Temperature does not influence functional response of amphipods consuming different trematode prey
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
no. 17-20936Y
Czech Science Foundation
no. 663830
European Union's Horizon 2020 Research and Innovation Program under the Marie Skłodowska-Curie Grant Agreement
no. 213610
Research Council of Norway and UiT The Arctic University of Norway
PubMed
32845358
PubMed Central
PMC7447966
DOI
10.1007/s00436-020-06859-1
PII: 10.1007/s00436-020-06859-1
Knihovny.cz E-zdroje
- Klíčová slova
- Cercariae, Gammarus lacustris, Predator-prey, Transmission interference,
- MeSH
- Amphipoda fyziologie MeSH
- cerkárie klasifikace růst a vývoj fyziologie MeSH
- druhová specificita MeSH
- infekce červy třídy Trematoda parazitologie přenos MeSH
- potravní řetězec MeSH
- predátorské chování klasifikace fyziologie MeSH
- teplota MeSH
- Trematoda klasifikace růst a vývoj fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Direct consumption on free-living cercariae stages of trematodes by non-host organisms interferes with trematode transmission and leads to reduced infections in the next suitable hosts. Consumer functional responses provide a useful tool to examine relationships between consumption rates and ecologically relevant prey densities, whilst also accounting for abiotic factors that likely influence consumption rates. We investigated how temperature influences the consumer functional response of the amphipod Gammarus lacustris towards the cercariae of three freshwater trematodes (Diplostomum, Apatemon and Trichobilharzia). Amphipods displayed different functional responses towards the parasites, with Type II responses for Diplostomum and Type I responses for Apatemon prey. Temperature did not alter the consumption rate of the amphipod predator. Trichobilharzia was likely consumed at similar proportions as Diplostomum; however, this could not be fully evaluated due to low replication. Whilst Type II responses of invertebrate predators are common to various invertebrate prey types, this is the first time a non-filter feeding predator has been shown to exhibit Type I response towards cercarial prey. The prey-specific consumption patterns of amphipods were related to cercarial distribution in the water column rather than to the size of cercariae or temperature influence. The substantial energy flow into food webs by non-host consumer organisms highlights the importance of understanding the mechanisms that modulate functional responses and direct predation in the context of parasitic organisms.
School of Biosciences Cardiff University Cardiff CF10 3AX UK
The Norwegian Institute for Nature Research P O Box 5685 Torgarden NO 7485 Trondheim Norway
Zobrazit více v PubMed
Bell AS (1996) Studies on the biosystematics and biology of strigeids (Digenea) parasitic in freshwater fish. PhD Dissertation, University of Stirling
Born-Torrijos A, Paterson RA, van Beest GS, Schwelm J, Vyhlídalová T, Henriksen EH, Knudsen R, Kristoffersen R, Amundsen PA, Soldánová M (2020) FR_GammarusPredation, Data from: Temperature does not influence functional response of amphipods consuming different trematode prey. Dryad Digital Repository, 10.5061/dryad.pzgmsbcj4 PubMed PMC
Bovy HC, Barrios-O’Neill D, Emmerson MC, Aldridge DC, Dick JT. Predicting the predatory impacts of the “demon shrimp” Dikerogammarus haemobaphes, on native and previously introduced species. Biol Invasions. 2015;17:597–607. doi: 10.1007/s10530-014-0751-9. DOI
Goedknegt MA, Welsh JE, Drent J, Thieltges DW. Climate change and parasite transmission: how temperature affects parasite infectivity via predation on infective stages. Ecosphere. 2015;6:96. doi: 10.1890/ES15-00016.1. DOI
Haas W, Beran B, Loy C. Selection of the hosts’ habitat by cercariae: from laboratory to the field. J Parasitol. 2008;94:1233–1238. doi: 10.1645/GE-1192.1. PubMed DOI
Hassell MP. A basic model. In: Hassell M, editor. The dynamics of arthropod predator-prey systems. Princeton: Princeton University Press; 1978. pp. 12–27.
Holling CS. Some characteristics of simple types of predation and parasitism. Can Entomol. 1959;91:385–398. doi: 10.4039/Ent91385-7. DOI
Iltis C, Spataro T, Wattier R, Médoc V. Parasitism may alter functional response comparisons: a case study on the killer shrimp Dikerogammarus villosus and two non-invasive gammarids. Biol Invasions. 2018;20:619–632. doi: 10.1007/s10530-017-1563-5. DOI
Jeschke JM, Kopp M, Tollrian R. Consumer food systems: why type I functional responses are exclusive to filter feeders. Biol Rev. 2004;79:337–349. doi: 10.1017/s1464793103006286. PubMed DOI
Johnson PTJ, Dobson A, Lafferty KD, Marcogliese D, Memmott J, Orlofske SA, Poulin R, Thieltges DW. When parasites become prey: ecological and epidemiological significance of eating parasites. Trends Ecol Evol. 2010;25:362–371. doi: 10.1016/j.tree.2010.01.005. PubMed DOI
Juliano SA. Non-linear curve fitting: predation and functional response curves. In: Scheiner SM, Gurevitch J, editors. Design and analysis of ecological experiments. Oxford: Oxford University Press; 2001. pp. 178–196.
Karvonen A, Kirsi S, Hudson PJ, Valtonen ET. Patterns of cercarial production from Diplostomum spathaceum: terminal investment or bet hedging? Parasitology. 2004;129:87–92. doi: 10.1017/S0031182004005281. PubMed DOI
Laverty C, Brenner D, McIlwaine C, Lennon JJ, Dick JTA, Lucy FE, Christian KA. Temperature rise and parasitic infection interact to increase the impact of an invasive species. Int J Parasitol. 2017;47:291–296. doi: 10.1016/j.ijpara.2016.12.004. PubMed DOI
Orlofske SA, Jadin RC, Johnson PTJ. It’s a predator-eat-parasite world: how characteristics of predator, parasite and environment affect consumption. Oecologia. 2015;178:537–547. doi: 10.1007/s00442-015-3243-4. PubMed DOI
Paterson RA, Dick JTA, Pritchard DW, Ennis M, Hatcher MJ, Dunn AM. Predicting invasive species impacts: a community module functional response approach reveals context dependencies. J Anim Ecol. 2015;84:453–463. doi: 10.1111/1365-2656.12292. PubMed DOI PMC
Poulin R. Global warming and temperature-mediated increases in cercarial emergence in trematode parasites. Parasitology. 2006;132:143–151. doi: 10.1017/S0031182005008693. PubMed DOI
Preston DL, Orlofske SA, Lambden JP, Johnson PTJ. Biomass and productivity of trematode parasites in pond ecosystems. J Anim Ecol. 2013;82:509–517. doi: 10.1111/1365-2656.12030. PubMed DOI
Pritchard DW, Paterson RA, Bovy HC, Barrios-O’Neill D. frair: an R package for fitting and comparing consumer functional responses. Methods Ecol Evol. 2017;8:1528–1534. doi: 10.1111/2041-210X.12784. DOI
R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/
Santos MJ, Karvonen A, Pedrot JC, Faltýnková A, Seppälä O, Valtonen ET. Qualitative and quantitative behavioral traits in a community of furcocercariae trematodes: tools for species separation? J Parasitol. 2007;93:1319–1323. doi: 10.1645/GE-1225.1. PubMed DOI
Selbach C, Poulin R. Parasites in space and time: a novel method to assess and illustrate host-searching behaviour of trematode cercariae. Parasitology. 2018;145:1469–1474. doi: 10.1017/S0031182018000288. PubMed DOI
Selbach C, Rosenkranz M, Poulin R. Cercarial behavior determines risk of predation. J Parasitol. 2019;105:330–333. doi: 10.1645/18-165. PubMed DOI
Soldánová M, Selbach C, Sures B. The early worm catches the bird? Productivity and patterns of Trichobilharzia szidati cercarial emission from Lymnaea stagnalis. PLoS One. 2016;11:e0149678. doi: 10.1371/journal.pone.0149678. PubMed DOI PMC
Soldánová M, Georgieva S, Roháčová J, Knudsen R, Kuhn JA, Henriksen EH, Siwertsson A, Shaw JC, Kuris AM, Amundsen P-A, Scholz T, Lafferty KD, Kostadinova A. Molecular analyses reveal high species diversity of trematodes in a sub-Arctic lake. Int J Parasitol. 2017;47:327–345. doi: 10.1016/j.ijpara.2016.12.008. PubMed DOI
Thieltges DW, Jensen KT, Poulin R. The role biotic factors in the transmission of free-living endohelminth stages. Parasitology. 2008;135:407–426. doi: 10.1017/S0031182007000248. PubMed DOI
Wasserman RJ, Alexander MR, Weyl OLF, Barrios-O’Neill D, Froneman PW, Dalu T. Emergent effects of structural complexity and temperature on predator–prey interactions. Ecosphere. 2016;7:e01239. doi: 10.1002/ecs2.1239. DOI
Welsh JE, Liddell C, van der Meer J, Thieltges DW. Parasites as prey: the effect of cercarial density and alternative prey on consumption of cercariae by four non-host species. Parasitology. 2017;144:1775–1782. doi: 10.1017/S003182017001056. PubMed DOI
Wilhelm FM, Schindler DW. Effects of Gammarus lacustris (Crustacea: Amphipoda) on plankton community structure in an alpine lake. Can J Fish Aquat Sci. 1999;56:1401–1408. doi: 10.1139/f99-067. DOI
Somatic Dimorphism in Cercariae of a Bird Schistosome
Temperature does not influence functional response of amphipods consuming different trematode prey