Catchment characteristics and seasonality control the composition of microbial assemblages exported from three outlet glaciers of the Greenland Ice Sheet
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36523833
PubMed Central
PMC9745319
DOI
10.3389/fmicb.2022.1035197
Knihovny.cz E-zdroje
- Klíčová slova
- 16S rRNA gene, ecological indicators, glacial hydrology, proglacial stream, subglacial drainage system,
- Publikační typ
- časopisecké články MeSH
Glacial meltwater drains into proglacial rivers where it interacts with the surrounding landscape, collecting microbial cells as it travels downstream. Characterizing the composition of the resulting microbial assemblages in transport can inform us about intra-annual changes in meltwater flowpaths beneath the glacier as well as hydrological connectivity with proglacial areas. Here, we investigated how the structure of suspended microbial assemblages evolves over the course of a melt season for three proglacial catchments of the Greenland Ice Sheet (GrIS), reasoning that differences in glacier size and the proportion of glacierized versus non-glacierized catchment areas will influence both the identity and relative abundance of microbial taxa in transport. Streamwater samples were taken at the same time each day over a period of 3 weeks (summer 2018) to identify temporal patterns in microbial assemblages for three outlet glaciers of the GrIS, which differed in glacier size (smallest to largest; Russell, Leverett, and Isunnguata Sermia [IS]) and their glacierized: proglacial catchment area ratio (Leverett, 76; Isunnguata Sermia, 25; Russell, 2). DNA was extracted from samples, and 16S rRNA gene amplicons sequenced to characterize the structure of assemblages. We found that microbial diversity was significantly greater in Isunnguata Sermia and Russell Glacier rivers compared to Leverett Glacier, the latter of which having the smallest relative proglacial catchment area. Furthermore, the microbial diversity of the former two catchments continued to increase over monitored period, presumably due to increasing hydrologic connectivity with proglacial habitats. Meanwhile, diversity decreased over the monitored period in Leverett, which may have resulted from the evolution of an efficient subglacial drainage system. Linear discriminant analysis further revealed that bacteria characteristic to soils were disproportionately represented in the Isunnguata Sermia river, while putative methylotrophs were disproportionately abundant in Russell Glacier. Meanwhile, taxa typical for glacierized habitats (i.e., Rhodoferax and Polaromonas) dominated in the Leverett Glacier river. Our findings suggest that the proportion of deglaciated catchment area is more influential to suspended microbial assemblage structure than absolute glacier size, and improve our understanding of hydrological flowpaths, particulate entrainment, and transport.
Department of Earth and Environment University of Pennsylvania Philadelphia PA United States
Department of Ecology Faculty of Science Charles University Prague Czechia
Department of Geosciences UiO University of Oslo Oslo Norway
Department of Geosciences UiT The Arctic University of Norway Tromsø Norway
School of Geographical and Earth Sciences University of Glasgow Glasgow United Kingdom
Zobrazit více v PubMed
Anderson M. J. (2001). A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46. doi: 10.1111/j.1442-9993.2001.01070.pp.x DOI
Andrews M. G., Jacobson A. D., Osburn M. R., Flynn T. M. (2018). Dissolved carbon dynamics in meltwaters from the Russell glacier, Greenland ice sheet. J. Geophys. Res. Biogeo. 123, 2922–2940. doi: 10.1029/2018JG004458 DOI
Aronesty E. (2011). Command-Line Tools for Processing Biological Sequencing Data. Available at: https://expressionanalysis.github.io/ea-utils/.
Battin T. J., Besemer K., Bengtsson M. M., Romani A. M., Packmann A. I. (2016). The ecology and biogeochemistry of stream biofilms. Nat. Rev. Microbiol. 14, 251–263. doi: 10.1038/nrmicro.2016.15, PMID: PubMed DOI
Bourquin M., Busi S. B., Fodelianakis S., Peter H., Washburne A., Kohler T. J., et al. . (2022). The microbiome of cryospheric ecosystems. Nat. Commun. 13, 3087–3089. doi: 10.1038/s41467-022-30816-4, PMID: PubMed DOI PMC
Boyd E. S., Hamilton T. L., Havig J. R., Skidmore M. L., Shock E. L. (2014). Chemolithotrophic primary production in a subglacial ecosystem. Appl. Environ. Microbiol. 80, 6146–6153. doi: 10.1128/AEM.01956-14, PMID: PubMed DOI PMC
Boyd E. S., Lange R. K., Mitchell A. C., Havig J. R., Hamilton T. L., Lafrenière M. J., et al. . (2011). Diversity, abundance, and potential activity of nitrifying and nitrate-reducing microbial assemblages in a subglacial ecosystem. Appl. Environ. Microbiol. 77, 4778–4787. doi: 10.1128/AEM.00376-11, PMID: PubMed DOI PMC
Boyd E. S., Skidmore M., Mitchell A. C., Bakermans C., Peters J. W. (2010). Methanogenesis in subglacial sediments. Environ. Microbiol. Rep. 2, 685–692. doi: 10.1111/j.1758-2229.2010.00162.x, PMID: PubMed DOI
Brandani J., Peter H., Busi S. B., Kohler T. J., Fodelianakis S., Ezzat L., et al. . (2022). Spatial patterns of benthic biofilm diversity among streams draining proglacial floodplains. Front. Microbiol. 13:948165. doi: 10.3389/fmicb.2022.948165, PMID: PubMed DOI PMC
Breiman L. (2001). Random forests. Mach. Learn. 45, 5–32. doi: 10.1023/A:1010933404324 DOI
Cameron K. A., Müller O., Stibal M., Edwards A., Jacobsen C. S. (2020). Glacial microbiota are hydrologically connected and temporally variable. Environ. Microbiol. 22, 3172–3187. doi: 10.1111/1462-2920.15059, PMID: PubMed DOI
Cameron K. A., Stibal M., Hawkings J. R., Mikkelsen A. B., Telling J., Kohler T. J., et al. . (2017a). Meltwater export of prokaryotic cells from the Greenland ice sheet. Environ. Microbiol. 19, 524–534. doi: 10.1111/1462-2920.13483, PMID: PubMed DOI
Cameron K. A., Stibal M., Olsen N. S., Mikkelsen A. B., Elberling B., Jacobsen C. S. (2017b). Potential activity of subglacial microbiota transported to anoxic river delta sediments. Microb. Ecol. 74, 6–9. doi: 10.1007/s00248-016-0926-2, PMID: PubMed DOI PMC
Cavaco M. A., St. Louis V. L., Engel K., St. Pierre K. A., Schiff S. L., Stibal M., et al. . (2019). Freshwater microbial community diversity in a rapidly changing high arctic watershed. FEMS Microbiol. Ecol. 95:fiz161. doi: 10.1093/femsec/fiz161, PMID: PubMed DOI
Chandler D. M., Wadham J. L., Lis G. P., Cowton T., Sole A., Bartholomew I., et al. . (2013). Evolution of the subglacial drainage system beneath the Greenland ice sheet revealed by tracers. Nat. Geosci. 6, 195–198. doi: 10.1038/ngeo1737 DOI
Christiansen J. R., Jørgensen C. J. (2018). First observation of direct methane emission to the atmosphere from the subglacial domain of the Greenland ice sheet. Sci. Rep. 8, 16623–16626. doi: 10.1038/s41598-018-35054-7, PMID: PubMed DOI PMC
Christiansen J. R., Röckmann T., Popa M. E., Sapart C. J., Jørgensen C. J. (2021). Carbon emissions from the edge of the Greenland ice sheet reveal subglacial processes of methane and carbon dioxide turnover. Journal of geophysical research. Biogeosciences 126:e2021JG006308. doi: 10.1029/2021JG006308 DOI
Chu V. W. (2014). Greenland ice sheet hydrology: a review. Prog. Phys. Geogr. 38, 19–54. doi: 10.1177/0309133313507075 DOI
Comte J., Culley A. I., Lovejoy C., Vincent W. F. (2018). Microbial connectivity and sorting in a high Arctic watershed. ISME J. 12, 2988–3000. doi: 10.1038/s41396-018-0236-4, PMID: PubMed DOI PMC
Cowton T., Nienow P., Bartholomew I., Sole A., Mair D. (2012). Rapid erosion beneath the Greenland ice sheet. Geology 40, 343–346. doi: 10.1130/G32687.1 DOI
Crump B. C., Amaral-Zettler L. A., Kling G. W. (2012). Microbial diversity in arctic freshwaters is structured by inoculation of microbes from soils. ISME J. 6, 1629–1639. doi: 10.1038/ismej.2012.9, PMID: PubMed DOI PMC
Crump B. C., Kling G. W., Bahr M., Hobbie J. E. (2003). Bacterioplankton community shifts in an arctic lake correlate with seasonal changes in organic matter source. Appl. Environ. Microbiol. 69, 2253–2268. doi: 10.1128/AEM.69.4.2253-2268.2003, PMID: PubMed DOI PMC
Dieser M., Broemsen E. L., Cameron K. A., King G. M., Achberger A., Choquette K., et al. . (2014). Molecular and biogeochemical evidence for methane cycling beneath the western margin of the Greenland ice sheet. ISME J. 8, 2305–2316. doi: 10.1038/ismej.2014.59, PMID: PubMed DOI PMC
Dubnick A., Kazemi S., Sharp M., Wadham J., Hawkings J., Beaton A., et al. . (2017). Hydrological controls on glacially exported microbial assemblages. J. Geophys. Res. Biogeo. 122, 1049–1061. doi: 10.1002/2016JG003685 DOI
Edgar R. C. (2013). UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998. doi: 10.1038/NMETH.2604, PMID: PubMed DOI
Ezzat L., Fodelianakis S., Kohler T. J., Bourquin M., Brandani J., Busi S. B., et al. . (2022). Sediment biofilms in glacier-fed streams from Scandinavia to the Himalayas host distinct bacterial communities compared to the streamwater. Appl. Environ. Microbiol. 88:e0042122. doi: 10.1128/aem.00421-22, PMID: PubMed DOI PMC
Glassing A., Dowd S. E., Galandiuk S., Davis B., Chiodini R. J. (2016). Inherent bacterial DNA contamination of extraction and sequencing reagents may affect interpretation of microbiota in low bacterial biomass samples. Gut Pathogens 8, 24–12. doi: 10.1186/s13099-016-0103-7, PMID: PubMed DOI PMC
Hauptmann A. L., Markussen T. N., Stibal M., Olsen N. S., Elberling B., Bælum J., et al. . (2016). Upstream freshwater and terrestrial sources are differentially reflected in the bacterial community structure along a small Arctic river and its estuary. Front. Microbiol. 7:1474. doi: 10.3389/fmicb.2016.01474, PMID: PubMed DOI PMC
Hawkings J. R., Linhoff B. S., Wadham J. L., Stibal M., Lamborg C. H., Carling G. T., et al. . (2021). Large subglacial source of mercury from the southwestern margin of the Greenland ice sheet. Nat. Geosci. 14, 496–502. doi: 10.1038/s41561-021-00753-w DOI
Hawkings J. R., Wadham J. L., Benning L. G., Hendry K. R., Tranter M., Tedstone A., et al. . (2017). Ice sheets as a missing source of silica to the polar oceans. Nat. Commun. 8, 1–10. doi: 10.1038/ncomms14198, PMID: PubMed DOI PMC
Hawkings J. R., Wadham J. L., Tranter M., Lawson E., Sole A., Cowton T., et al. . (2015). The effect of warming climate on nutrient and solute export from the Greenland ice sheet. Geochem. Perspect. Lett 1, 94–104. doi: 10.7185/geochemlet.1510 DOI
Hawkings J. R., Wadham J. L., Tranter M., Raiswell R., Benning L. G., Statham P. J., et al. . (2014). Ice sheets as a significant source of highly reactive nanoparticulate iron to the oceans. Nat. Commun. 5, 3929–3928. doi: 10.1038/ncomms4929, PMID: PubMed DOI PMC
Hazarika S. N., Thakur D. (2020). “Actinobacteria,” in Beneficial Microbes in Agro-Ecology ed. Amaresan N.. (London, United Kingdom: Academic Press; ), 443–476.
Hodson A., Anesio A. M., Tranter M., Fountain A., Osborn M., Priscu J., et al. . (2008). Glacial ecosystems. Ecol. Monogr. 78, 41–67. doi: 10.1890/07-0187.1 DOI
Holt A. D., Fellman J., Hood E., Kellerman A. M., Raymond P., Stubbins A., et al. . (2021). The evolution of stream dissolved organic matter composition following glacier retreat in coastal watersheds of Southeast Alaska. Biogeochemistry, 1–18. doi: 10.1007/s10533-021-00815-6 DOI
Hood E., Fellman J., Spencer R. G., Hernes P. J., Edwards R., D’Amore D., et al. . (2009). Glaciers as a source of ancient and labile organic matter to the marine environment. Nature 462, 1044–1047. doi: 10.1038/nature08580, PMID: PubMed DOI
Hotaling S., Foley M. E., Zeglin L. H., Finn D. S., Tronstad L. M., Giersch J. J., et al. . (2019). Microbial assemblages reflect environmental heterogeneity in alpine streams. Glob. Chang. Biol. 25, 2576–2590. doi: 10.1111/gcb.14683, PMID: PubMed DOI
Hotaling S., Hood E., Hamilton T. L. (2017). Microbial ecology of mountain glacier ecosystems: biodiversity, ecological connections and implications of a warming climate. Environ. Microbiol. 19, 2935–2948. doi: 10.1111/1462-2920.13766, PMID: PubMed DOI
IPCC (2019). “IPCC special report on the ocean and cryosphere in a changing climate,” in eds. Pörtner H.-O., Roberts D. C., Masson-Delmotte V., Zhai P., Tignor M., Poloczanska E., et al.. (Cambridge, UK and New York, NY, USA: Cambridge University Press; ), 755. doi:
Irvine-Fynn T. D., Edwards A., Stevens I. T., Mitchell A. C., Bunting P., Box J. E., et al. . (2021). Storage and export of microbial biomass across the western Greenland ice sheet. Nat. Commun. 12, 3960–3911. doi: 10.1038/s41467-021-24040-9, PMID: PubMed DOI PMC
Kaczmarek Ł., Jakubowska N., Celewicz-Gołdyn S., Zawierucha K. (2016). The microorganisms of cryoconite holes (algae, archaea, bacteria, cyanobacteria, fungi, and Protista): a review. Polar Record 52, 176–203. doi: 10.1017/S0032247415000637 DOI
Katoh K., Standley D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780. doi: 10.1093/molbev/mst010, PMID: PubMed DOI PMC
Kohler T. J., Peter H., Fodelianakis S., Pramateftaki P., Styllas M., Tolosano M., et al. . (2020a). Patterns and drivers of extracellular enzyme activity in New Zealand glacier-fed streams. Front. Microbiol. 11:2922. doi: 10.3389/fmicb.2020.591465, PMID: PubMed DOI PMC
Kohler T. J., Vinšová P., Falteisek L., Žárský J. D., Yde J. C., Hatton J. E., et al. . (2020b). Patterns in microbial assemblages exported from the meltwater of arctic and sub-arctic glaciers. Front. Microbiol. 11:669. doi: 10.3389/fmicb.2020.00669, PMID: PubMed DOI PMC
Kohler T. J., Žárský J. D., Yde J. C., Lamarche-Gagnon G., Hawkings J. R., Tedstone A. J., et al. . (2017). Carbon dating reveals a seasonal progression in the source of particulate organic carbon exported from the Greenland ice sheet. Geophys. Res. Lett. 44, 6209–6217. doi: 10.1002/2017GL073219 DOI
Kong W., Liu J., Ji M., Yue L., Kang S., Morgan-Kiss R. M. (2019). Autotrophic microbial community succession from glacier terminus to downstream waters on the Tibetan plateau. FEMS Microbiol. Ecol. 95:fiz074. doi: 10.1093/femsec/fiz074, PMID: PubMed DOI
Lamarche-Gagnon G., Wadham J. L., Sherwood Lollar B., Arndt S., Fietzek P., Beaton A. D., et al. . (2019). Greenland melt drives continuous export of methane from the ice-sheet bed. Nature 565, 73–77. doi: 10.1038/s41586-018-0800-0, PMID: PubMed DOI
Langille M. G. I., Zaneveld J., Caporaso J. G., McDonald D., Knights D., Reyes J. A., et al. . (2013). Predictive functional profiling of microbial communities using 16SrRNA marker gene sequences. Nat. Biotechnol. 31, 814–821. doi: 10.1038/nbt.2676, PMID: PubMed DOI PMC
Lawson E. C., Wadham J. L., Tranter M., Stibal M., Lis G. P., Butler C. E., et al. . (2014). Greenland ice sheet exports labile organic carbon to the Arctic oceans. Biogeosciences 11, 4015–4028. doi: 10.5194/bg-11-4015-2014 DOI
Liaw A., Wiener M. (2002). Classification and regression by randomForest. R News 2, 18–22.
Lindbäck K., Pettersson R., Doyle S. H., Helanow C., Jansson P., Kristensen S. S., et al. . (2014). High-resolution ice thickness and bed topography of a land-terminating section of the Greenland ice sheet. Earth Syst. Sci. Data 6, 331–338. doi: 10.5194/essd-6-331-2014 DOI
Lindbäck K., Pettersson R., Hubbard A. L., Doyle S. H., van As D., Mikkelsen A. B., et al. . (2015). Subglacial water drainage, storage, and piracy beneath the Greenland ice sheet. Geophys. Res. Lett. 42, 7606–7614. doi: 10.1002/2015GL065393 DOI
Liu C., Cui Y., Li X., Yao M. (2021). Microeco: an R package for data mining in microbial community ecology. FEMS Microbiol. Ecol. 97:fiaa25. doi: 10.1093/femsec/fiaa255, PMID: PubMed DOI
Mankoff K. D., Noël B., Fettweis X., Ahlstrøm A. P., Colgan W., Kondo K., et al. . (2020). Greenland liquid water discharge from 1958 through 2019. Earth System Science Data. 12, 2811–2841. doi: 10.5194/essd-12-2811-2020, PMID: PubMed DOI
McMurdie P. J., Holmes S. (2013). Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8:e61217. doi: 10.1371/journal.pone.0061217, PMID: PubMed DOI PMC
Meyer F., Paarmann D., D'Souza M., Olson R., Glass E. M., Kubal M., et al. . (2008). The metagenomics RAST server–a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9, 1–8. doi: 10.1186/1471-2105-9-386, PMID: PubMed DOI PMC
Milner A. M., Khamis K., Battin T. J., Brittain J. E., Barrand N. E., Füreder L., et al. . (2017). Glacier shrinkage driving global changes in downstream systems. Proc. Natl. Acad. Sci. 114, 9770–9778. doi: 10.1073/pnas.1619807114, PMID: PubMed DOI PMC
Oksanen J., Blanchet F. G., Friendly M., Kindt R., Legendre P., McGlinn D., et al. . (2018). Vegan: Community Ecology Package. R package version 2.4-6. Available at: https://CRAN.R-project.org/package=vegan [Accessed September 02, 2022].
Pain A. J., Martin J. B., Martin E. E., Rennermalm Å. K., Rahman S. (2021). Heterogeneous CO 2 and CH 4 content of glacial meltwater from the Greenland ice sheet and implications for subglacial carbon processes. Cryosphere 15, 1627–1644. doi: 10.5194/tc-15-1627-2021 DOI
Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., et al. . (2013). The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596. doi: 10.1093/nar/gks1219, PMID: PubMed DOI PMC
R Core Team . (2017). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. Available at: https://www.R-project.org/ [Accessed September 02, 2022].
Ruiz-González C., Niño-García J. P., Del Giorgio P. A. (2015). Terrestrial origin of bacterial communities in complex boreal freshwater networks. Ecol. Lett. 18, 1198–1206. doi: 10.1111/ele.12499, PMID: PubMed DOI
Salter S. J., Cox M. J., Turek E. M., Calus S. T., Cookson W. O., Moffatt M. F., et al. . (2014). Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 12, 87–12. doi: 10.1186/s12915-014-0087-z, PMID: PubMed DOI PMC
Schloss P. D., Westcott S. L., Ryabin T., Hall J. R., Hartmann M., Hollister E. B., et al. . (2009). Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541. doi: 10.1128/AEM.01541-09, PMID: PubMed DOI PMC
Segata N., Izard J., Waldron L., Gevers D., Miropolsky L., Garett W. S., et al. . (2011). Metagenomic biomarker discovery and explanation. Genome Biol. 12:R60. doi: 10.1186/gb-2011-12-6-r60, PMID: PubMed DOI PMC
Singer G. A., Fasching C., Wilhelm L., Niggemann J., Steier P., Dittmar T., et al. . (2012). Biogeochemically diverse organic matter in alpine glaciers and its downstream fate. Nat. Geosci. 5, 710–714. doi: 10.1038/NGEO1581 DOI
Somers D. J., Strock K. E., Saros J. E. (2020). Environmental controls on microbial diversity in arctic lakes of West Greenland. Microb. Ecol. 80, 60–72. doi: 10.1007/s00248-019-01474-9, PMID: PubMed DOI
Stibal M., Šabacká M., Žárský J. (2012a). Biological processes on glacier and ice sheet surfaces. Nat. Geosci. 5, 771–774. doi: 10.1038/ngeo1611 DOI
Stibal M., Wadham J. L., Lis G. P., Telling J., Pancost R. D., Dubnick A., et al. . (2012b). Methanogenic potential of Arctic and Antarctic subglacial environments with contrasting organic carbon sources. Glob. Chang. Biol. 18, 3332–3345. doi: 10.1111/j.1365-2486.2012.02763.x DOI
Uehlinger U., Robinson C. T., Hieber M., Zah R. (2010). The physicochemical habitat template for periphyton in alpine glacial streams under a changing climate. Hydrobiologia 657, 107–121. doi:
Větrovský T., Baldrian P., Morais D. (2018). SEED 2: a user-friendly platform for amplicon high-throughput sequencing data analyses. Bioinformatics 34, 2292–2294. doi: 10.1093/bioinformatics/bty071, PMID: PubMed DOI PMC
Vinšová P., Kohler T. J., Simpson M. J., Hajdas I., Yde J. C., Falteisek L., et al. . (2022). The biogeochemical legacy of arctic subglacial sediments exposed by glacier retreat. Glob. Biogeochem. Cycles 36:e2021GB007126. doi: 10.1029/2021GB007126 DOI
Wadham J. L., Bottrell S., Tranter M., Raiswell R. (2004). Stable isotope evidence for microbial sulphate reduction at the bed of a polythermal high Arctic glacier. Earth Planet. Sci. Lett. 219, 341–355. doi: 10.1016/S0012-821X(03)00683-6 DOI
Wickham H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New York.
Wilhelm L., Singer G. A., Fasching C., Battin T. J., Besemer K. (2013). Microbial biodiversity in glacier-fed streams. ISME J. 7, 1651–1660. doi: 10.1038/ismej.2013.44, PMID: PubMed DOI PMC
Williamson C. J., Cook J., Tedstone A., Yallop M., McCutcheon J., Poniecka E., et al. . (2020). Algal photophysiology drives darkening and melt of the Greenland ice sheet. Proc. Natl. Acad. Sci. 117, 5694–5705. doi: 10.1073/pnas.1918412117, PMID: PubMed DOI PMC
Methylotrophic Communities Associated with a Greenland Ice Sheet Methane Release Hotspot