic strategies. Aging. 2016;8:603–619. doi: 10.18632/aging.100934. PubMed DOI PMC

Aggarwal B.B., Bhardwaj A., Aggarwal R.S., Seeram N.P., Shishodia S., Takada Y. Role of resveratrol in prevention and therapy of cancer: Preclinical and clinical studies. Anticancer Res. 2004;24:2783–2840. PubMed

Khan F., Niaz K., Maqbool F., Hassan F.I., Abdollahi M., Venkata K.C.N., Nabavi S.M., Bishayee A. Molecular Targets Underlying the Anticancer Effects of Quercetin: An Update. Nutrients. 2016;8:529. doi: 10.3390/nu8090529. PubMed DOI PMC

Stepanic V., Gasparovic A.C., Troselj K.G., Amic D., Zarkovic N. Selected Attributes of Polyphenols in Targeting Oxidative Stress in Cancer. Curr. Top. Med. Chem. 2015;15:496–509. doi: 10.2174/1568026615666150209123100. PubMed DOI

Klaunig J.E., Kamendulis L.M. The role of oxidative stress in carcinogenesis. Annu. Rev. Pharmacol. Toxicol. 2004;44:239–267. doi: 10.1146/annurev.pharmtox.44.101802.121851. PubMed DOI

Dixon S.J., Lemberg K.M., Lamprecht M.R., Skouta R., Zaitsev E.M., Gleason C.E., Patel D.N., Bauer A.J., Cantley A.M., Yang W.S., et al. Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death. Cell. 2012;149:1060–1072. doi: 10.1016/j.cell.2012.03.042. PubMed DOI PMC

Greco G., Catanzaro E., Fimognari C. Natural Products as Inducers of Non-Canonical Cell Death: A Weapon against Cancer. Cancers. 2021;13:304. doi: 10.3390/cancers13020304. PubMed DOI PMC

Yan H.F., Zou T., Tuo Q.Z., Xu S., Li H., Belaidi A.A., Lei P. Ferroptosis: Mechanisms and links with diseases. Signal Transduct. Target. Ther. 2021;6:49. doi: 10.1038/s41392-020-00428-9. PubMed DOI PMC

Xie Y., Hou W., Song X., Yu Y., Huang J., Sun X., Kang R., Tang D. Ferroptosis: Process and function. Cell Death Differ. 2016;23:369–379. doi: 10.1038/cdd.2015.158. PubMed DOI PMC

Ulrich-Merzenich G., Zeitler H., Vetter H., Kraft K. Synergy research: Vitamins and secondary plant components in the maintenance of the redox-homeostasis and in cell signaling. Phytomedicine. 2009;16:2–16. doi: 10.1016/j.phymed.2008.11.007. PubMed DOI

Firuzi O., Miri R., Tavakkoli M., Saso L. Antioxidant Therapy: Current Status and Future Prospects. Curr. Med. Chem. 2011;18:3871–3888. doi: 10.2174/092986711803414368. PubMed DOI

Imam M.U., Zhang S.S., Ma J.F., Wang H., Wang F.D. Antioxidants Mediate Both Iron Homeostasis and Oxidative Stress. Nutrients. 2017;9:671. doi: 10.3390/nu9070671. PubMed DOI PMC

Zhao X.Y., Wang X.N., Pang Y.Z. Phytochemicals Targeting Ferroptosis: Therapeutic Opportunities and Prospects for Treating Breast Cancer. Pharmaceuticals. 2022;15:1360. doi: 10.3390/ph15111360. PubMed DOI PMC

de Souza I., Ramalho M.C.C., Guedes C.B., Osawa I.Y.A., Monteiro L.K.S., Gomes L.R., Rocha C.R.R. Ferroptosis Modulation: Potential Therapeutic Target for Glioblastoma Treatment. Int. J. Mol. Sci. 2022;23:6879. doi: 10.3390/ijms23136879. PubMed DOI PMC

Lawless M.S., Waldman M., Fraczkiewicz R., Clark R.D. Using Cheminformatics in Drug Discovery. In: Nielsch U., Fuhrmann U., Jaroch S., editors. New Approaches to Drug Discovery. Springer International Publishing; Cham, Switzerland: 2016. pp. 139–168. PubMed

Davidson A.J., Wood W. Igniting the spread of ferroptotic cell death. Nat. Cell Biol. 2020;22:1027–1029. doi: 10.1038/s41556-020-0570-4. PubMed DOI

Stockwell B.R., Angeli J.P.F., Bayir H., Bush A.I., Conrad M., Dixon S.J., Fulda S., Gascon S., Hatzios S.K., Kagan V.E., et al. Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. Cell. 2017;171:273–285. doi: 10.1016/j.cell.2017.09.021. PubMed DOI PMC

Gao M.H., Yi J.M., Zhu J.J., Minikes A.M., Monian P., Thompson C.B., Jiang X.J. Role of Mitochondria in Ferroptosis. Mol. Cell. 2019;73:354–363.e3. doi: 10.1016/j.molcel.2018.10.042. PubMed DOI PMC

Andreini C., Putignano V., Rosato A., Banci L. The human iron-proteome. Metallomics. 2018;10:1223–1231. doi: 10.1039/c8mt00146d. PubMed DOI

Wiernicki B., Dubois H., Tyurina Y.Y., Hassannia B., Bayir H., Kagan V.E., Vandenabeele P., Wullaert A., Vanden Berghe T. Excessive phospholipid peroxidation distinguishes ferroptosis from other cell death modes including pyroptosis. Cell Death Dis. 2020;11:11. doi: 10.1038/s41419-020-03118-0. PubMed DOI PMC

Lee J.Y., Kim W.K., Bae K.H., Lee S.C., Lee E.W. Lipid Metabolism and Ferroptosis. Biology. 2021;10:184. doi: 10.3390/biology10030184. PubMed DOI PMC

Imai H., Matsuoka M., Kumagai T., Sakamoto T., Koumura T. Lipid peroxidation-dependent cell death regulated by GPx4 and ferroptosis. Curr. Top. Microbiol. Immunol. 2017;403:143–170. doi: 10.1007/82_2016_508. PubMed DOI

Yang W.S., SriRamaratnam R., Welsch M.E., Shimada K., Skouta R., Viswanathan V.S., Cheah J.H., Clemons P.A., Shamji A.F., Clish C.B., et al. Regulation of Ferroptotic Cancer Cell Death by GPX4. Cell. 2014;156:317–331. doi: 10.1016/j.cell.2013.12.010. PubMed DOI PMC

Doll S., Proneth B., Tyurina Y.Y., Panzilius E., Kobayashi S., IngoId I., Irmler M., Beckers J., Aichler M., Walch A., et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat. Chem. Biol. 2017;13:91–98. doi: 10.1038/nchembio.2239. PubMed DOI PMC

Steegmann-Olmedillas J.L. The role of iron in tumour cell proliferation. Clin. Transl. Oncol. 2011;13:71–76. doi: 10.1007/s12094-011-0621-1. PubMed DOI

Wang Y.F., Yu L., Ding J., Chen Y. Iron Metabolism in Cancer. Int. J. Mol. Sci. 2019;20:95. doi: 10.3390/ijms20010095. PubMed DOI PMC

Liu Y.Q., Gu W. p53 in ferroptosis regulation: The new weapon for the old guardian. Cell Death Differ. 2022;29:895–910. doi: 10.1038/s41418-022-00943-y. PubMed DOI PMC

Kang R., Kroemer G., Tang D.L. The tumor suppressor protein p53 and the ferroptosis network. Free. Radic. Biol. Med. 2019;133:162–168. doi: 10.1016/j.freeradbiomed.2018.05.074. PubMed DOI PMC

Kerins M.J., Ooi A. The Roles of NRF2 in Modulating Cellular Iron Homeostasis. Antioxid. Redox Signal. 2018;29:1756–1773. doi: 10.1089/ars.2017.7176. PubMed DOI PMC

Ratan R.R. The Chemical Biology of Ferroptosis in the Central Nervous System. Cell Chem. Biol. 2020;27:479–498. doi: 10.1016/j.chembiol.2020.03.007. PubMed DOI PMC

Szatrowski T.P., Nathan C.F. Production of large amounts of hydrogen-peroxide by human tumor-cells. Cancer Res. 1991;51:794–798. PubMed

Lisanti M.P., Martinez-Outschoorn U.E., Lin Z., Pavlides S., Whitaker-Menezes D., Pestell R.G., Howell A., Sotgia F. Hydrogen peroxide fuels aging, inflammation, cancer metabolism and metastasis the seed and soil also needs “fertilizer”. Cell Cycle. 2011;10:2440–2449. doi: 10.4161/cc.10.15.16870. PubMed DOI PMC

Rice M.E. H2O2: A Dynamic Neuromodulator. Neuroscientist. 2011;17:389–406. doi: 10.1177/1073858411404531. PubMed DOI PMC

Fujihara K.M., Zhang B.N.Z., Clemons N.J. Opportunities for Ferroptosis in Cancer Therapy. Antioxidants. 2021;10:986. doi: 10.3390/antiox10060986. PubMed DOI PMC

Luo L.X., Wang H., Tian W., Li X.L., Zhu Z., Huang R.M., Luo H. Targeting ferroptosis-based cancer therapy using nanomaterials: And. Theranostics. 2021;11:9937–9952. doi: 10.7150/thno.65480. PubMed DOI PMC

Ganesan A. The impact of natural products upon modern drug discovery. Curr. Opin. Chem. Biol. 2008;12:306–317. doi: 10.1016/j.cbpa.2008.03.016. PubMed DOI

Klein V.G., Bond A.G., Craigon C., Lokey R.S., Ciulli A. Amide-to-Ester Substitution as a Strategy for Optimizing PROTAC Permeability and Cellular Activity. J. Med. Chem. 2021;64:18082–18101. doi: 10.1021/acs.jmedchem.1c01496. PubMed DOI PMC

Weiland A., Wang Y.M., Wu W.H., Lan X., Han X.N., Li Q., Wang J. Ferroptosis and Its Role in Diverse Brain Diseases. Mol. Neurobiol. 2019;56:4880–4893. doi: 10.1007/s12035-018-1403-3. PubMed DOI PMC

Feunang Y.D., Eisner R., Knox C., Chepelev L., Hastings J., Owen G., Fahy E., Steinbeck C., Subramanian S., Bolton E., et al. ClassyFire: Automated chemical classification with a comprehensive, computable taxonomy. J. Cheminform. 2016;8:20. doi: 10.1186/s13321-016-0174-y. PubMed DOI PMC

Dolma S., Lessnick S.L., Hahn W.C., Stockwell B.R. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell. 2003;3:285–296. doi: 10.1016/S1535-6108(03)00050-3. PubMed DOI

Yang W.S., Stockwell B.R. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem. Biol. 2008;15:234–245. doi: 10.1016/j.chembiol.2008.02.010. PubMed DOI PMC

Xia X.J., Fan X.P., Zhao M.Y., Zhu P. The Relationship between Ferroptosis and Tumors: A Novel Landscape for Therapeutic Approach. Curr. Gene Ther. 2019;19:117–124. doi: 10.2174/1566523219666190628152137. PubMed DOI PMC

Wu Y.N., Yu C.C., Luo M., Cen C., Qiu J.L., Zhang S.Z., Hu K.M. Ferroptosis in Cancer Treatment: Another Way to Rome. Front. Oncol. 2020;10:16. doi: 10.3389/fonc.2020.571127. PubMed DOI PMC

Guo J.P., Xu B.F., Han Q., Zhou H.X., Xia Y., Gong C.W., Dai X.F., Li Z.Y., Wu G. Ferroptosis: A Novel Anti-tumor Action for Cisplatin. Cancer Res. Treat. 2018;50:445–460. doi: 10.4143/crt.2016.572. PubMed DOI PMC

Roh J.L., Kim E.H., Jang H., Shin D. Nrf2 inhibition reverses the resistance of cisplatin-resistant head and neck cancer cells to artesunate-induced ferroptosis. Redox Biol. 2017;11:254–262. doi: 10.1016/j.redox.2016.12.010. PubMed DOI PMC

Kajarabille N., Latunde-Dada G.O. Programmed Cell-Death by Ferroptosis: Antioxidants as Mitigators. Int. J. Mol. Sci. 2019;20:4968. doi: 10.3390/ijms20194968. PubMed DOI PMC

Bhosale P.B., Ha S.E., Vetrivel P., Kim H.H., Kim S.M., Kim G.S. Functions of polyphenols and its anticancer properties in biomedical research: A narrative review. Transl. Cancer Res. 2020;9:7619–7631. doi: 10.21037/tcr-20-2359. PubMed DOI PMC

Gibellini L., Pinti M., Nasi M., Montagna J.P., De Biasi S., Roat E., Bertoncelli L., Cooper E.L., Cossarizza A. Quercetin and Cancer Chemoprevention. Evid.-Based Complement. Altern. Med. 2011;2011:591356. doi: 10.1093/ecam/neq053. PubMed DOI PMC

Stepanić V., Kujundžić R.N., Trošelj K.G. Epigenome, Cancer Prevention and Flavonoids and Curcumin. In: Payne C.J., editor. Epigenetics and Epigenomics. IntechOpen; London, UK: 2014. p. 220.

Pop T.D., Diaconeasa Z. Recent Advances in Phenolic Metabolites and Skin Cancer. Int. J. Mol. Sci. 2021;22:9707. doi: 10.3390/ijms22189707. PubMed DOI PMC

Costa A., Bonner M.Y., Arbiser J.L. Use of Polyphenolic Compounds in Dermatologic Oncology. Am. J. Clin. Dermatol. 2016;17:369–385. doi: 10.1007/s40257-016-0193-5. PubMed DOI PMC

Leu J.I., Murphy M.E., George D.L. Targeting ErbB3 and Cellular NADPH/NADP(+)Abundance Sensitizes Cutaneous Melanomas to Ferroptosis Inducers. ACS Chem. Biol. 2022;17:1038–1044. doi: 10.1021/acschembio.2c00113. PubMed DOI PMC

Zhu H.Y., Huang Z.X., Chen G.Q., Sheng F., Zheng Y.S. Typhaneoside prevents acute myeloid leukemia (AML) through suppressing proliferation and inducing ferroptosis associated with autophagy. Biochem. Biophys. Res. Commun. 2019;516:1265–1271. doi: 10.1016/j.bbrc.2019.06.070. PubMed DOI

Xie Y., Zhou X., Li J., Yao X.C., Liu W.L., Kang F.H., Zou Z.X., Xu K.P., Xu P.S., Tan G.S. Identification of a new natural biflavonoids against breast cancer cells induced ferroptosis via the mitochondrial pathway. Bioorg. Chem. 2021;109:11. doi: 10.1016/j.bioorg.2021.104744. PubMed DOI

Xie Y., Zhou X., Li J., Yao X.C., Liu W.L., Xu P.S., Tan G.S. Cytotoxic effects of the biflavonoids isolated from Selaginella trichoclada on MCF-7 cells and its potential mechanism. Bioorg. Med. Chem. Lett. 2022;56:5. doi: 10.1016/j.bmcl.2021.128486. PubMed DOI

Xiong X.F., Tang N., Lai X.D., Zhang J.L., Wen W.L., Li X.J., Li A.G., Wu Y.H., Liu Z.H. Insights Into Amentoflavone: A Natural Multifunctional Biflavonoid. Front. Pharmacol. 2021;12:24. doi: 10.3389/fphar.2021.768708. PubMed DOI PMC

Chen Y., Li N., Wang H.J., Wang N.N., Peng H., Wang J., Li Y.H., Liu M.D., Li H., Zhang Y., et al. Amentoflavone suppresses cell proliferation and induces cell death through triggering autophagy-dependent ferroptosis in human glioma. Life Sci. 2020;247:10. doi: 10.1016/j.lfs.2020.117425. PubMed DOI

Chen P., Wu Q.B., Feng J., Yan L.L., Sun Y.T., Liu S.P., Xiang Y., Zhang M.M., Pan T., Chen X.Y., et al. Erianin, a novel dibenzyl compound in Dendrobium extract, inhibits lung cancer cell growth and migration via calcium/calmodulin-dependent ferroptosis. Signal Transduct. Target. Ther. 2020;5:11. doi: 10.1038/s41392-020-0149-3. PubMed DOI PMC

Xiang Y., Chen X., Wang W., Zhai L., Sun X., Feng J., Duan T., Zhang M., Pan T., Yan L., et al. Natural Product Erianin Inhibits Bladder Cancer Cell Growth by Inducing Ferroptosis via NRF2 Inactivation. Front. Pharmacol. 2021;12:12. doi: 10.3389/fphar.2021.775506. PubMed DOI PMC

Mbaveng A.T., Fotso G.W., Ngnintedo D., Kuete V., Ngadjui B.T., Keumedjio F., Andrae-Marobela K., Efferth T. Cytotoxicity of epunctanone and four other phytochemicals isolated from the medicinal plants Garcinia epunctata and Ptycholobium contortum towards multi-factorial drug resistant cancer cells. Phytomedicine. 2018;48:112–119. doi: 10.1016/j.phymed.2017.12.016. PubMed DOI

Huang B.K., Langford T.F., Sikes H.D. Using Sensors and Generators of H2O2 to Elucidate the Toxicity Mechanism of Piperlongumine and Phenethyl Isothiocyanate. Antioxid. Redox Signal. 2016;24:924–938. doi: 10.1089/ars.2015.6482. PubMed DOI PMC

Roh J.L., Kim E.H., Park J.Y., Kim J.W., Kwon M., Lee B.H. Piperlongumine selectively kills cancer cells and increases cisplatin antitumor activity in head and neck cancer. Oncotarget. 2014;5:9227–9238. doi: 10.18632/oncotarget.2402. PubMed DOI PMC

Yamaguchi Y., Kasukabe T., Kumakura S. Piperlongumine rapidly induces the death of human pancreatic cancer cells mainly through the induction of ferroptosis. Int. J. Oncol. 2018;52:1011–1022. doi: 10.3892/ijo.2018.4259. PubMed DOI

Tang H.M., Cheung P.C.K. Gene expression profile analysis of gallic acid-induced cell death process. Sci. Rep. 2021;11:17. doi: 10.1038/s41598-021-96174-1. PubMed DOI PMC

Khorsandi K., Kianmehr Z., Hosseinmardi Z., Hosseinzadeh R. Anti-cancer effect of gallic acid in presence of low level laser irradiation: ROS production and induction of apoptosis and ferroptosis. Cancer Cell Int. 2020;20:14. doi: 10.1186/s12935-020-1100-y. PubMed DOI PMC

Tang H.M., Cheung P.C.K. Gallic Acid Triggers Iron-Dependent Cell Death with Apoptotic, Ferroptotic, and Necroptotic Features. Toxins. 2019;11:492. doi: 10.3390/toxins11090492. PubMed DOI PMC

An P.J., Gu D.H., Gao Z.G., Fan F.Y., Jiang Y., Sun B.W. Hypoxia-augmented and photothermally-enhanced ferroptotic therapy with high specificity and efficiency. J. Mat. Chem. B. 2020;8:78–87. doi: 10.1039/C9TB02268F. PubMed DOI

Zhang P.S., Hou Y., Zeng J.F., Li Y.Y., Wang Z.H., Zhu R., Ma T.C., Gao M.Y. Coordinatively Unsaturated Fe3+ Based Activatable Probes for Enhanced MRI and Therapy of Tumors. Angew. Chem.-Int. Edit. 2019;58:11088–11096. doi: 10.1002/anie.201904880. PubMed DOI

Ullah A., Munir S., Badshah S.L., Khan N., Ghani L., Poulson B.G., Emwas A.H., Jaremko M. Important Flavonoids and Their Role as a Therapeutic Agent. Molecules. 2020;25:5243. doi: 10.3390/molecules25225243. PubMed DOI PMC

Shao C.W., Yuan J.W., Liu Y.N., Qin Y.J., Wang X.A., Gu J., Chen G.Q., Zhang B., Liu H.K., Zhao J., et al. Epileptic brain fluorescent imaging reveals apigenin can relieve the myeloperoxidase-mediated oxidative stress and inhibit ferroptosis. Proc. Natl. Acad. Sci. USA. 2020;117:10155–10164. doi: 10.1073/pnas.1917946117. PubMed DOI PMC

Adham A.N., Abdelfatah S., Naqishbandi A.M., Mahmoud N., Efferth T. Cytotoxicity of apigenin toward multiple myeloma cell lines and suppression of iNOS and COX-2 expression in STAT1-transfected HEK293 cells. Phytomedicine. 2021;80:15. doi: 10.1016/j.phymed.2020.153371. PubMed DOI

Adham A.N., Naqishbandi A.M., Efferth T. Cytotoxicity and apoptosis induction by Fumaria officinalis extracts in leukemia and multiple myeloma cell lines. J. Ethnopharmacol. 2021;266:10. doi: 10.1016/j.jep.2020.113458. PubMed DOI

Liu R., Rong G., Liu Y., Huang W., He D., Lu R. Delivery of apigenin-loaded magnetic Fe2O3/Fe3O4@mSiO2 nanocomposites to A549 cells and their antitumor mechanism. Mater. Sci. Eng. C. 2021;120:111719. doi: 10.1016/j.msec.2020.111719. PubMed DOI

Guan X., Li Z.H., Zhu S., Cheng M.J., Ju Y.T., Ren L., Yang G.L., Min D.Y. Galangin attenuated cerebral ischemia-reperfusion injury by inhibition of ferroptosis through activating the SLC7A11/GPX4 axis in gerbils. Life Sci. 2021;264:11. doi: 10.1016/j.lfs.2020.118660. PubMed DOI

Yuan Y., Zhai Y.Y., Chen J.J., Xu X.F., Wang H.M. Kaempferol Ameliorates Oxygen-Glucose Deprivation/Reoxygenation-Induced Neuronal Ferroptosis by Activating Nrf2/SLC7A11/GPX4 Axis. Biomolecules. 2021;11:923. doi: 10.3390/biom11070923. PubMed DOI PMC

Xu S.J., Wu B.X., Zhong B.Y., Lin L.Q., Ding Y.N., Jin X., Huang Z.W., Lin M.Y., Wu H.L., Xu D.P. Naringenin alleviates myocardial ischemia/reperfusion injury by regulating the nuclear factor-erythroid factor 2-related factor 2 (Nrf2)/System xc-/glutathione peroxidase 4 (GPX4) axis to inhibit ferroptosis. Bioengineered. 2021;12:10924–10934. doi: 10.1080/21655979.2021.1995994. PubMed DOI PMC

Xu B.Y., Wang H.D., Chen Z. Puerarin Inhibits Ferroptosis and Inflammation of Lung Injury Caused by Sepsis in LPS Induced Lung Epithelial Cells. Front. Pediatr. 2021;9:7. doi: 10.3389/fped.2021.706327. PubMed DOI PMC

Andjelkovic M., Van Camp J., De Meulenaer B., Depaemelaere G., Socaciu C., Verloo M., Verhe R. Iron-chelation properties of phenolic acids bearing catechol and galloyl groups. Food Chem. 2006;98:23–31. doi: 10.1016/j.foodchem.2005.05.044. DOI

Yang D.Y., Wang T.C., Long M., Li P. Quercetin: Its Main Pharmacological Activity and Potential Application in Clinical Medicine. Oxidative Med. Cell. Longev. 2020;2020:13. doi: 10.1155/2020/8825387. PubMed DOI PMC

Kashyap D., Mittal S., Sak K., Singhal P., Tuli H.S. Molecular mechanisms of action of quercetin in cancer: Recent advances. Tumor Biol. 2016;37:12927–12939. doi: 10.1007/s13277-016-5184-x. PubMed DOI

Rauf A., Imran M., Khan I.A., Ur-Rehman M., Gilani S.A., Mehmood Z., Mubarak M.S. Anticancer potential of quercetin: A comprehensive review. Phytother. Res. 2018;32:2109–2130. doi: 10.1002/ptr.6155. PubMed DOI

Reyes-Farias M., Carrasco-Pozo C. The Anti-Cancer Effect of Quercetin: Molecular Implications in Cancer Metabolism. Int. J. Mol. Sci. 2019;20:3177. doi: 10.3390/ijms20133177. PubMed DOI PMC

Ulusoy H.G., Sanlier N. A minireview of quercetin: From its metabolism to possible mechanisms of its biological activities. Crit. Rev. Food Sci. Nutr. 2020;60:3290–3303. doi: 10.1080/10408398.2019.1683810. PubMed DOI

Xu D., Hu M.J., Wang Y.Q., Cui Y.L. Antioxidant Activities of Quercetin and Its Complexes for Medicinal Application. Molecules. 2019;24:1123. doi: 10.3390/molecules24061123. PubMed DOI PMC

Xiao L., Luo G., Tang Y.H., Yao P. Quercetin and iron metabolism: What we know and what we need to know. Food Chem. Toxicol. 2018;114:190–203. doi: 10.1016/j.fct.2018.02.022. PubMed DOI

Batiha G.E., Beshbishy A.M., Ikram M., Mulla Z.S., Abd El-Hack M.E., Taha A.E., Algammal A.M., Elewa Y.H.A. The Pharmacological Activity, Biochemical Properties, and Pharmacokinetics of the Major Natural Polyphenolic Flavonoid: Quercetin. Foods. 2020;9:374. doi: 10.3390/foods9030374. PubMed DOI PMC

Li X.C., Zeng J.Y., Liu Y.P., Liang M.S., Liu Q.R., Li Z., Zhao X.J., Chen D.F. Inhibitory Effect and Mechanism of Action of Quercetin and Quercetin Diels-Alder anti-Dimer on Erastin-Induced Ferroptosis in Bone Marrow-Derived Mesenchymal Stem Cells. Antioxidants. 2020;9:205. doi: 10.3390/antiox9030205. PubMed DOI PMC

Li D., Jiang C.J., Mei G.B., Zhao Y., Chen L., Liu J.J., Tang Y.H., Gao C., Yao P. Quercetin Alleviates Ferroptosis of Pancreatic beta Cells in Type 2 Diabetes. Nutrients. 2020;12:2954. doi: 10.3390/nu12102954. PubMed DOI PMC

Wang Y., Quan F., Cao Q., Lin Y., Yue C., Bi R., Cui X., Yang H., Yang Y., Birnbaumer L., et al. Quercetin alleviates acute kidney injury by inhibiting ferroptosis. J. Adv. Res. 2021;28:231–243. doi: 10.1016/j.jare.2020.07.007. PubMed DOI PMC

Gunesch S., Hoffmann M., Kiermeier C., Fischer W., Pinto A.F.M., Maurice T., Maher P., Decker M. 7-O-Esters of taxifolin with pronounced and overadditive effects in neuroprotection, anti-neuroinflammation, and amelioration of short-term memory impairment in vivo. Redox Biol. 2020;29:14. doi: 10.1016/j.redox.2019.101378. PubMed DOI PMC

Fischer W., Currais A., Liang Z.B., Pinto A., Maher P. Old age-associated phenotypic screening for Alzheimer’s disease drug candidates identifies sterubin as a potent neuroprotective compound from Yerba santa. Redox Biol. 2019;21:12. doi: 10.1016/j.redox.2018.101089. PubMed DOI PMC

Li L., Li W.J., Zheng X.R., Liu Q.L., Du Q., Lai Y.J., Liu S.Q. Eriodictyol ameliorates cognitive dysfunction in APP/PS1 mice by inhibiting ferroptosis via vitamin D receptor-mediated Nrf2 activation. Mol. Med. 2022;28:20. doi: 10.1186/s10020-022-00442-3. PubMed DOI PMC

Xie Y.C., Song X.X., Sun X.F., Huang J., Zhong M.Z., Lotze M.T., Zeh H.J., Kang R., Tang D.L. Identification of baicalein as a ferroptosis inhibitor by natural product library screening. Biochem. Biophys. Res. Commun. 2016;473:775–780. doi: 10.1016/j.bbrc.2016.03.052. PubMed DOI

Probst L., Dächert J., Schenk B., Fulda S. Lipoxygenase inhibitors protect acute lymphoblastic leukemia cells from ferroptotic cell death. Biochem. Pharmacol. 2017;140:41–52. doi: 10.1016/j.bcp.2017.06.112. PubMed DOI

Li Q., Li Q.Q., Jia J.N., Sun Q.Y., Zhou H.H., Jin W.L., Mao X.Y. Baicalein Exerts Neuroprotective Effects in FeCl3-Induced Posttraumatic Epileptic Seizures via Suppressing Ferroptosis. Front. Pharmacol. 2019;10:13. doi: 10.3389/fphar.2019.00638. PubMed DOI PMC

Yang M., Li X.Y., Li H.J., Zhang X.X., Liu X.L., Song Y.Q. Baicalein inhibits RL S3-induced ferroptosis in melanocytes. Biochem. Biophys. Res. Commun. 2021;561:65–72. doi: 10.1016/j.bbrc.2021.05.010. PubMed DOI

Zheng B., Zhou X.W., Pang L.J., Che Y.J., Qi X. Baicalin suppresses autophagy-dependent ferroptosis in early brain injury after subarachnoid hemorrhage. Bioengineered. 2021;12:7794–7804. doi: 10.1080/21655979.2021.1975999. PubMed DOI PMC

Kong N., Chen X.Y., Feng J., Duan T., Liu S.P., Sun X.N., Chen P., Pan T., Yan L.L., Jin T., et al. Baicalin induces ferroptosis in bladder cancer cells by downregulating FTH1. Acta Pharm. Sin. B. 2021;11:4045–4054. doi: 10.1016/j.apsb.2021.03.036. PubMed DOI PMC

Maher P. Modulation of the Neuroprotective and Anti-inflammatory Activities of the Flavonol Fisetin by the Transition Metals Iron and Copper. Antioxidants. 2020;9:1113. doi: 10.3390/antiox9111113. PubMed DOI PMC

Becquer-Viart M.A., Gonzalez-Yaque J., Fonseca-Fonseca L.A., Nunez-Figueredo Y., Andreu G.L.P. Antioxidant and neuroprotective effects of gossypitrin, a flavonoid from Talipariti elatum, against chemical hypoxia-induced PC12 cell death. J. Pharm. Pharmacogn. Res. 2018;6:72–80.

Becquer-Viart M.A., Armentero-Lopez A., Alvarez-Alminaque D., Fernandez-Acosta R., Matos-Peralta Y., D’Vries R.F., Marin-Prida J., Pardo-Andreu G.L. Gossypitrin, A Naturally Occurring Flavonoid, Attenuates Iron-Induced Neuronal and Mitochondrial Damage. Molecules. 2021;26:3364. doi: 10.3390/molecules26113364. PubMed DOI PMC

Matic S., Takac M.J.M., Barbaric M., Lucic B., Troselj K.G., Stepanic V. The Influence of In Vivo Metabolic Modifications on ADMET Properties of Green Tea Catechins-In Silico Analysis. J. Pharm. Sci. 2018;107:2957–2964. doi: 10.1016/j.xphs.2018.07.026. PubMed DOI

Bernatova I. Biological activities of (-)-epicatechin and (-)-epicatechin-containing foods: Focus on cardiovascular and neuropsychological health. Biotechnol. Adv. 2018;36:666–681. doi: 10.1016/j.biotechadv.2018.01.009. PubMed DOI

Butt M.S., Ahmad R.S., Sultan M.T., Qayyum M.M.N., Naz A. Green Tea and Anticancer Perspectives: Updates from Last Decade. Crit. Rev. Food Sci. Nutr. 2015;55:792–805. doi: 10.1080/10408398.2012.680205. PubMed DOI

Nakagawa T., Yokozawa T. Direct scavenging of nitric oxide and superoxide by green tea. Food Chem. Toxicol. 2002;40:1745–1750. doi: 10.1016/S0278-6915(02)00169-2. PubMed DOI

Chang C.F., Cho S., Wang J. (-)-Epicatechin protects hemorrhagic brain via synergistic Nrf2 pathways. Ann. Clin. Transl. Neurol. 2014;1:258–271. doi: 10.1002/acn3.54. PubMed DOI PMC

Wang J.J., Chen Y., Chen L., Duan Y.Z., Kuang X.J., Peng Z., Li C.H., Li Y.H., Xiao Y., Jin H., et al. EGCG modulates PKD1 and ferroptosis to promote recovery in ST rats. Transl. Neurosci. 2020;11:173–181. doi: 10.1515/tnsci-2020-0119. PubMed DOI PMC

Kose T., Vera-Aviles M., Sharp P.A., Latunde-Dada G.O. Curcumin and (-)- Epigallocatechin-3-Gallate Protect Murine MIN6 Pancreatic Beta-Cells against Iron Toxicity and Erastin-Induced Ferroptosis. Pharmaceuticals. 2019;12:26. doi: 10.3390/ph12010026. PubMed DOI PMC

Mu M., Wang Y.L., Zhao S.S., Li X.L., Fan R.R., Mei L., Wu M., Zou B.W., Zhao N., Han B., et al. Engineering a pH/Glutathione-Responsive Tea Polyphenol Nanodevice as an Apoptosis/Ferroptosis-Inducing Agent. ACS Appl. Bio Mater. 2020;3:4128–4138. doi: 10.1021/acsabm.0c00225. PubMed DOI

Banoth R.K., Thatikonda A. A Review on Natural Chalcones an Update. Int. J. Pharm. Sci. Res. 2020;11:546–555. doi: 10.13040/ijpsr.0975-8232.11(2).546-55. DOI

Rammohan A., Reddy J.S., Sravya G., Rao C.N., Zyryanov G.V. Chalcone synthesis, properties and medicinal applications: A review. Environ. Chem. Lett. 2020;18:433–458. doi: 10.1007/s10311-019-00959-w. DOI

Matos M.J., Vazquez-Rodriguez S., Uriarte E., Santana L. Potential pharmacological uses of chalcones: A patent review (from June 2011-2014) Expert Opin. Ther. Patents. 2015;25:351–366. doi: 10.1517/13543776.2014.995627. PubMed DOI

Zhuang C., Zhang W., Sheng C., Xing C., Miao Z. Chalcone: A Privileged Structure in Medicinal Chemistry. Chem. Rev. 2017;117:7762–7810. doi: 10.1021/acs.chemrev.7b00020. PubMed DOI PMC

Cong L., Dong X.Y., Wang Y., Deng Y.L., Li B., Dai R.J. On the role of synthesized hydroxylated chalcones as dual functional amyloid-beta aggregation and ferroptosis inhibitors for potential treatment of Alzheimer’s disease. Eur. J. Med. Chem. 2019;166:11–21. doi: 10.1016/j.ejmech.2019.01.039. PubMed DOI

Liu J., Li X.C., Cai R.X., Ren Z.W., Zhang A.Z., Deng F.D., Chen D.F. Simultaneous Study of Anti-Ferroptosis and Antioxidant Mechanisms of Butein and (S)-Butin. Molecules. 2020;25:674. doi: 10.3390/molecules25030674. PubMed DOI PMC

Wen L.R., Shi D.D., Zhou T., Tu J.M., He M., Jiang Y.M., Yang B. Identification of two novel prenylated flavonoids in mulberry leaf and their bioactivities. Food Chem. 2020;315:11. doi: 10.1016/j.foodchem.2020.126236. PubMed DOI

Tang Y., Luo H.J., Xiao Q., Li L., Zhong X., Zhang J., Wang F., Li G.S., Wang L., Li Y. Isoliquiritigenin attenuates septic acute kidney injury by regulating ferritinophagy-mediated ferroptosis. Ren. Fail. 2021;43:1551–1560. doi: 10.1080/0886022X.2021.2003208. PubMed DOI PMC

Yaseen A., Yang F., Zhang X., Li F., Chen B., Faraag A.H.I., Wang M.K., Shen X.F., Wang L. Ferroptosis inhibitory constituents from the fruits of Cullen corylifolium. Nat. Prod. Res. 2021;35:5364–5368. doi: 10.1080/14786419.2020.1762188. PubMed DOI

Xia N., Daiber A., Forstermann U., Li H.G. Antioxidant effects of resveratrol in the cardiovascular system. Br. J. Pharmacol. 2017;174:1633–1646. doi: 10.1111/bph.13492. PubMed DOI PMC

Yi M., Li J.J., Chen S.N., Cai J., Ban Y.Y., Peng Q., Zhou Y., Zeng Z.Y., Peng S.P., Li X.L., et al. Emerging role of lipid metabolism alterations in Cancer stem cells. J. Exp. Clin. Cancer Res. 2018;37:18. doi: 10.1186/s13046-018-0784-5. PubMed DOI PMC

Qu Z., Sun J.C., Zhang W.N., Yu J.Q., Zhuang C.L. Transcription factor NRF2 as a promising therapeutic target for Alzheimer’s disease. Free. Radic. Biol. Med. 2020;159:87–102. doi: 10.1016/j.freeradbiomed.2020.06.028. PubMed DOI

Zhang X.H., Jiang L.P., Chen H.B., Wei S., Yao K., Sun X.C., Yang G., Jiang L.J., Zhang C., Wang N.N., et al. Resveratrol protected acrolein-induced ferroptosis and insulin secretion dysfunction via ER-stress- related PERK pathway in MIN6 cells. Toxicology. 2022;465:12. doi: 10.1016/j.tox.2021.153048. PubMed DOI

Li T., Tan Y., Ouyang S., He J., Liu L.L. Resveratrol protects against myocardial ischemia-reperfusion injury via attenuating ferroptosis. Gene. 2022;808:9. doi: 10.1016/j.gene.2021.145968. PubMed DOI

Mo Y.S., Duan L.N., Yang Y.N., Liu W., Zhang Y., Zhou L.G., Su S.Y., Lo P.C., Cai J.Y., Gao L.Q., et al. Nanoparticles improved resveratrol brain delivery and its therapeutic efficacy against intracerebral hemorrhage. Nanoscale. 2021;13:3827–3840. doi: 10.1039/D0NR06249A. PubMed DOI

Lee J., You J.H., Kim M.S., Roh J.L. Epigenetic reprogramming of epithelial-mesenchymal transition promotes ferroptosis of head and neck cancer. Redox Biol. 2020;37:12. doi: 10.1016/j.redox.2020.101697. PubMed DOI PMC

Rainey N.E., Moustapha A., Saric A., Nicolas G., Sureau F., Petit P.X. Iron chelation by curcumin suppresses both curcumin-induced autophagy and cell death together with iron overload neoplastic transformation. Cell Death Discov. 2019;5:15. doi: 10.1038/s41420-019-0234-y. PubMed DOI PMC

Guerrero-Hue M., Garcia-Caballero C., Palomino-Antolin A., Rubio-Navarro A., Vazquez-Carballo C., Herencia C., Martin-Sanchez D., Farre-Alins V., Egea J., Cannata P., et al. Curcumin reduces renal damage associated with rhabdomyolysis by decreasing ferroptosis-mediated cell death. Faseb J. 2019;33:8961–8975. doi: 10.1096/fj.201900077R. PubMed DOI

Yang C., Han M.M., Li R.Y., Zhou L.G., Zhang Y., Duan L.N., Su S.Y., Li M., Wang Q., Chen T.K., et al. Curcumin Nanoparticles Inhibiting Ferroptosis for the Enhanced Treatment of Intracerebral Hemorrhage. Int. J. Nanomed. 2021;16:8049–8065. doi: 10.2147/IJN.S334965. PubMed DOI PMC

Tang X., Ding H., Liang M.L., Chen X., Yan Y.X., Wan N.S., Chen Q.Q., Zhang J., Cao J. Curcumin induces ferroptosis in non-small-cell lung cancer via activating autophagy. Thorac. Cancer. 2021;12:1219–1230. doi: 10.1111/1759-7714.13904. PubMed DOI PMC

Li R.H., Zhang J., Zhou Y.F., Gao Q., Wang R., Fu Y.R., Zheng L.W., Yu H. Transcriptome Investigation and In Vitro Verification of Curcumin-Induced HO-1 as a Feature of Ferroptosis in Breast Cancer Cells. Oxidative Med. Cell. Longev. 2020;2020:18. doi: 10.1155/2020/3469840. PubMed DOI PMC

Xu B., Zhu W.J., Peng Y.J., Cheng S.D. Curcumin reverses the sunitinib resistance in clear cell renal cell carcinoma (ccRCC) through the induction of ferroptosis via the ADAMTS18 gene. Transl. Cancer Res. 2021;10:3158–3167. doi: 10.21037/tcr-21-227. PubMed DOI PMC

Gaulton A., Hersey A., Nowotka M., Bento A.P., Chambers J., Mendez D., Mutowo P., Atkinson F., Bellis L.J., Cibrian-Uhalte E., et al. The ChEMBL database in 2017. Nucleic Acids Res. 2017;45:D945–D954. doi: 10.1093/nar/gkw1074. PubMed DOI PMC

Kanehisa M., Sato Y., Kawashima M., Furumichi M., Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016;44:D457–D462. doi: 10.1093/nar/gkv1070. PubMed DOI PMC

R Core Team R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. [(accessed on 1 January 2021)]. Available online: http://www.R-project.org/

Sander T., Freyss J., von Korff M., Rufener C. Data Warrior: An Open-Source Program For Chemistry Aware Data Visualization And Analysis. J. Chem Inf. Model. 2015;55:460–473. doi: 10.1021/ci500588j. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Redox Active Molecules in Cancer Treatments

. 2023 Feb 03 ; 28 (3) : . [epub] 20230203

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...