Parasites alter food-web topology of a subarctic lake food web and its pelagic and benthic compartments
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
NFR 213610
Norwegian Research Council
PubMed
38326516
PubMed Central
PMC10907417
DOI
10.1007/s00442-023-05503-w
PII: 10.1007/s00442-023-05503-w
Knihovny.cz E-zdroje
- Klíčová slova
- Connectance, Food webs, Parasite ecology, Trematoda, Trophic transmission,
- MeSH
- ekosystém * MeSH
- jezera MeSH
- paraziti * MeSH
- potraviny MeSH
- potravní řetězec MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
We compared three sets of highly resolved food webs with and without parasites for a subarctic lake system corresponding to its pelagic and benthic compartments and the whole-lake food web. Key topological food-web metrics were calculated for each set of compartments to explore the role parasites play in food-web topology in these highly contrasting webs. After controlling for effects from differences in web size, we observed similar responses to the addition of parasites in both the pelagic and benthic compartments demonstrated by increases in trophic levels, linkage density, connectance, generality, and vulnerability despite the contrasting composition of free-living and parasitic species between the two compartments. Similar effects on food-web topology can be expected with the inclusion of parasites, regardless of the physical characteristics and taxonomic community compositions of contrasting environments. Additionally, similar increases in key topological metrics were found in the whole-lake food web that combines the pelagic and benthic webs, effects that are comparable to parasite food-web analyses from other systems. These changes in topological metrics are a result of the unique properties of parasites as infectious agents and the links they participate in. Trematodes were key contributors to these results, as these parasites have distinct characteristics in aquatic systems that introduce new link types and increase the food web's generality and vulnerability disproportionate to other parasites. Our analysis highlights the importance of incorporating parasites, especially trophically transmitted parasites, into food webs as they significantly alter key topological metrics and are thus essential for understanding an ecosystem's structure and functioning.
Zobrazit více v PubMed
Amundsen P-A, Klemetsen A. Diet, gastric evacuation rates and food consumption in a stunted population of Arctic charr, Salvelinus alpinus L., in Takvatn, northern Norway. J Fish Biol. 1988;33:697–709. doi: 10.1111/j.1095-8649.1988.tb05515.x. DOI
Amundsen PA, Kristoffersen R, Knudsen R, Klemetsen A. Infection of Salmincola edwardsii (Copepoda: Lernaeopodidae) in an age-structured population of Arctic charr—a long-term study. J Fish Biol. 1997;51:1033–1046.
Amundsen P-A, Knudsen R, Klemetsen A (2007) Intraspecific competition and density dependence of food consumption and growth in Arctic charr. J Anim Ecol:149–158 PubMed
Amundsen P-A, Lafferty KD, Knudsen R, Primicerio R, Klemetsen A, Kuris AM. Food web topology and parasites in the pelagic zone of a subarctic lake. J Anim Ecol. 2009;78:563–572. doi: 10.1111/j.1365-2656.2008.01518.x. PubMed DOI
Amundsen P-A, Lafferty KD, Knudsen R, Primicerio R, Kristoffersen R, Klemetsen A, Kuris AM. New parasites and predators follow the introduction of two fish species to a subarctic lake: implications for food-web structure and functioning. Oecologia. 2013;171:993–1002. doi: 10.1007/s00442-012-2461-2. PubMed DOI PMC
Amundsen P-A, Primicerio R, Smalås A, Henriksen EH, Knudsen R, Kristoffersen R, Klemetsen A. Long-term ecological studies in northern lakes—challenges, experiences, and accomplishments. Limnol Oceanogr. 2019;64:S11–S21. doi: 10.1002/lno.10951. DOI
Anderson TK, Sukhdeo MV. Host centrality in food web networks determines parasite diversity. PLoS ONE. 2011;6:e26798. doi: 10.1371/journal.pone.0026798. PubMed DOI PMC
Baia RRJ, Florentino AC, Silva LMA, Tavares-Dias M. Patterns of the parasite communities in a fish assemblage of a river in the Brazilian Amazon region. Acta Parasitol. 2018;63:304–316. doi: 10.1515/ap-2018-0035. PubMed DOI
Banerji A, Duncan AB, Griffin JS, Humphries S, Petchey OL, Kaltz O. Density-and trait-mediated effects of a parasite and a predator in a tri-trophic food web. J Anim Ecol. 2015;84:723–733. doi: 10.1111/1365-2656.12317. PubMed DOI PMC
Barber I, Scharsack J. The three-spined stickleback-Schistocephalus solidus system: an experimental model for investigating host-parasite interactions in fish. Parasitology. 2009;137:411–424. doi: 10.1017/S0031182009991466. PubMed DOI
Beaman M, Madge S (2010) The handbook of bird identification: for Europe and the western Palearctic. A&C Black
Born-Torrijos A, Paterson RA, van Beest GS, Schwelm J, Vyhlídalová T, Henriksen EH, Knudsen R, Kristoffersen R, Amundsen P-A, Soldánová M. Temperature does not influence functional response of amphipods consuming different trematode prey. Parasitol Res. 2020;119:4271–4276. doi: 10.1007/s00436-020-06859-1. PubMed DOI PMC
Born-Torrijos A, Paterson RA, van Beest GS, Vyhlídalová T, Henriksen EH, Knudsen R, Kristoffersen R, Amundsen PA, Soldánová M. Cercarial behaviour alters the consumer functional response of three-spined sticklebacks. J Anim Ecol. 2021;90:978–988. doi: 10.1111/1365-2656.13427. PubMed DOI
Braicovich PE, Kuhn JA, Amundsen P-A, Marcogliese DJ. Three-spined stickleback Gasterosteus aculeatus, as a possible paratenic host for salmonid nematodes in a subarctic lake. Parasitol Res. 2016;115:1335–1338. doi: 10.1007/s00436-015-4854-8. PubMed DOI
Brittain JE. The Ephemeroptera of Øvre Heimdalsvatn. Ecography. 1978;1:239–254. doi: 10.1111/j.1600-0587.1978.tb00957.x. DOI
Brittain JE. The Mollusca of the exposed zone of Øvre Heimdalsvatn. Ecography. 1978;1:229–231. doi: 10.1111/j.1600-0587.1978.tb00955.x. DOI
Britton JR, Andreou D. Parasitism as a driver of trophic niche specialisation. Trends Parasitol. 2016;32:437–445. doi: 10.1016/j.pt.2016.02.007. PubMed DOI
Byers JE. Including parasites in food webs. Trends Parasitol. 2009;25:55–57. doi: 10.1016/j.pt.2008.11.003. PubMed DOI
Campbell R, Haedrich R, Munroe T. Parasitism and ecological relationships among deep-sea benthic fishes. Mar Biol. 1980;57:301–313. doi: 10.1007/BF00387573. DOI
Cohen JE. Food webs and niche space. Princeton, New Jersey: Princeton University Press; 1978.
Csardi G, Nepusz T. The igraph software package for complex network research. InterJ Complex Sys. 2006;1695:1–9.
Dobson AP. The population biology of parasite-induced changes in host behavior. Q Rev Biol. 1988;63:139–165. doi: 10.1086/415837. PubMed DOI
Dunne JA, Lafferty KD, Dobson AP, Hechinger RF, Kuris AM, Martinez ND, McLaughlin JP, Mouritsen KN, Poulin R, Reise K. Parasites affect food web structure primarily through increased diversity and complexity. PLoS Biol. 2013;11:e1001579. doi: 10.1371/journal.pbio.1001579. PubMed DOI PMC
Frainer A, Johansen KMS, Siwertsson A, Mousavi SA, Brittain JE, Klemetsen A, Knudsen R, Amundsen P-A. Variation in functional trait composition of benthic invertebrates across depths and seasons in a subarctic lake. Fundam Appl Limnol. 2016;188:103–112. doi: 10.1127/fal/2016/0839. DOI
Frainer A, McKie BG, Amundsen P-A, Knudsen R, Lafferty KD. Parasitism and the biodiversity-functioning relationship. Trends Ecol Evol. 2018;33:260–268. doi: 10.1016/j.tree.2018.01.011. PubMed DOI
Guo F, Kainz MJ, Sheldon F, Bunn SE. The importance of high-quality algal food sources in stream food webs–current status and future perspectives. Freshw Biol. 2016;61:815–831. doi: 10.1111/fwb.12755. DOI
Hatcher MJ, Dick JT, Dunn AM. How parasites affect interactions between competitors and predators. Ecol Lett. 2006;9:1253–1271. doi: 10.1111/j.1461-0248.2006.00964.x. PubMed DOI
Heins DC, Baker JA (2008) The stickleback-Schistocephalus host-parasite system as a model for understanding the effect of a macroparasite on host reproduction. Behaviour:625–645
Henriksen EH, Knudsen R, Kristoffersen R, Kuris AM, Lafferty KD, Siwertsson A, Amundsen P-A. Ontogenetic dynamics of infection with Diphyllobothrium spp. cestodes in sympatric Arctic charr Salvelinus alpinus (L.) and brown trout Salmo trutta L. Hydrobiologia. 2016;783:37–46. doi: 10.1007/s10750-015-2589-2. DOI
Henriksen EH, Frainer A, Knudsen R, Kristoffersen R, Kuris AM, Lafferty KD, Amundsen P-A. Fish culling reduces tapeworm burden in Arctic charr by increasing parasite mortality rather than by reducing density-dependent transmission. J Appl Ecol. 2019;56:1482–1491. doi: 10.1111/1365-2664.13369. DOI
Hernandez AD, Sukhdeo MV. Parasites alter the topology of a stream food web across seasons. Oecologia. 2008;156:613–624. doi: 10.1007/s00442-008-0999-9. PubMed DOI
Huxham M, Raffaelli D, Pike A. Parasites and food web patterns. J Anim Ecol. 1995;64:168–176. doi: 10.2307/5752. DOI
Johnson PT, Dobson A, Lafferty KD, Marcogliese DJ, Memmott J, Orlofske SA, Poulin R, Thieltges DW. When parasites become prey: ecological and epidemiological significance of eating parasites. Trends Ecol Evol. 2010;25:362–371. doi: 10.1016/j.tree.2010.01.005. PubMed DOI
Jørgensen L, Klemetsen A. Food resource partitioning of Arctic charr, Salvelinus alpinus (L.) and three-spined stickleback, Gasterosteus aculeatus L., in the littoral zone of lake Takvatn in northern Norway. Ecol Freshw Fish. 1995;4:77–84. doi: 10.1111/j.1600-0633.1995.tb00120.x. DOI
Kagami M, Van Donk E, de Bruin A, Rijkeboer M, Ibelings BW. Daphnia can protect diatoms from fungal parasitism. Limnol Oceanogr. 2004;49:680–685. doi: 10.4319/lo.2004.49.3.0680. DOI
Kagami M, de Bruin A, Ibelings BW, Van Donk E. Parasitic chytrids: their effects on phytoplankton communities and food-web dynamics. Hydrobiologia. 2007;578:113–129. doi: 10.1007/s10750-006-0438-z. DOI
Klemetsen A, Elliott JM. Spatial distribution and diversity of macroinvertebrates on the stony shore of a subarctic lake. Int Rev Hydrobiol. 2010;95:190–206. doi: 10.1002/iroh.200911199. DOI
Klemetsen A, Knudsen R. Diversity and abundance of water birds in a subarctic lake during three decades. Fauna Norv. 2013;33:21–27. doi: 10.5324/fn.v33i0.1584. DOI
Klemetsen A, Muladal H, Amundsen P-A. Diet and food consumption of young, profundal Arctic charr (Salvelinus alpinus) in Lake Takvatn. Nord J Freshw Res. 1992;67:35–44.
Klemetsen A, Amundsen P-A, Dempson J, Jonsson B, Jonsson N, O'connell M, Mortensen E. Atlantic salmon Salmo salar L., brown trout Salmo trutta L. and Arctic charr Salvelinus alpinus (L.): a review of aspects of their life histories. Ecol Freshw Fish. 2003;12:1–59. doi: 10.1034/j.1600-0633.2003.00010.x. DOI
Klemetsen A, Aase BM, Amundsen P-A. Diversity, abundance, and life histories of littoral chydorids (Cladocera: Chydoridae) in a subarctic European lake. J Crust Biol. 2020;40:534–543. doi: 10.1093/jcbiol/ruaa048. DOI
Klemetsen A, Amundsen P-A, Grotnes PE, Knudsen R, Kristoffersen R, Svenning M-A (2002) Takvatn through 20 years: long-term effects of an experimental mass removal of Arctic charr, Salvelinus alpinus, from a subarctic lake. Ecology, behaviour and conservation of the charrs, genus Salvelinus. Springer, pp. 39–47
Knudsen R, Gabler H, Kuris AM, Amundsen P-A. Selective predation on parasitized prey—a comparison between two helminth species with different life-history strategies. J Parasitol. 2001;87:941–945. PubMed
Kones JK, Soetaert K, van Oevelen D, Owino JO. Are network indices robust indicators of food web functioning? A Monte Carlo approach. Ecol Modell. 2009;220:370–382. doi: 10.1016/j.ecolmodel.2008.10.012. DOI
Koprivnikar J, Thieltges D, Johnson P. Consumption of trematode parasite infectious stages: from conceptual synthesis to future research agenda. J Helminthol. 2023;97:e33. doi: 10.1017/S0022149X23000111. PubMed DOI
Kuhn JA, Kristoffersen R, Knudsen R, Jakobsen J, Marcogliese DJ, Locke SA, Primicerio R, Amundsen P-A. Parasite communities of two three-spined stickleback populations in subarctic Norway—effects of a small spatial-scale host introduction. Parasitol Res. 2015;114:1327–1339. doi: 10.1007/s00436-015-4309-2. PubMed DOI
Kuhn JA, Frainer A, Knudsen R, Kristoffersen R, Amundsen P-A. Effects of fish species composition on Diphyllobothrium spp. infections in brown trout–is three-spined stickleback a key species? J Fish Dis. 2016;39:1313–1323. doi: 10.1111/jfd.12467. PubMed DOI
Kuhn JA, Knudsen R, Kristoffersen R, Primicerio R, Amundsen P-A. Temporal changes and between-host variation in the intestinal parasite community of Arctic charr in a subarctic lake. Hydrobiologia. 2016;783:79–91. doi: 10.1007/s10750-016-2731-9. DOI
Kuris AM (1990) Guild structure of larval trematodes in molluscan hosts: prevalence, dominance and significance of competition. In: Parasite Communities: Patterns and Processes. Springer, pp. 69–100
Kuris AM, Lafferty KD. Community structure: larval trematodes in snail hosts. Annu Rev Ecol Syst. 1994;25:189–217. doi: 10.1146/annurev.es.25.110194.001201. DOI
Lafferty KD. Biodiversity loss decreases parasite diversity: theory and patterns. Phil Trans R Soc B. 2012;367:2814–2827. doi: 10.1098/rstb.2012.0110. PubMed DOI PMC
Lafferty KD, Kuris AM. Parasites reduce food web robustness because they are sensitive to secondary extinction as illustrated by an invasive estuarine snail. Phil Trans R Soc B. 2009;364:1659–1663. doi: 10.1098/rstb.2008.0220. PubMed DOI PMC
Lafferty KD, Kuris AM. Parasitic castration: the evolution and ecology of body snatchers. Trends Parasitol. 2009;25:564–572. doi: 10.1016/j.pt.2009.09.003. PubMed DOI
Lafferty KD, Shaw JC. Comparing mechanisms of host manipulation across host and parasite taxa. J Exp Biol. 2013;216:56–66. doi: 10.1242/jeb.073668. PubMed DOI
Lafferty KD, Sammond D, Kuris AM. Analysis of larval trematode communities. Ecology. 1994;75:2275–2285. doi: 10.2307/1940883. DOI
Lafferty KD, Dobson AP, Kuris AM. Parasites dominate food web links. Proc Natl Acad Sci USA. 2006;103:11211–11216. doi: 10.1073/pnas.0604755103. PubMed DOI PMC
Lafferty KD, Hechinger RF, Shaw JC, Whitney K, Kuris AM. Food webs and parasites in a salt marsh ecosystem. In: Collinge S, Ray C, editors. Disease ecology: community structure and pathogen dynamics. Oxford: Oxford University Press; 2006. pp. 119–134.
Lafferty KD, Allesina S, Arim M, Briggs CJ, De Leo G, Dobson AP, Dunne JA, Johnson PT, Kuris AM, Marcogliese DJ. Parasites in food webs: the ultimate missing links. Ecol Lett. 2008;11:533–546. doi: 10.1111/j.1461-0248.2008.01174.x. PubMed DOI PMC
Larsson P. The life cycle dynamics and production of zooplankton in Øvre Heimdalsvatn. Ecography. 1978;1:162–218. doi: 10.1111/j.1600-0587.1978.tb00952.x. DOI
Lillehammer A. The plecoptera of Øvre Heimdalsvatn. Ecography. 1978;1:232–238. doi: 10.1111/j.1600-0587.1978.tb00956.x. DOI
Lillehammer A. The trichoptera of Øvre Heimdalsvatn. Ecography. 1978;1:255–260. doi: 10.1111/j.1600-0587.1978.tb00958.x. DOI
Marcogliese DJ. Food webs and the transmission of parasites to marine fish. Parasitology. 2002;124:83–99. doi: 10.1017/S003118200200149X. PubMed DOI
Marcogliese DJ, Cone DK. Food webs: a plea for parasites. Trends Ecol Evol. 1997;12:320–325. doi: 10.1016/S0169-5347(97)01080-X. PubMed DOI
McKee KM, Koprivnikar J, Johnson PT, Arts MT. Parasite infectious stages provide essential fatty acids and lipid-rich resources to freshwater consumers. Oecologia. 2020;192:477–488. doi: 10.1007/s00442-019-04572-0. PubMed DOI
McLaughlin JP. The food web for the sand flats at Palmyra Atoll. Santa Barbara: University of California; 2018.
Memmott J, Martinez N, Cohen J. Predators, parasitoids and pathogens: species richness, trophic generality and body sizes in a natural food web. J Anim Ecol. 2000;69:1–15. doi: 10.1046/j.1365-2656.2000.00367.x. DOI
Milardi M, Thomas SM, Kahilainen KK. Reliance of brown trout on terrestrial prey varies with season but not fish density. Freshw Biol. 2016;61:1143–1156. doi: 10.1111/fwb.12775. DOI
Miura O, Kuris AM, Torchin ME, Hechinger RF, Chiba S. Parasites alter host phenotype and may create a new ecological niche for snail hosts. Proc Royal Soc B. 2006;273:1323–1328. doi: 10.1098/rspb.2005.3451. PubMed DOI PMC
Monakov A. Review of studies on feeding of aquatic invertebrates conducted at the Institute of Biology of Inland Waters, Academy of Science, USSR. J Fish Res Board Can. 1972;29:363–383. doi: 10.1139/f72-064. DOI
Morton DN, Lafferty KD. Parasites in kelp-forest food webs increase food-chain length, complexity, and specialization, but reduce connectance. Ecol Monogr. 2022;92:e1506. doi: 10.1002/ecm.1506. PubMed DOI PMC
Mouritsen KN, Poulin R, McLaughlin JP, Thieltges DW. Food web including metazoan parasites for an intertidal ecosystem in New Zealand: ecological archives E092–173. Ecology. 2011;92:2006–2006. doi: 10.1890/11-0371.1. DOI
Nilsson A (1997) Aquatic insects of North Europe: A taxonomic handbook. Apollo books
Nowosad P, Kuczyńska-Kippen N, Słodkowicz-Kowalska A, Majewska AC, Graczyk TK. The use of rotifers in detecting protozoan parasite infections in recreational lakes. Aquat Ecol. 2007;41:47–54. doi: 10.1007/s10452-006-9043-5. DOI
Orlofske SA, Jadin RC, Johnson PT. It’s a predator–eat–parasite world: how characteristics of predator, parasite and environment affect consumption. Oecologia. 2015;178:537–547. doi: 10.1007/s00442-015-3243-4. PubMed DOI
Poulin R, Thomas F. Phenotypic variability induced by parasites: extent and evolutionary implications. Parasitol Today. 1999;15:28–32. doi: 10.1016/S0169-4758(98)01357-X. PubMed DOI
Prati S, Henriksen EH, Knudsen R, Amundsen PA. Seasonal dietary shifts enhance parasite transmission to lake salmonids during ice cover. Ecol Evol. 2020;10:4031–4043. doi: 10.1002/ece3.6173. PubMed DOI PMC
Prati S, Henriksen EH, Knudsen R, Amundsen P-A. Impacts of ontogenetic dietary shifts on the food-transmitted intestinal parasite communities of two lake salmonids. Int J Parasitol Parasites Wildl. 2020;12:155–164. doi: 10.1016/j.ijppaw.2020.06.002. PubMed DOI PMC
Prati S, Henriksen EH, Smalås A, Knudsen R, Klemetsen A, Sánchez-Hernández J, Amundsen P-A. The effect of inter-and intraspecific competition on individual and population niche widths: a four-decade study on two interacting salmonids. Oikos. 2021;130:1679–1691. doi: 10.1111/oik.08375. DOI
Preston DL, Orlofske SA, McLaughlin JP, Johnson PT. Food web including infectious agents for a California freshwater pond: ecological archives E093–153. Ecology. 2012;93:1760–1760. doi: 10.1890/11-2194.1. DOI
Preston DL, Jacobs AZ, Orlofske SA, Johnson PT. Complex life cycles in a pond food web: effects of life stage structure and parasites on network properties, trophic positions and the fit of a probabilistic niche model. Oecologia. 2014;174:953–965. doi: 10.1007/s00442-013-2806-5. PubMed DOI
Rasconi S, Jobard M, Sime-Ngando T. Parasitic fungi of phytoplankton: ecological roles and implications for microbial food webs. Aquat Microb Ecol. 2011;62:123–137. doi: 10.3354/ame01448. DOI
R Core Team (2020) R: a Language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
Riede JO, Rall BC, Banasek-Richter C, Navarrete SA, Wieters EA, Emmerson MC, Jacob U, Brose U. Scaling of food-web properties with diversity and complexity across ecosystems. Adv Ecol Res. 2010;42:139–170. doi: 10.1016/B978-0-12-381363-3.00003-4. DOI
Rovenolt FH, Tate AT. The impact of coinfection dynamics on host competition and coexistence. Am Nat. 2022;199:91–107. doi: 10.1086/717180. PubMed DOI
Sánchez-Hernández J, Prati S, Henriksen EH, Smalås A, Knudsen R, Klemetsen A, Amundsen P-A. Exploring temporal patterns in fish feeding ecology: are ontogenetic dietary shifts stable over time? Rev Fish Biol Fish. 2022;32:1141–1155. doi: 10.1007/s11160-022-09724-9. DOI
Shaw JC, Henriksen EH, Knudsen R, Kuhn JA, Kuris AM, Lafferty KD, Siwertsson A, Soldánová M, Amundsen PA. High parasite diversity in the amphipod Gammarus lacustris in a subarctic lake. Ecol Evol. 2020;10:12385–12394. doi: 10.1002/ece3.6869. PubMed DOI PMC
Skoglund S, Knudsen R, Amundsen P-A. Selective predation on zooplankton by pelagic Arctic charr, Salvelinus alpinus, in six subarctic lakes. J Icthyol. 2013;53:849–855.
Soldánová M, Kuris AM, Scholz T, Lafferty KD. The role of spatial and temporal heterogeneity and competition in structuring trematode communities in the great pond snail, Lymnaea stagnalis (L.) J Parasitol. 2012;98:460–471. doi: 10.1645/GE-2964.1. PubMed DOI
Soldánová M, Georgieva S, Roháčová J, Knudsen R, Kuhn JA, Henriksen EH, Siwertsson A, Shaw JC, Kuris AM, Amundsen P-A, Scholz T, Lafferty KD, Kostadinova A. Molecular analyses reveal high species diversity of trematodes in a sub-Arctic lake. Int J Parasitol. 2017;47:327–345. doi: 10.1016/j.ijpara.2016.12.008. PubMed DOI
Sukhdeo MV. Where are the parasites in food webs? Parasit Vectors. 2012;5:1–17. doi: 10.1186/1756-3305-5-239. PubMed DOI PMC
Thieltges D, Jensen K, Poulin R. The role of biotic factors in the transmission of free-living endohelminth stages. Parasitology. 2008;135:407–426. doi: 10.1017/S0031182007000248. PubMed DOI
Thieltges DW, Reise K, Mouritsen KN, McLaughlin JP, Poulin R. Food web including metazoan parasites for a tidal basin in Germany and Denmark: ecological archives E092–172. Ecology. 2011;92:2005–2005. doi: 10.1890/11-0351.1. DOI
Thieltges DW, Amundsen P-A, Hechinger RF, Johnson PT, Lafferty KD, Mouritsen KN, Preston DL, Reise K, Zander CD, Poulin R. Parasites as prey in aquatic food webs: implications for predator infection and parasite transmission. Oikos. 2013;122:1473–1482. doi: 10.1111/j.1600-0706.2013.00243.x. DOI
Thompson RM, Brose U, Dunne JA, Hall RO, Jr, Hladyz S, Kitching RL, Martinez ND, Rantala H, Romanuk TN, Stouffer DB. Food webs: reconciling the structure and function of biodiversity. Trends Ecol Evol. 2012;27:689–697. doi: 10.1016/j.tree.2012.08.005. PubMed DOI
Thorp JH, Covich AP (2009) Ecology and classification of North American freshwater invertebrates. Academic Press
Vander Zanden MJ, Vadeboncoeur Y. Fishes as integrators of benthic and pelagic food webs in lakes. Ecology. 2002;83:2152–2161. doi: 10.1890/0012-9658(2002)083[2152:FAIOBA]2.0.CO;2. DOI
Vinagre C, Costa MJ, Wood SA, Williams RJ, Dunne JA. Potential impacts of climate change and humans on the trophic network organization of estuarine food webs. Mar Ecol Prog Ser. 2019;616:13–24. doi: 10.3354/meps12932. DOI
Welsh JE, van der Meer J, Brussaard CP, Thieltges DW. Inventory of organisms interfering with transmission of a marine trematode. J Mar Biol Assoc. 2014;94:697–702. doi: 10.1017/S0025315414000034. DOI
Williams RJ, Martinez ND. Simple rules yield complex food webs. Nature. 2000;404:180–183. doi: 10.1038/35004572. PubMed DOI
Williams RJ, Martinez ND. Success and its limits among structural models of complex food webs. J Anim Ecol. 2008;77:512–519. doi: 10.1111/j.1365-2656.2008.01362.x. PubMed DOI
Williams RJ, Purves DW. The probabilistic niche model reveals substantial variation in the niche structure of empirical food webs. Ecology. 2011;92:1849–1857. doi: 10.1890/11-0200.1. PubMed DOI
Wood SA, Russell R, Hanson D, Williams RJ, Dunne JA. Effects of spatial scale of sampling on food web structure. Ecol Evol. 2015;5:3769–3782. doi: 10.1002/ece3.1640. PubMed DOI PMC
Zander CD, Josten N, Detloff KC, Poulin R, McLaughlin JP, Thieltges DW. Food web including metazoan parasites for a brackish shallow water ecosystem in Germany and Denmark: ecological Archives E092–174. Ecology. 2011;92:2007–2007. doi: 10.1890/11-0374.1. DOI