Catchment characteristics and seasonality control the composition of microbial assemblages exported from three outlet glaciers of the Greenland Ice Sheet

. 2022 ; 13 () : 1035197. [epub] 20221129

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36523833

Glacial meltwater drains into proglacial rivers where it interacts with the surrounding landscape, collecting microbial cells as it travels downstream. Characterizing the composition of the resulting microbial assemblages in transport can inform us about intra-annual changes in meltwater flowpaths beneath the glacier as well as hydrological connectivity with proglacial areas. Here, we investigated how the structure of suspended microbial assemblages evolves over the course of a melt season for three proglacial catchments of the Greenland Ice Sheet (GrIS), reasoning that differences in glacier size and the proportion of glacierized versus non-glacierized catchment areas will influence both the identity and relative abundance of microbial taxa in transport. Streamwater samples were taken at the same time each day over a period of 3 weeks (summer 2018) to identify temporal patterns in microbial assemblages for three outlet glaciers of the GrIS, which differed in glacier size (smallest to largest; Russell, Leverett, and Isunnguata Sermia [IS]) and their glacierized: proglacial catchment area ratio (Leverett, 76; Isunnguata Sermia, 25; Russell, 2). DNA was extracted from samples, and 16S rRNA gene amplicons sequenced to characterize the structure of assemblages. We found that microbial diversity was significantly greater in Isunnguata Sermia and Russell Glacier rivers compared to Leverett Glacier, the latter of which having the smallest relative proglacial catchment area. Furthermore, the microbial diversity of the former two catchments continued to increase over monitored period, presumably due to increasing hydrologic connectivity with proglacial habitats. Meanwhile, diversity decreased over the monitored period in Leverett, which may have resulted from the evolution of an efficient subglacial drainage system. Linear discriminant analysis further revealed that bacteria characteristic to soils were disproportionately represented in the Isunnguata Sermia river, while putative methylotrophs were disproportionately abundant in Russell Glacier. Meanwhile, taxa typical for glacierized habitats (i.e., Rhodoferax and Polaromonas) dominated in the Leverett Glacier river. Our findings suggest that the proportion of deglaciated catchment area is more influential to suspended microbial assemblage structure than absolute glacier size, and improve our understanding of hydrological flowpaths, particulate entrainment, and transport.

Zobrazit více v PubMed

Anderson M. J. (2001). A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46. doi: 10.1111/j.1442-9993.2001.01070.pp.x DOI

Andrews M. G., Jacobson A. D., Osburn M. R., Flynn T. M. (2018). Dissolved carbon dynamics in meltwaters from the Russell glacier, Greenland ice sheet. J. Geophys. Res. Biogeo. 123, 2922–2940. doi: 10.1029/2018JG004458 DOI

Aronesty E. (2011). Command-Line Tools for Processing Biological Sequencing Data. Available at: https://expressionanalysis.github.io/ea-utils/.

Battin T. J., Besemer K., Bengtsson M. M., Romani A. M., Packmann A. I. (2016). The ecology and biogeochemistry of stream biofilms. Nat. Rev. Microbiol. 14, 251–263. doi: 10.1038/nrmicro.2016.15, PMID: PubMed DOI

Bourquin M., Busi S. B., Fodelianakis S., Peter H., Washburne A., Kohler T. J., et al. . (2022). The microbiome of cryospheric ecosystems. Nat. Commun. 13, 3087–3089. doi: 10.1038/s41467-022-30816-4, PMID: PubMed DOI PMC

Boyd E. S., Hamilton T. L., Havig J. R., Skidmore M. L., Shock E. L. (2014). Chemolithotrophic primary production in a subglacial ecosystem. Appl. Environ. Microbiol. 80, 6146–6153. doi: 10.1128/AEM.01956-14, PMID: PubMed DOI PMC

Boyd E. S., Lange R. K., Mitchell A. C., Havig J. R., Hamilton T. L., Lafrenière M. J., et al. . (2011). Diversity, abundance, and potential activity of nitrifying and nitrate-reducing microbial assemblages in a subglacial ecosystem. Appl. Environ. Microbiol. 77, 4778–4787. doi: 10.1128/AEM.00376-11, PMID: PubMed DOI PMC

Boyd E. S., Skidmore M., Mitchell A. C., Bakermans C., Peters J. W. (2010). Methanogenesis in subglacial sediments. Environ. Microbiol. Rep. 2, 685–692. doi: 10.1111/j.1758-2229.2010.00162.x, PMID: PubMed DOI

Brandani J., Peter H., Busi S. B., Kohler T. J., Fodelianakis S., Ezzat L., et al. . (2022). Spatial patterns of benthic biofilm diversity among streams draining proglacial floodplains. Front. Microbiol. 13:948165. doi: 10.3389/fmicb.2022.948165, PMID: PubMed DOI PMC

Breiman L. (2001). Random forests. Mach. Learn. 45, 5–32. doi: 10.1023/A:1010933404324 DOI

Cameron K. A., Müller O., Stibal M., Edwards A., Jacobsen C. S. (2020). Glacial microbiota are hydrologically connected and temporally variable. Environ. Microbiol. 22, 3172–3187. doi: 10.1111/1462-2920.15059, PMID: PubMed DOI

Cameron K. A., Stibal M., Hawkings J. R., Mikkelsen A. B., Telling J., Kohler T. J., et al. . (2017a). Meltwater export of prokaryotic cells from the Greenland ice sheet. Environ. Microbiol. 19, 524–534. doi: 10.1111/1462-2920.13483, PMID: PubMed DOI

Cameron K. A., Stibal M., Olsen N. S., Mikkelsen A. B., Elberling B., Jacobsen C. S. (2017b). Potential activity of subglacial microbiota transported to anoxic river delta sediments. Microb. Ecol. 74, 6–9. doi: 10.1007/s00248-016-0926-2, PMID: PubMed DOI PMC

Cavaco M. A., St. Louis V. L., Engel K., St. Pierre K. A., Schiff S. L., Stibal M., et al. . (2019). Freshwater microbial community diversity in a rapidly changing high arctic watershed. FEMS Microbiol. Ecol. 95:fiz161. doi: 10.1093/femsec/fiz161, PMID: PubMed DOI

Chandler D. M., Wadham J. L., Lis G. P., Cowton T., Sole A., Bartholomew I., et al. . (2013). Evolution of the subglacial drainage system beneath the Greenland ice sheet revealed by tracers. Nat. Geosci. 6, 195–198. doi: 10.1038/ngeo1737 DOI

Christiansen J. R., Jørgensen C. J. (2018). First observation of direct methane emission to the atmosphere from the subglacial domain of the Greenland ice sheet. Sci. Rep. 8, 16623–16626. doi: 10.1038/s41598-018-35054-7, PMID: PubMed DOI PMC

Christiansen J. R., Röckmann T., Popa M. E., Sapart C. J., Jørgensen C. J. (2021). Carbon emissions from the edge of the Greenland ice sheet reveal subglacial processes of methane and carbon dioxide turnover. Journal of geophysical research. Biogeosciences 126:e2021JG006308. doi: 10.1029/2021JG006308 DOI

Chu V. W. (2014). Greenland ice sheet hydrology: a review. Prog. Phys. Geogr. 38, 19–54. doi: 10.1177/0309133313507075 DOI

Comte J., Culley A. I., Lovejoy C., Vincent W. F. (2018). Microbial connectivity and sorting in a high Arctic watershed. ISME J. 12, 2988–3000. doi: 10.1038/s41396-018-0236-4, PMID: PubMed DOI PMC

Cowton T., Nienow P., Bartholomew I., Sole A., Mair D. (2012). Rapid erosion beneath the Greenland ice sheet. Geology 40, 343–346. doi: 10.1130/G32687.1 DOI

Crump B. C., Amaral-Zettler L. A., Kling G. W. (2012). Microbial diversity in arctic freshwaters is structured by inoculation of microbes from soils. ISME J. 6, 1629–1639. doi: 10.1038/ismej.2012.9, PMID: PubMed DOI PMC

Crump B. C., Kling G. W., Bahr M., Hobbie J. E. (2003). Bacterioplankton community shifts in an arctic lake correlate with seasonal changes in organic matter source. Appl. Environ. Microbiol. 69, 2253–2268. doi: 10.1128/AEM.69.4.2253-2268.2003, PMID: PubMed DOI PMC

Dieser M., Broemsen E. L., Cameron K. A., King G. M., Achberger A., Choquette K., et al. . (2014). Molecular and biogeochemical evidence for methane cycling beneath the western margin of the Greenland ice sheet. ISME J. 8, 2305–2316. doi: 10.1038/ismej.2014.59, PMID: PubMed DOI PMC

Dubnick A., Kazemi S., Sharp M., Wadham J., Hawkings J., Beaton A., et al. . (2017). Hydrological controls on glacially exported microbial assemblages. J. Geophys. Res. Biogeo. 122, 1049–1061. doi: 10.1002/2016JG003685 DOI

Edgar R. C. (2013). UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998. doi: 10.1038/NMETH.2604, PMID: PubMed DOI

Ezzat L., Fodelianakis S., Kohler T. J., Bourquin M., Brandani J., Busi S. B., et al. . (2022). Sediment biofilms in glacier-fed streams from Scandinavia to the Himalayas host distinct bacterial communities compared to the streamwater. Appl. Environ. Microbiol. 88:e0042122. doi: 10.1128/aem.00421-22, PMID: PubMed DOI PMC

Glassing A., Dowd S. E., Galandiuk S., Davis B., Chiodini R. J. (2016). Inherent bacterial DNA contamination of extraction and sequencing reagents may affect interpretation of microbiota in low bacterial biomass samples. Gut Pathogens 8, 24–12. doi: 10.1186/s13099-016-0103-7, PMID: PubMed DOI PMC

Hauptmann A. L., Markussen T. N., Stibal M., Olsen N. S., Elberling B., Bælum J., et al. . (2016). Upstream freshwater and terrestrial sources are differentially reflected in the bacterial community structure along a small Arctic river and its estuary. Front. Microbiol. 7:1474. doi: 10.3389/fmicb.2016.01474, PMID: PubMed DOI PMC

Hawkings J. R., Linhoff B. S., Wadham J. L., Stibal M., Lamborg C. H., Carling G. T., et al. . (2021). Large subglacial source of mercury from the southwestern margin of the Greenland ice sheet. Nat. Geosci. 14, 496–502. doi: 10.1038/s41561-021-00753-w DOI

Hawkings J. R., Wadham J. L., Benning L. G., Hendry K. R., Tranter M., Tedstone A., et al. . (2017). Ice sheets as a missing source of silica to the polar oceans. Nat. Commun. 8, 1–10. doi: 10.1038/ncomms14198, PMID: PubMed DOI PMC

Hawkings J. R., Wadham J. L., Tranter M., Lawson E., Sole A., Cowton T., et al. . (2015). The effect of warming climate on nutrient and solute export from the Greenland ice sheet. Geochem. Perspect. Lett 1, 94–104. doi: 10.7185/geochemlet.1510 DOI

Hawkings J. R., Wadham J. L., Tranter M., Raiswell R., Benning L. G., Statham P. J., et al. . (2014). Ice sheets as a significant source of highly reactive nanoparticulate iron to the oceans. Nat. Commun. 5, 3929–3928. doi: 10.1038/ncomms4929, PMID: PubMed DOI PMC

Hazarika S. N., Thakur D. (2020). “Actinobacteria,” in Beneficial Microbes in Agro-Ecology ed. Amaresan N.. (London, United Kingdom: Academic Press; ), 443–476.

Hodson A., Anesio A. M., Tranter M., Fountain A., Osborn M., Priscu J., et al. . (2008). Glacial ecosystems. Ecol. Monogr. 78, 41–67. doi: 10.1890/07-0187.1 DOI

Holt A. D., Fellman J., Hood E., Kellerman A. M., Raymond P., Stubbins A., et al. . (2021). The evolution of stream dissolved organic matter composition following glacier retreat in coastal watersheds of Southeast Alaska. Biogeochemistry, 1–18. doi: 10.1007/s10533-021-00815-6 DOI

Hood E., Fellman J., Spencer R. G., Hernes P. J., Edwards R., D’Amore D., et al. . (2009). Glaciers as a source of ancient and labile organic matter to the marine environment. Nature 462, 1044–1047. doi: 10.1038/nature08580, PMID: PubMed DOI

Hotaling S., Foley M. E., Zeglin L. H., Finn D. S., Tronstad L. M., Giersch J. J., et al. . (2019). Microbial assemblages reflect environmental heterogeneity in alpine streams. Glob. Chang. Biol. 25, 2576–2590. doi: 10.1111/gcb.14683, PMID: PubMed DOI

Hotaling S., Hood E., Hamilton T. L. (2017). Microbial ecology of mountain glacier ecosystems: biodiversity, ecological connections and implications of a warming climate. Environ. Microbiol. 19, 2935–2948. doi: 10.1111/1462-2920.13766, PMID: PubMed DOI

IPCC (2019). “IPCC special report on the ocean and cryosphere in a changing climate,” in eds. Pörtner H.-O., Roberts D. C., Masson-Delmotte V., Zhai P., Tignor M., Poloczanska E., et al.. (Cambridge, UK and New York, NY, USA: Cambridge University Press; ), 755. doi:

Irvine-Fynn T. D., Edwards A., Stevens I. T., Mitchell A. C., Bunting P., Box J. E., et al. . (2021). Storage and export of microbial biomass across the western Greenland ice sheet. Nat. Commun. 12, 3960–3911. doi: 10.1038/s41467-021-24040-9, PMID: PubMed DOI PMC

Kaczmarek Ł., Jakubowska N., Celewicz-Gołdyn S., Zawierucha K. (2016). The microorganisms of cryoconite holes (algae, archaea, bacteria, cyanobacteria, fungi, and Protista): a review. Polar Record 52, 176–203. doi: 10.1017/S0032247415000637 DOI

Katoh K., Standley D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780. doi: 10.1093/molbev/mst010, PMID: PubMed DOI PMC

Kohler T. J., Peter H., Fodelianakis S., Pramateftaki P., Styllas M., Tolosano M., et al. . (2020a). Patterns and drivers of extracellular enzyme activity in New Zealand glacier-fed streams. Front. Microbiol. 11:2922. doi: 10.3389/fmicb.2020.591465, PMID: PubMed DOI PMC

Kohler T. J., Vinšová P., Falteisek L., Žárský J. D., Yde J. C., Hatton J. E., et al. . (2020b). Patterns in microbial assemblages exported from the meltwater of arctic and sub-arctic glaciers. Front. Microbiol. 11:669. doi: 10.3389/fmicb.2020.00669, PMID: PubMed DOI PMC

Kohler T. J., Žárský J. D., Yde J. C., Lamarche-Gagnon G., Hawkings J. R., Tedstone A. J., et al. . (2017). Carbon dating reveals a seasonal progression in the source of particulate organic carbon exported from the Greenland ice sheet. Geophys. Res. Lett. 44, 6209–6217. doi: 10.1002/2017GL073219 DOI

Kong W., Liu J., Ji M., Yue L., Kang S., Morgan-Kiss R. M. (2019). Autotrophic microbial community succession from glacier terminus to downstream waters on the Tibetan plateau. FEMS Microbiol. Ecol. 95:fiz074. doi: 10.1093/femsec/fiz074, PMID: PubMed DOI

Lamarche-Gagnon G., Wadham J. L., Sherwood Lollar B., Arndt S., Fietzek P., Beaton A. D., et al. . (2019). Greenland melt drives continuous export of methane from the ice-sheet bed. Nature 565, 73–77. doi: 10.1038/s41586-018-0800-0, PMID: PubMed DOI

Langille M. G. I., Zaneveld J., Caporaso J. G., McDonald D., Knights D., Reyes J. A., et al. . (2013). Predictive functional profiling of microbial communities using 16SrRNA marker gene sequences. Nat. Biotechnol. 31, 814–821. doi: 10.1038/nbt.2676, PMID: PubMed DOI PMC

Lawson E. C., Wadham J. L., Tranter M., Stibal M., Lis G. P., Butler C. E., et al. . (2014). Greenland ice sheet exports labile organic carbon to the Arctic oceans. Biogeosciences 11, 4015–4028. doi: 10.5194/bg-11-4015-2014 DOI

Liaw A., Wiener M. (2002). Classification and regression by randomForest. R News 2, 18–22.

Lindbäck K., Pettersson R., Doyle S. H., Helanow C., Jansson P., Kristensen S. S., et al. . (2014). High-resolution ice thickness and bed topography of a land-terminating section of the Greenland ice sheet. Earth Syst. Sci. Data 6, 331–338. doi: 10.5194/essd-6-331-2014 DOI

Lindbäck K., Pettersson R., Hubbard A. L., Doyle S. H., van As D., Mikkelsen A. B., et al. . (2015). Subglacial water drainage, storage, and piracy beneath the Greenland ice sheet. Geophys. Res. Lett. 42, 7606–7614. doi: 10.1002/2015GL065393 DOI

Liu C., Cui Y., Li X., Yao M. (2021). Microeco: an R package for data mining in microbial community ecology. FEMS Microbiol. Ecol. 97:fiaa25. doi: 10.1093/femsec/fiaa255, PMID: PubMed DOI

Mankoff K. D., Noël B., Fettweis X., Ahlstrøm A. P., Colgan W., Kondo K., et al. . (2020). Greenland liquid water discharge from 1958 through 2019. Earth System Science Data. 12, 2811–2841. doi: 10.5194/essd-12-2811-2020, PMID: PubMed DOI

McMurdie P. J., Holmes S. (2013). Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8:e61217. doi: 10.1371/journal.pone.0061217, PMID: PubMed DOI PMC

Meyer F., Paarmann D., D'Souza M., Olson R., Glass E. M., Kubal M., et al. . (2008). The metagenomics RAST server–a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9, 1–8. doi: 10.1186/1471-2105-9-386, PMID: PubMed DOI PMC

Milner A. M., Khamis K., Battin T. J., Brittain J. E., Barrand N. E., Füreder L., et al. . (2017). Glacier shrinkage driving global changes in downstream systems. Proc. Natl. Acad. Sci. 114, 9770–9778. doi: 10.1073/pnas.1619807114, PMID: PubMed DOI PMC

Oksanen J., Blanchet F. G., Friendly M., Kindt R., Legendre P., McGlinn D., et al. . (2018). Vegan: Community Ecology Package. R package version 2.4-6. Available at: https://CRAN.R-project.org/package=vegan [Accessed September 02, 2022].

Pain A. J., Martin J. B., Martin E. E., Rennermalm Å. K., Rahman S. (2021). Heterogeneous CO 2 and CH 4 content of glacial meltwater from the Greenland ice sheet and implications for subglacial carbon processes. Cryosphere 15, 1627–1644. doi: 10.5194/tc-15-1627-2021 DOI

Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., et al. . (2013). The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596. doi: 10.1093/nar/gks1219, PMID: PubMed DOI PMC

R Core Team . (2017). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. Available at: https://www.R-project.org/ [Accessed September 02, 2022].

Ruiz-González C., Niño-García J. P., Del Giorgio P. A. (2015). Terrestrial origin of bacterial communities in complex boreal freshwater networks. Ecol. Lett. 18, 1198–1206. doi: 10.1111/ele.12499, PMID: PubMed DOI

Salter S. J., Cox M. J., Turek E. M., Calus S. T., Cookson W. O., Moffatt M. F., et al. . (2014). Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 12, 87–12. doi: 10.1186/s12915-014-0087-z, PMID: PubMed DOI PMC

Schloss P. D., Westcott S. L., Ryabin T., Hall J. R., Hartmann M., Hollister E. B., et al. . (2009). Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541. doi: 10.1128/AEM.01541-09, PMID: PubMed DOI PMC

Segata N., Izard J., Waldron L., Gevers D., Miropolsky L., Garett W. S., et al. . (2011). Metagenomic biomarker discovery and explanation. Genome Biol. 12:R60. doi: 10.1186/gb-2011-12-6-r60, PMID: PubMed DOI PMC

Singer G. A., Fasching C., Wilhelm L., Niggemann J., Steier P., Dittmar T., et al. . (2012). Biogeochemically diverse organic matter in alpine glaciers and its downstream fate. Nat. Geosci. 5, 710–714. doi: 10.1038/NGEO1581 DOI

Somers D. J., Strock K. E., Saros J. E. (2020). Environmental controls on microbial diversity in arctic lakes of West Greenland. Microb. Ecol. 80, 60–72. doi: 10.1007/s00248-019-01474-9, PMID: PubMed DOI

Stibal M., Šabacká M., Žárský J. (2012a). Biological processes on glacier and ice sheet surfaces. Nat. Geosci. 5, 771–774. doi: 10.1038/ngeo1611 DOI

Stibal M., Wadham J. L., Lis G. P., Telling J., Pancost R. D., Dubnick A., et al. . (2012b). Methanogenic potential of Arctic and Antarctic subglacial environments with contrasting organic carbon sources. Glob. Chang. Biol. 18, 3332–3345. doi: 10.1111/j.1365-2486.2012.02763.x DOI

Uehlinger U., Robinson C. T., Hieber M., Zah R. (2010). The physicochemical habitat template for periphyton in alpine glacial streams under a changing climate. Hydrobiologia 657, 107–121. doi:

Větrovský T., Baldrian P., Morais D. (2018). SEED 2: a user-friendly platform for amplicon high-throughput sequencing data analyses. Bioinformatics 34, 2292–2294. doi: 10.1093/bioinformatics/bty071, PMID: PubMed DOI PMC

Vinšová P., Kohler T. J., Simpson M. J., Hajdas I., Yde J. C., Falteisek L., et al. . (2022). The biogeochemical legacy of arctic subglacial sediments exposed by glacier retreat. Glob. Biogeochem. Cycles 36:e2021GB007126. doi: 10.1029/2021GB007126 DOI

Wadham J. L., Bottrell S., Tranter M., Raiswell R. (2004). Stable isotope evidence for microbial sulphate reduction at the bed of a polythermal high Arctic glacier. Earth Planet. Sci. Lett. 219, 341–355. doi: 10.1016/S0012-821X(03)00683-6 DOI

Wickham H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New York.

Wilhelm L., Singer G. A., Fasching C., Battin T. J., Besemer K. (2013). Microbial biodiversity in glacier-fed streams. ISME J. 7, 1651–1660. doi: 10.1038/ismej.2013.44, PMID: PubMed DOI PMC

Williamson C. J., Cook J., Tedstone A., Yallop M., McCutcheon J., Poniecka E., et al. . (2020). Algal photophysiology drives darkening and melt of the Greenland ice sheet. Proc. Natl. Acad. Sci. 117, 5694–5705. doi: 10.1073/pnas.1918412117, PMID: PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Methylotrophic Communities Associated with a Greenland Ice Sheet Methane Release Hotspot

. 2023 Nov ; 86 (4) : 3057-3067. [epub] 20231016

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...