Review and Chemoinformatic Analysis of Ferroptosis Modulators with a Focus on Natural Plant Products
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
36677534
PubMed Central
PMC9862590
DOI
10.3390/molecules28020475
PII: molecules28020475
Knihovny.cz E-zdroje
- Klíčová slova
- cancer, drug-likeness, ferroptosis, inducers, inhibitors, neurodegenerative, polyphenol,
- MeSH
- antioxidancia farmakologie MeSH
- biologické přípravky * farmakologie MeSH
- buněčná smrt MeSH
- cheminformatika MeSH
- ferroptóza * MeSH
- lidé MeSH
- nádory * MeSH
- reaktivní formy kyslíku metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- antioxidancia MeSH
- biologické přípravky * MeSH
- reaktivní formy kyslíku MeSH
Ferroptosis is a regular cell death pathway that has been proposed as a suitable therapeutic target in cancer and neurodegenerative diseases. Since its definition in 2012, a few hundred ferroptosis modulators have been reported. Based on a literature search, we collected a set of diverse ferroptosis modulators and analyzed them in terms of their structural features and physicochemical and drug-likeness properties. Ferroptosis modulators are mostly natural products or semisynthetic derivatives. In this review, we focused on the abundant subgroup of polyphenolic modulators, primarily phenylpropanoids. Many natural polyphenolic antioxidants have antiferroptotic activities acting through at least one of the following effects: ROS scavenging and/or iron chelation activities, increased GPX4 and NRF2 expression, and LOX inhibition. Some polyphenols are described as ferroptosis inducers acting through the generation of ROS, intracellular accumulation of iron (II), or the inhibition of GPX4. However, some molecules have a dual mode of action depending on the cell type (cancer versus neural cells) and the (micro)environment. The latter enables their successful use (e.g., apigenin, resveratrol, curcumin, and EGCG) in rationally designed, multifunctional nanoparticles that selectively target cancer cells through ferroptosis induction.
Zobrazit více v PubMed
Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021;71:209–249. doi: 10.3322/caac.21660. PubMed DOI
Attwood M.M., Fabbro D., Sokolov A.V., Knapp S., Schioth H.B. Trends in kinase drug discovery: Targets, indications and inhibitor design. Nat. Rev. Drug Discov. 2021;20:839–861. doi: 10.1038/s41573-021-00252-y. PubMed DOI
Carioli G., Bertuccio P., Boffetta P., Levi F., La Vecchia C., Negri E., Malvezzi M. European cancer mortality predictions for the year 2020 with a focus on prostate cancer. Ann. Oncol. 2020;31:650–658. doi: 10.1016/j.annonc.2020.02.009. PubMed DOI
Pistritto G., Trisciuoglio D., Ceci C., Garufi A., D’Orazi G. Apoptosis as anticancer mechanism: Function and dysfunction of its modulators and targeted therapeutic strategies. Aging. 2016;8:603–619. doi: 10.18632/aging.100934. PubMed DOI PMC
Aggarwal B.B., Bhardwaj A., Aggarwal R.S., Seeram N.P., Shishodia S., Takada Y. Role of resveratrol in prevention and therapy of cancer: Preclinical and clinical studies. Anticancer Res. 2004;24:2783–2840. PubMed
Khan F., Niaz K., Maqbool F., Hassan F.I., Abdollahi M., Venkata K.C.N., Nabavi S.M., Bishayee A. Molecular Targets Underlying the Anticancer Effects of Quercetin: An Update. Nutrients. 2016;8:529. doi: 10.3390/nu8090529. PubMed DOI PMC
Stepanic V., Gasparovic A.C., Troselj K.G., Amic D., Zarkovic N. Selected Attributes of Polyphenols in Targeting Oxidative Stress in Cancer. Curr. Top. Med. Chem. 2015;15:496–509. doi: 10.2174/1568026615666150209123100. PubMed DOI
Klaunig J.E., Kamendulis L.M. The role of oxidative stress in carcinogenesis. Annu. Rev. Pharmacol. Toxicol. 2004;44:239–267. doi: 10.1146/annurev.pharmtox.44.101802.121851. PubMed DOI
Dixon S.J., Lemberg K.M., Lamprecht M.R., Skouta R., Zaitsev E.M., Gleason C.E., Patel D.N., Bauer A.J., Cantley A.M., Yang W.S., et al. Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death. Cell. 2012;149:1060–1072. doi: 10.1016/j.cell.2012.03.042. PubMed DOI PMC
Greco G., Catanzaro E., Fimognari C. Natural Products as Inducers of Non-Canonical Cell Death: A Weapon against Cancer. Cancers. 2021;13:304. doi: 10.3390/cancers13020304. PubMed DOI PMC
Yan H.F., Zou T., Tuo Q.Z., Xu S., Li H., Belaidi A.A., Lei P. Ferroptosis: Mechanisms and links with diseases. Signal Transduct. Target. Ther. 2021;6:49. doi: 10.1038/s41392-020-00428-9. PubMed DOI PMC
Xie Y., Hou W., Song X., Yu Y., Huang J., Sun X., Kang R., Tang D. Ferroptosis: Process and function. Cell Death Differ. 2016;23:369–379. doi: 10.1038/cdd.2015.158. PubMed DOI PMC
Ulrich-Merzenich G., Zeitler H., Vetter H., Kraft K. Synergy research: Vitamins and secondary plant components in the maintenance of the redox-homeostasis and in cell signaling. Phytomedicine. 2009;16:2–16. doi: 10.1016/j.phymed.2008.11.007. PubMed DOI
Firuzi O., Miri R., Tavakkoli M., Saso L. Antioxidant Therapy: Current Status and Future Prospects. Curr. Med. Chem. 2011;18:3871–3888. doi: 10.2174/092986711803414368. PubMed DOI
Imam M.U., Zhang S.S., Ma J.F., Wang H., Wang F.D. Antioxidants Mediate Both Iron Homeostasis and Oxidative Stress. Nutrients. 2017;9:671. doi: 10.3390/nu9070671. PubMed DOI PMC
Zhao X.Y., Wang X.N., Pang Y.Z. Phytochemicals Targeting Ferroptosis: Therapeutic Opportunities and Prospects for Treating Breast Cancer. Pharmaceuticals. 2022;15:1360. doi: 10.3390/ph15111360. PubMed DOI PMC
de Souza I., Ramalho M.C.C., Guedes C.B., Osawa I.Y.A., Monteiro L.K.S., Gomes L.R., Rocha C.R.R. Ferroptosis Modulation: Potential Therapeutic Target for Glioblastoma Treatment. Int. J. Mol. Sci. 2022;23:6879. doi: 10.3390/ijms23136879. PubMed DOI PMC
Lawless M.S., Waldman M., Fraczkiewicz R., Clark R.D. Using Cheminformatics in Drug Discovery. In: Nielsch U., Fuhrmann U., Jaroch S., editors. New Approaches to Drug Discovery. Springer International Publishing; Cham, Switzerland: 2016. pp. 139–168. PubMed
Davidson A.J., Wood W. Igniting the spread of ferroptotic cell death. Nat. Cell Biol. 2020;22:1027–1029. doi: 10.1038/s41556-020-0570-4. PubMed DOI
Stockwell B.R., Angeli J.P.F., Bayir H., Bush A.I., Conrad M., Dixon S.J., Fulda S., Gascon S., Hatzios S.K., Kagan V.E., et al. Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. Cell. 2017;171:273–285. doi: 10.1016/j.cell.2017.09.021. PubMed DOI PMC
Gao M.H., Yi J.M., Zhu J.J., Minikes A.M., Monian P., Thompson C.B., Jiang X.J. Role of Mitochondria in Ferroptosis. Mol. Cell. 2019;73:354–363.e3. doi: 10.1016/j.molcel.2018.10.042. PubMed DOI PMC
Andreini C., Putignano V., Rosato A., Banci L. The human iron-proteome. Metallomics. 2018;10:1223–1231. doi: 10.1039/c8mt00146d. PubMed DOI
Wiernicki B., Dubois H., Tyurina Y.Y., Hassannia B., Bayir H., Kagan V.E., Vandenabeele P., Wullaert A., Vanden Berghe T. Excessive phospholipid peroxidation distinguishes ferroptosis from other cell death modes including pyroptosis. Cell Death Dis. 2020;11:11. doi: 10.1038/s41419-020-03118-0. PubMed DOI PMC
Lee J.Y., Kim W.K., Bae K.H., Lee S.C., Lee E.W. Lipid Metabolism and Ferroptosis. Biology. 2021;10:184. doi: 10.3390/biology10030184. PubMed DOI PMC
Imai H., Matsuoka M., Kumagai T., Sakamoto T., Koumura T. Lipid peroxidation-dependent cell death regulated by GPx4 and ferroptosis. Curr. Top. Microbiol. Immunol. 2017;403:143–170. doi: 10.1007/82_2016_508. PubMed DOI
Yang W.S., SriRamaratnam R., Welsch M.E., Shimada K., Skouta R., Viswanathan V.S., Cheah J.H., Clemons P.A., Shamji A.F., Clish C.B., et al. Regulation of Ferroptotic Cancer Cell Death by GPX4. Cell. 2014;156:317–331. doi: 10.1016/j.cell.2013.12.010. PubMed DOI PMC
Doll S., Proneth B., Tyurina Y.Y., Panzilius E., Kobayashi S., IngoId I., Irmler M., Beckers J., Aichler M., Walch A., et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat. Chem. Biol. 2017;13:91–98. doi: 10.1038/nchembio.2239. PubMed DOI PMC
Steegmann-Olmedillas J.L. The role of iron in tumour cell proliferation. Clin. Transl. Oncol. 2011;13:71–76. doi: 10.1007/s12094-011-0621-1. PubMed DOI
Wang Y.F., Yu L., Ding J., Chen Y. Iron Metabolism in Cancer. Int. J. Mol. Sci. 2019;20:95. doi: 10.3390/ijms20010095. PubMed DOI PMC
Liu Y.Q., Gu W. p53 in ferroptosis regulation: The new weapon for the old guardian. Cell Death Differ. 2022;29:895–910. doi: 10.1038/s41418-022-00943-y. PubMed DOI PMC
Kang R., Kroemer G., Tang D.L. The tumor suppressor protein p53 and the ferroptosis network. Free. Radic. Biol. Med. 2019;133:162–168. doi: 10.1016/j.freeradbiomed.2018.05.074. PubMed DOI PMC
Kerins M.J., Ooi A. The Roles of NRF2 in Modulating Cellular Iron Homeostasis. Antioxid. Redox Signal. 2018;29:1756–1773. doi: 10.1089/ars.2017.7176. PubMed DOI PMC
Ratan R.R. The Chemical Biology of Ferroptosis in the Central Nervous System. Cell Chem. Biol. 2020;27:479–498. doi: 10.1016/j.chembiol.2020.03.007. PubMed DOI PMC
Szatrowski T.P., Nathan C.F. Production of large amounts of hydrogen-peroxide by human tumor-cells. Cancer Res. 1991;51:794–798. PubMed
Lisanti M.P., Martinez-Outschoorn U.E., Lin Z., Pavlides S., Whitaker-Menezes D., Pestell R.G., Howell A., Sotgia F. Hydrogen peroxide fuels aging, inflammation, cancer metabolism and metastasis the seed and soil also needs “fertilizer”. Cell Cycle. 2011;10:2440–2449. doi: 10.4161/cc.10.15.16870. PubMed DOI PMC
Rice M.E. H2O2: A Dynamic Neuromodulator. Neuroscientist. 2011;17:389–406. doi: 10.1177/1073858411404531. PubMed DOI PMC
Fujihara K.M., Zhang B.N.Z., Clemons N.J. Opportunities for Ferroptosis in Cancer Therapy. Antioxidants. 2021;10:986. doi: 10.3390/antiox10060986. PubMed DOI PMC
Luo L.X., Wang H., Tian W., Li X.L., Zhu Z., Huang R.M., Luo H. Targeting ferroptosis-based cancer therapy using nanomaterials: And. Theranostics. 2021;11:9937–9952. doi: 10.7150/thno.65480. PubMed DOI PMC
Ganesan A. The impact of natural products upon modern drug discovery. Curr. Opin. Chem. Biol. 2008;12:306–317. doi: 10.1016/j.cbpa.2008.03.016. PubMed DOI
Klein V.G., Bond A.G., Craigon C., Lokey R.S., Ciulli A. Amide-to-Ester Substitution as a Strategy for Optimizing PROTAC Permeability and Cellular Activity. J. Med. Chem. 2021;64:18082–18101. doi: 10.1021/acs.jmedchem.1c01496. PubMed DOI PMC
Weiland A., Wang Y.M., Wu W.H., Lan X., Han X.N., Li Q., Wang J. Ferroptosis and Its Role in Diverse Brain Diseases. Mol. Neurobiol. 2019;56:4880–4893. doi: 10.1007/s12035-018-1403-3. PubMed DOI PMC
Feunang Y.D., Eisner R., Knox C., Chepelev L., Hastings J., Owen G., Fahy E., Steinbeck C., Subramanian S., Bolton E., et al. ClassyFire: Automated chemical classification with a comprehensive, computable taxonomy. J. Cheminform. 2016;8:20. doi: 10.1186/s13321-016-0174-y. PubMed DOI PMC
Dolma S., Lessnick S.L., Hahn W.C., Stockwell B.R. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell. 2003;3:285–296. doi: 10.1016/S1535-6108(03)00050-3. PubMed DOI
Yang W.S., Stockwell B.R. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem. Biol. 2008;15:234–245. doi: 10.1016/j.chembiol.2008.02.010. PubMed DOI PMC
Xia X.J., Fan X.P., Zhao M.Y., Zhu P. The Relationship between Ferroptosis and Tumors: A Novel Landscape for Therapeutic Approach. Curr. Gene Ther. 2019;19:117–124. doi: 10.2174/1566523219666190628152137. PubMed DOI PMC
Wu Y.N., Yu C.C., Luo M., Cen C., Qiu J.L., Zhang S.Z., Hu K.M. Ferroptosis in Cancer Treatment: Another Way to Rome. Front. Oncol. 2020;10:16. doi: 10.3389/fonc.2020.571127. PubMed DOI PMC
Guo J.P., Xu B.F., Han Q., Zhou H.X., Xia Y., Gong C.W., Dai X.F., Li Z.Y., Wu G. Ferroptosis: A Novel Anti-tumor Action for Cisplatin. Cancer Res. Treat. 2018;50:445–460. doi: 10.4143/crt.2016.572. PubMed DOI PMC
Roh J.L., Kim E.H., Jang H., Shin D. Nrf2 inhibition reverses the resistance of cisplatin-resistant head and neck cancer cells to artesunate-induced ferroptosis. Redox Biol. 2017;11:254–262. doi: 10.1016/j.redox.2016.12.010. PubMed DOI PMC
Kajarabille N., Latunde-Dada G.O. Programmed Cell-Death by Ferroptosis: Antioxidants as Mitigators. Int. J. Mol. Sci. 2019;20:4968. doi: 10.3390/ijms20194968. PubMed DOI PMC
Bhosale P.B., Ha S.E., Vetrivel P., Kim H.H., Kim S.M., Kim G.S. Functions of polyphenols and its anticancer properties in biomedical research: A narrative review. Transl. Cancer Res. 2020;9:7619–7631. doi: 10.21037/tcr-20-2359. PubMed DOI PMC
Gibellini L., Pinti M., Nasi M., Montagna J.P., De Biasi S., Roat E., Bertoncelli L., Cooper E.L., Cossarizza A. Quercetin and Cancer Chemoprevention. Evid.-Based Complement. Altern. Med. 2011;2011:591356. doi: 10.1093/ecam/neq053. PubMed DOI PMC
Stepanić V., Kujundžić R.N., Trošelj K.G. Epigenome, Cancer Prevention and Flavonoids and Curcumin. In: Payne C.J., editor. Epigenetics and Epigenomics. IntechOpen; London, UK: 2014. p. 220.
Pop T.D., Diaconeasa Z. Recent Advances in Phenolic Metabolites and Skin Cancer. Int. J. Mol. Sci. 2021;22:9707. doi: 10.3390/ijms22189707. PubMed DOI PMC
Costa A., Bonner M.Y., Arbiser J.L. Use of Polyphenolic Compounds in Dermatologic Oncology. Am. J. Clin. Dermatol. 2016;17:369–385. doi: 10.1007/s40257-016-0193-5. PubMed DOI PMC
Leu J.I., Murphy M.E., George D.L. Targeting ErbB3 and Cellular NADPH/NADP(+)Abundance Sensitizes Cutaneous Melanomas to Ferroptosis Inducers. ACS Chem. Biol. 2022;17:1038–1044. doi: 10.1021/acschembio.2c00113. PubMed DOI PMC
Zhu H.Y., Huang Z.X., Chen G.Q., Sheng F., Zheng Y.S. Typhaneoside prevents acute myeloid leukemia (AML) through suppressing proliferation and inducing ferroptosis associated with autophagy. Biochem. Biophys. Res. Commun. 2019;516:1265–1271. doi: 10.1016/j.bbrc.2019.06.070. PubMed DOI
Xie Y., Zhou X., Li J., Yao X.C., Liu W.L., Kang F.H., Zou Z.X., Xu K.P., Xu P.S., Tan G.S. Identification of a new natural biflavonoids against breast cancer cells induced ferroptosis via the mitochondrial pathway. Bioorg. Chem. 2021;109:11. doi: 10.1016/j.bioorg.2021.104744. PubMed DOI
Xie Y., Zhou X., Li J., Yao X.C., Liu W.L., Xu P.S., Tan G.S. Cytotoxic effects of the biflavonoids isolated from Selaginella trichoclada on MCF-7 cells and its potential mechanism. Bioorg. Med. Chem. Lett. 2022;56:5. doi: 10.1016/j.bmcl.2021.128486. PubMed DOI
Xiong X.F., Tang N., Lai X.D., Zhang J.L., Wen W.L., Li X.J., Li A.G., Wu Y.H., Liu Z.H. Insights Into Amentoflavone: A Natural Multifunctional Biflavonoid. Front. Pharmacol. 2021;12:24. doi: 10.3389/fphar.2021.768708. PubMed DOI PMC
Chen Y., Li N., Wang H.J., Wang N.N., Peng H., Wang J., Li Y.H., Liu M.D., Li H., Zhang Y., et al. Amentoflavone suppresses cell proliferation and induces cell death through triggering autophagy-dependent ferroptosis in human glioma. Life Sci. 2020;247:10. doi: 10.1016/j.lfs.2020.117425. PubMed DOI
Chen P., Wu Q.B., Feng J., Yan L.L., Sun Y.T., Liu S.P., Xiang Y., Zhang M.M., Pan T., Chen X.Y., et al. Erianin, a novel dibenzyl compound in Dendrobium extract, inhibits lung cancer cell growth and migration via calcium/calmodulin-dependent ferroptosis. Signal Transduct. Target. Ther. 2020;5:11. doi: 10.1038/s41392-020-0149-3. PubMed DOI PMC
Xiang Y., Chen X., Wang W., Zhai L., Sun X., Feng J., Duan T., Zhang M., Pan T., Yan L., et al. Natural Product Erianin Inhibits Bladder Cancer Cell Growth by Inducing Ferroptosis via NRF2 Inactivation. Front. Pharmacol. 2021;12:12. doi: 10.3389/fphar.2021.775506. PubMed DOI PMC
Mbaveng A.T., Fotso G.W., Ngnintedo D., Kuete V., Ngadjui B.T., Keumedjio F., Andrae-Marobela K., Efferth T. Cytotoxicity of epunctanone and four other phytochemicals isolated from the medicinal plants Garcinia epunctata and Ptycholobium contortum towards multi-factorial drug resistant cancer cells. Phytomedicine. 2018;48:112–119. doi: 10.1016/j.phymed.2017.12.016. PubMed DOI
Huang B.K., Langford T.F., Sikes H.D. Using Sensors and Generators of H2O2 to Elucidate the Toxicity Mechanism of Piperlongumine and Phenethyl Isothiocyanate. Antioxid. Redox Signal. 2016;24:924–938. doi: 10.1089/ars.2015.6482. PubMed DOI PMC
Roh J.L., Kim E.H., Park J.Y., Kim J.W., Kwon M., Lee B.H. Piperlongumine selectively kills cancer cells and increases cisplatin antitumor activity in head and neck cancer. Oncotarget. 2014;5:9227–9238. doi: 10.18632/oncotarget.2402. PubMed DOI PMC
Yamaguchi Y., Kasukabe T., Kumakura S. Piperlongumine rapidly induces the death of human pancreatic cancer cells mainly through the induction of ferroptosis. Int. J. Oncol. 2018;52:1011–1022. doi: 10.3892/ijo.2018.4259. PubMed DOI
Tang H.M., Cheung P.C.K. Gene expression profile analysis of gallic acid-induced cell death process. Sci. Rep. 2021;11:17. doi: 10.1038/s41598-021-96174-1. PubMed DOI PMC
Khorsandi K., Kianmehr Z., Hosseinmardi Z., Hosseinzadeh R. Anti-cancer effect of gallic acid in presence of low level laser irradiation: ROS production and induction of apoptosis and ferroptosis. Cancer Cell Int. 2020;20:14. doi: 10.1186/s12935-020-1100-y. PubMed DOI PMC
Tang H.M., Cheung P.C.K. Gallic Acid Triggers Iron-Dependent Cell Death with Apoptotic, Ferroptotic, and Necroptotic Features. Toxins. 2019;11:492. doi: 10.3390/toxins11090492. PubMed DOI PMC
An P.J., Gu D.H., Gao Z.G., Fan F.Y., Jiang Y., Sun B.W. Hypoxia-augmented and photothermally-enhanced ferroptotic therapy with high specificity and efficiency. J. Mat. Chem. B. 2020;8:78–87. doi: 10.1039/C9TB02268F. PubMed DOI
Zhang P.S., Hou Y., Zeng J.F., Li Y.Y., Wang Z.H., Zhu R., Ma T.C., Gao M.Y. Coordinatively Unsaturated Fe3+ Based Activatable Probes for Enhanced MRI and Therapy of Tumors. Angew. Chem.-Int. Edit. 2019;58:11088–11096. doi: 10.1002/anie.201904880. PubMed DOI
Ullah A., Munir S., Badshah S.L., Khan N., Ghani L., Poulson B.G., Emwas A.H., Jaremko M. Important Flavonoids and Their Role as a Therapeutic Agent. Molecules. 2020;25:5243. doi: 10.3390/molecules25225243. PubMed DOI PMC
Shao C.W., Yuan J.W., Liu Y.N., Qin Y.J., Wang X.A., Gu J., Chen G.Q., Zhang B., Liu H.K., Zhao J., et al. Epileptic brain fluorescent imaging reveals apigenin can relieve the myeloperoxidase-mediated oxidative stress and inhibit ferroptosis. Proc. Natl. Acad. Sci. USA. 2020;117:10155–10164. doi: 10.1073/pnas.1917946117. PubMed DOI PMC
Adham A.N., Abdelfatah S., Naqishbandi A.M., Mahmoud N., Efferth T. Cytotoxicity of apigenin toward multiple myeloma cell lines and suppression of iNOS and COX-2 expression in STAT1-transfected HEK293 cells. Phytomedicine. 2021;80:15. doi: 10.1016/j.phymed.2020.153371. PubMed DOI
Adham A.N., Naqishbandi A.M., Efferth T. Cytotoxicity and apoptosis induction by Fumaria officinalis extracts in leukemia and multiple myeloma cell lines. J. Ethnopharmacol. 2021;266:10. doi: 10.1016/j.jep.2020.113458. PubMed DOI
Liu R., Rong G., Liu Y., Huang W., He D., Lu R. Delivery of apigenin-loaded magnetic Fe2O3/Fe3O4@mSiO2 nanocomposites to A549 cells and their antitumor mechanism. Mater. Sci. Eng. C. 2021;120:111719. doi: 10.1016/j.msec.2020.111719. PubMed DOI
Guan X., Li Z.H., Zhu S., Cheng M.J., Ju Y.T., Ren L., Yang G.L., Min D.Y. Galangin attenuated cerebral ischemia-reperfusion injury by inhibition of ferroptosis through activating the SLC7A11/GPX4 axis in gerbils. Life Sci. 2021;264:11. doi: 10.1016/j.lfs.2020.118660. PubMed DOI
Yuan Y., Zhai Y.Y., Chen J.J., Xu X.F., Wang H.M. Kaempferol Ameliorates Oxygen-Glucose Deprivation/Reoxygenation-Induced Neuronal Ferroptosis by Activating Nrf2/SLC7A11/GPX4 Axis. Biomolecules. 2021;11:923. doi: 10.3390/biom11070923. PubMed DOI PMC
Xu S.J., Wu B.X., Zhong B.Y., Lin L.Q., Ding Y.N., Jin X., Huang Z.W., Lin M.Y., Wu H.L., Xu D.P. Naringenin alleviates myocardial ischemia/reperfusion injury by regulating the nuclear factor-erythroid factor 2-related factor 2 (Nrf2)/System xc-/glutathione peroxidase 4 (GPX4) axis to inhibit ferroptosis. Bioengineered. 2021;12:10924–10934. doi: 10.1080/21655979.2021.1995994. PubMed DOI PMC
Xu B.Y., Wang H.D., Chen Z. Puerarin Inhibits Ferroptosis and Inflammation of Lung Injury Caused by Sepsis in LPS Induced Lung Epithelial Cells. Front. Pediatr. 2021;9:7. doi: 10.3389/fped.2021.706327. PubMed DOI PMC
Andjelkovic M., Van Camp J., De Meulenaer B., Depaemelaere G., Socaciu C., Verloo M., Verhe R. Iron-chelation properties of phenolic acids bearing catechol and galloyl groups. Food Chem. 2006;98:23–31. doi: 10.1016/j.foodchem.2005.05.044. DOI
Yang D.Y., Wang T.C., Long M., Li P. Quercetin: Its Main Pharmacological Activity and Potential Application in Clinical Medicine. Oxidative Med. Cell. Longev. 2020;2020:13. doi: 10.1155/2020/8825387. PubMed DOI PMC
Kashyap D., Mittal S., Sak K., Singhal P., Tuli H.S. Molecular mechanisms of action of quercetin in cancer: Recent advances. Tumor Biol. 2016;37:12927–12939. doi: 10.1007/s13277-016-5184-x. PubMed DOI
Rauf A., Imran M., Khan I.A., Ur-Rehman M., Gilani S.A., Mehmood Z., Mubarak M.S. Anticancer potential of quercetin: A comprehensive review. Phytother. Res. 2018;32:2109–2130. doi: 10.1002/ptr.6155. PubMed DOI
Reyes-Farias M., Carrasco-Pozo C. The Anti-Cancer Effect of Quercetin: Molecular Implications in Cancer Metabolism. Int. J. Mol. Sci. 2019;20:3177. doi: 10.3390/ijms20133177. PubMed DOI PMC
Ulusoy H.G., Sanlier N. A minireview of quercetin: From its metabolism to possible mechanisms of its biological activities. Crit. Rev. Food Sci. Nutr. 2020;60:3290–3303. doi: 10.1080/10408398.2019.1683810. PubMed DOI
Xu D., Hu M.J., Wang Y.Q., Cui Y.L. Antioxidant Activities of Quercetin and Its Complexes for Medicinal Application. Molecules. 2019;24:1123. doi: 10.3390/molecules24061123. PubMed DOI PMC
Xiao L., Luo G., Tang Y.H., Yao P. Quercetin and iron metabolism: What we know and what we need to know. Food Chem. Toxicol. 2018;114:190–203. doi: 10.1016/j.fct.2018.02.022. PubMed DOI
Batiha G.E., Beshbishy A.M., Ikram M., Mulla Z.S., Abd El-Hack M.E., Taha A.E., Algammal A.M., Elewa Y.H.A. The Pharmacological Activity, Biochemical Properties, and Pharmacokinetics of the Major Natural Polyphenolic Flavonoid: Quercetin. Foods. 2020;9:374. doi: 10.3390/foods9030374. PubMed DOI PMC
Li X.C., Zeng J.Y., Liu Y.P., Liang M.S., Liu Q.R., Li Z., Zhao X.J., Chen D.F. Inhibitory Effect and Mechanism of Action of Quercetin and Quercetin Diels-Alder anti-Dimer on Erastin-Induced Ferroptosis in Bone Marrow-Derived Mesenchymal Stem Cells. Antioxidants. 2020;9:205. doi: 10.3390/antiox9030205. PubMed DOI PMC
Li D., Jiang C.J., Mei G.B., Zhao Y., Chen L., Liu J.J., Tang Y.H., Gao C., Yao P. Quercetin Alleviates Ferroptosis of Pancreatic beta Cells in Type 2 Diabetes. Nutrients. 2020;12:2954. doi: 10.3390/nu12102954. PubMed DOI PMC
Wang Y., Quan F., Cao Q., Lin Y., Yue C., Bi R., Cui X., Yang H., Yang Y., Birnbaumer L., et al. Quercetin alleviates acute kidney injury by inhibiting ferroptosis. J. Adv. Res. 2021;28:231–243. doi: 10.1016/j.jare.2020.07.007. PubMed DOI PMC
Gunesch S., Hoffmann M., Kiermeier C., Fischer W., Pinto A.F.M., Maurice T., Maher P., Decker M. 7-O-Esters of taxifolin with pronounced and overadditive effects in neuroprotection, anti-neuroinflammation, and amelioration of short-term memory impairment in vivo. Redox Biol. 2020;29:14. doi: 10.1016/j.redox.2019.101378. PubMed DOI PMC
Fischer W., Currais A., Liang Z.B., Pinto A., Maher P. Old age-associated phenotypic screening for Alzheimer’s disease drug candidates identifies sterubin as a potent neuroprotective compound from Yerba santa. Redox Biol. 2019;21:12. doi: 10.1016/j.redox.2018.101089. PubMed DOI PMC
Li L., Li W.J., Zheng X.R., Liu Q.L., Du Q., Lai Y.J., Liu S.Q. Eriodictyol ameliorates cognitive dysfunction in APP/PS1 mice by inhibiting ferroptosis via vitamin D receptor-mediated Nrf2 activation. Mol. Med. 2022;28:20. doi: 10.1186/s10020-022-00442-3. PubMed DOI PMC
Xie Y.C., Song X.X., Sun X.F., Huang J., Zhong M.Z., Lotze M.T., Zeh H.J., Kang R., Tang D.L. Identification of baicalein as a ferroptosis inhibitor by natural product library screening. Biochem. Biophys. Res. Commun. 2016;473:775–780. doi: 10.1016/j.bbrc.2016.03.052. PubMed DOI
Probst L., Dächert J., Schenk B., Fulda S. Lipoxygenase inhibitors protect acute lymphoblastic leukemia cells from ferroptotic cell death. Biochem. Pharmacol. 2017;140:41–52. doi: 10.1016/j.bcp.2017.06.112. PubMed DOI
Li Q., Li Q.Q., Jia J.N., Sun Q.Y., Zhou H.H., Jin W.L., Mao X.Y. Baicalein Exerts Neuroprotective Effects in FeCl3-Induced Posttraumatic Epileptic Seizures via Suppressing Ferroptosis. Front. Pharmacol. 2019;10:13. doi: 10.3389/fphar.2019.00638. PubMed DOI PMC
Yang M., Li X.Y., Li H.J., Zhang X.X., Liu X.L., Song Y.Q. Baicalein inhibits RL S3-induced ferroptosis in melanocytes. Biochem. Biophys. Res. Commun. 2021;561:65–72. doi: 10.1016/j.bbrc.2021.05.010. PubMed DOI
Zheng B., Zhou X.W., Pang L.J., Che Y.J., Qi X. Baicalin suppresses autophagy-dependent ferroptosis in early brain injury after subarachnoid hemorrhage. Bioengineered. 2021;12:7794–7804. doi: 10.1080/21655979.2021.1975999. PubMed DOI PMC
Kong N., Chen X.Y., Feng J., Duan T., Liu S.P., Sun X.N., Chen P., Pan T., Yan L.L., Jin T., et al. Baicalin induces ferroptosis in bladder cancer cells by downregulating FTH1. Acta Pharm. Sin. B. 2021;11:4045–4054. doi: 10.1016/j.apsb.2021.03.036. PubMed DOI PMC
Maher P. Modulation of the Neuroprotective and Anti-inflammatory Activities of the Flavonol Fisetin by the Transition Metals Iron and Copper. Antioxidants. 2020;9:1113. doi: 10.3390/antiox9111113. PubMed DOI PMC
Becquer-Viart M.A., Gonzalez-Yaque J., Fonseca-Fonseca L.A., Nunez-Figueredo Y., Andreu G.L.P. Antioxidant and neuroprotective effects of gossypitrin, a flavonoid from Talipariti elatum, against chemical hypoxia-induced PC12 cell death. J. Pharm. Pharmacogn. Res. 2018;6:72–80.
Becquer-Viart M.A., Armentero-Lopez A., Alvarez-Alminaque D., Fernandez-Acosta R., Matos-Peralta Y., D’Vries R.F., Marin-Prida J., Pardo-Andreu G.L. Gossypitrin, A Naturally Occurring Flavonoid, Attenuates Iron-Induced Neuronal and Mitochondrial Damage. Molecules. 2021;26:3364. doi: 10.3390/molecules26113364. PubMed DOI PMC
Matic S., Takac M.J.M., Barbaric M., Lucic B., Troselj K.G., Stepanic V. The Influence of In Vivo Metabolic Modifications on ADMET Properties of Green Tea Catechins-In Silico Analysis. J. Pharm. Sci. 2018;107:2957–2964. doi: 10.1016/j.xphs.2018.07.026. PubMed DOI
Bernatova I. Biological activities of (-)-epicatechin and (-)-epicatechin-containing foods: Focus on cardiovascular and neuropsychological health. Biotechnol. Adv. 2018;36:666–681. doi: 10.1016/j.biotechadv.2018.01.009. PubMed DOI
Butt M.S., Ahmad R.S., Sultan M.T., Qayyum M.M.N., Naz A. Green Tea and Anticancer Perspectives: Updates from Last Decade. Crit. Rev. Food Sci. Nutr. 2015;55:792–805. doi: 10.1080/10408398.2012.680205. PubMed DOI
Nakagawa T., Yokozawa T. Direct scavenging of nitric oxide and superoxide by green tea. Food Chem. Toxicol. 2002;40:1745–1750. doi: 10.1016/S0278-6915(02)00169-2. PubMed DOI
Chang C.F., Cho S., Wang J. (-)-Epicatechin protects hemorrhagic brain via synergistic Nrf2 pathways. Ann. Clin. Transl. Neurol. 2014;1:258–271. doi: 10.1002/acn3.54. PubMed DOI PMC
Wang J.J., Chen Y., Chen L., Duan Y.Z., Kuang X.J., Peng Z., Li C.H., Li Y.H., Xiao Y., Jin H., et al. EGCG modulates PKD1 and ferroptosis to promote recovery in ST rats. Transl. Neurosci. 2020;11:173–181. doi: 10.1515/tnsci-2020-0119. PubMed DOI PMC
Kose T., Vera-Aviles M., Sharp P.A., Latunde-Dada G.O. Curcumin and (-)- Epigallocatechin-3-Gallate Protect Murine MIN6 Pancreatic Beta-Cells against Iron Toxicity and Erastin-Induced Ferroptosis. Pharmaceuticals. 2019;12:26. doi: 10.3390/ph12010026. PubMed DOI PMC
Mu M., Wang Y.L., Zhao S.S., Li X.L., Fan R.R., Mei L., Wu M., Zou B.W., Zhao N., Han B., et al. Engineering a pH/Glutathione-Responsive Tea Polyphenol Nanodevice as an Apoptosis/Ferroptosis-Inducing Agent. ACS Appl. Bio Mater. 2020;3:4128–4138. doi: 10.1021/acsabm.0c00225. PubMed DOI
Banoth R.K., Thatikonda A. A Review on Natural Chalcones an Update. Int. J. Pharm. Sci. Res. 2020;11:546–555. doi: 10.13040/ijpsr.0975-8232.11(2).546-55. DOI
Rammohan A., Reddy J.S., Sravya G., Rao C.N., Zyryanov G.V. Chalcone synthesis, properties and medicinal applications: A review. Environ. Chem. Lett. 2020;18:433–458. doi: 10.1007/s10311-019-00959-w. DOI
Matos M.J., Vazquez-Rodriguez S., Uriarte E., Santana L. Potential pharmacological uses of chalcones: A patent review (from June 2011-2014) Expert Opin. Ther. Patents. 2015;25:351–366. doi: 10.1517/13543776.2014.995627. PubMed DOI
Zhuang C., Zhang W., Sheng C., Xing C., Miao Z. Chalcone: A Privileged Structure in Medicinal Chemistry. Chem. Rev. 2017;117:7762–7810. doi: 10.1021/acs.chemrev.7b00020. PubMed DOI PMC
Cong L., Dong X.Y., Wang Y., Deng Y.L., Li B., Dai R.J. On the role of synthesized hydroxylated chalcones as dual functional amyloid-beta aggregation and ferroptosis inhibitors for potential treatment of Alzheimer’s disease. Eur. J. Med. Chem. 2019;166:11–21. doi: 10.1016/j.ejmech.2019.01.039. PubMed DOI
Liu J., Li X.C., Cai R.X., Ren Z.W., Zhang A.Z., Deng F.D., Chen D.F. Simultaneous Study of Anti-Ferroptosis and Antioxidant Mechanisms of Butein and (S)-Butin. Molecules. 2020;25:674. doi: 10.3390/molecules25030674. PubMed DOI PMC
Wen L.R., Shi D.D., Zhou T., Tu J.M., He M., Jiang Y.M., Yang B. Identification of two novel prenylated flavonoids in mulberry leaf and their bioactivities. Food Chem. 2020;315:11. doi: 10.1016/j.foodchem.2020.126236. PubMed DOI
Tang Y., Luo H.J., Xiao Q., Li L., Zhong X., Zhang J., Wang F., Li G.S., Wang L., Li Y. Isoliquiritigenin attenuates septic acute kidney injury by regulating ferritinophagy-mediated ferroptosis. Ren. Fail. 2021;43:1551–1560. doi: 10.1080/0886022X.2021.2003208. PubMed DOI PMC
Yaseen A., Yang F., Zhang X., Li F., Chen B., Faraag A.H.I., Wang M.K., Shen X.F., Wang L. Ferroptosis inhibitory constituents from the fruits of Cullen corylifolium. Nat. Prod. Res. 2021;35:5364–5368. doi: 10.1080/14786419.2020.1762188. PubMed DOI
Xia N., Daiber A., Forstermann U., Li H.G. Antioxidant effects of resveratrol in the cardiovascular system. Br. J. Pharmacol. 2017;174:1633–1646. doi: 10.1111/bph.13492. PubMed DOI PMC
Yi M., Li J.J., Chen S.N., Cai J., Ban Y.Y., Peng Q., Zhou Y., Zeng Z.Y., Peng S.P., Li X.L., et al. Emerging role of lipid metabolism alterations in Cancer stem cells. J. Exp. Clin. Cancer Res. 2018;37:18. doi: 10.1186/s13046-018-0784-5. PubMed DOI PMC
Qu Z., Sun J.C., Zhang W.N., Yu J.Q., Zhuang C.L. Transcription factor NRF2 as a promising therapeutic target for Alzheimer’s disease. Free. Radic. Biol. Med. 2020;159:87–102. doi: 10.1016/j.freeradbiomed.2020.06.028. PubMed DOI
Zhang X.H., Jiang L.P., Chen H.B., Wei S., Yao K., Sun X.C., Yang G., Jiang L.J., Zhang C., Wang N.N., et al. Resveratrol protected acrolein-induced ferroptosis and insulin secretion dysfunction via ER-stress- related PERK pathway in MIN6 cells. Toxicology. 2022;465:12. doi: 10.1016/j.tox.2021.153048. PubMed DOI
Li T., Tan Y., Ouyang S., He J., Liu L.L. Resveratrol protects against myocardial ischemia-reperfusion injury via attenuating ferroptosis. Gene. 2022;808:9. doi: 10.1016/j.gene.2021.145968. PubMed DOI
Mo Y.S., Duan L.N., Yang Y.N., Liu W., Zhang Y., Zhou L.G., Su S.Y., Lo P.C., Cai J.Y., Gao L.Q., et al. Nanoparticles improved resveratrol brain delivery and its therapeutic efficacy against intracerebral hemorrhage. Nanoscale. 2021;13:3827–3840. doi: 10.1039/D0NR06249A. PubMed DOI
Lee J., You J.H., Kim M.S., Roh J.L. Epigenetic reprogramming of epithelial-mesenchymal transition promotes ferroptosis of head and neck cancer. Redox Biol. 2020;37:12. doi: 10.1016/j.redox.2020.101697. PubMed DOI PMC
Rainey N.E., Moustapha A., Saric A., Nicolas G., Sureau F., Petit P.X. Iron chelation by curcumin suppresses both curcumin-induced autophagy and cell death together with iron overload neoplastic transformation. Cell Death Discov. 2019;5:15. doi: 10.1038/s41420-019-0234-y. PubMed DOI PMC
Guerrero-Hue M., Garcia-Caballero C., Palomino-Antolin A., Rubio-Navarro A., Vazquez-Carballo C., Herencia C., Martin-Sanchez D., Farre-Alins V., Egea J., Cannata P., et al. Curcumin reduces renal damage associated with rhabdomyolysis by decreasing ferroptosis-mediated cell death. Faseb J. 2019;33:8961–8975. doi: 10.1096/fj.201900077R. PubMed DOI
Yang C., Han M.M., Li R.Y., Zhou L.G., Zhang Y., Duan L.N., Su S.Y., Li M., Wang Q., Chen T.K., et al. Curcumin Nanoparticles Inhibiting Ferroptosis for the Enhanced Treatment of Intracerebral Hemorrhage. Int. J. Nanomed. 2021;16:8049–8065. doi: 10.2147/IJN.S334965. PubMed DOI PMC
Tang X., Ding H., Liang M.L., Chen X., Yan Y.X., Wan N.S., Chen Q.Q., Zhang J., Cao J. Curcumin induces ferroptosis in non-small-cell lung cancer via activating autophagy. Thorac. Cancer. 2021;12:1219–1230. doi: 10.1111/1759-7714.13904. PubMed DOI PMC
Li R.H., Zhang J., Zhou Y.F., Gao Q., Wang R., Fu Y.R., Zheng L.W., Yu H. Transcriptome Investigation and In Vitro Verification of Curcumin-Induced HO-1 as a Feature of Ferroptosis in Breast Cancer Cells. Oxidative Med. Cell. Longev. 2020;2020:18. doi: 10.1155/2020/3469840. PubMed DOI PMC
Xu B., Zhu W.J., Peng Y.J., Cheng S.D. Curcumin reverses the sunitinib resistance in clear cell renal cell carcinoma (ccRCC) through the induction of ferroptosis via the ADAMTS18 gene. Transl. Cancer Res. 2021;10:3158–3167. doi: 10.21037/tcr-21-227. PubMed DOI PMC
Gaulton A., Hersey A., Nowotka M., Bento A.P., Chambers J., Mendez D., Mutowo P., Atkinson F., Bellis L.J., Cibrian-Uhalte E., et al. The ChEMBL database in 2017. Nucleic Acids Res. 2017;45:D945–D954. doi: 10.1093/nar/gkw1074. PubMed DOI PMC
Kanehisa M., Sato Y., Kawashima M., Furumichi M., Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016;44:D457–D462. doi: 10.1093/nar/gkv1070. PubMed DOI PMC
R Core Team R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. [(accessed on 1 January 2021)]. Available online: http://www.R-project.org/
Sander T., Freyss J., von Korff M., Rufener C. Data Warrior: An Open-Source Program For Chemistry Aware Data Visualization And Analysis. J. Chem Inf. Model. 2015;55:460–473. doi: 10.1021/ci500588j. PubMed DOI
Redox Active Molecules in Cancer Treatments