Somatic Dimorphism in Cercariae of a Bird Schistosome
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
RVO: 60077344
Institute of Parasitology, Biology Centre, Czech Academy of Sciences
213610
UiT The Arctic University of Norway and the Research Council of Norway
PubMed
35335614
PubMed Central
PMC8953619
DOI
10.3390/pathogens11030290
PII: pathogens11030290
Knihovny.cz E-zdroje
- Klíčová slova
- Trichobilharzia, bird schistosome, cercariae, phenotype, polymorphism, trematodes,
- Publikační typ
- časopisecké články MeSH
Phenotypic polymorphism is a commonly observed phenomenon in nature, but extremely rare in free-living stages of parasites. We describe a unique case of somatic polymorphism in conspecific cercariae of the bird schistosome Trichobilharzia sp. "peregra", in which two morphs, conspicuously different in their size, were released from a single Radix balthica snail. A detailed morphometric analysis that included multiple morphological parameters taken from 105 live and formalin-fixed cercariae isolated from several naturally infected snails provided reliable evidence for a division of all cercariae into two size groups that contained either large or small individuals. Large morph (total body length of 1368 and 1339 μm for live and formalin-fixed samples, respectively) differed significantly nearly in all morphological characteristics compared to small cercariae (total body length of 976 and 898 μm for live and formalin samples, respectively), regardless of the fixation method. Furthermore, we observed that small individuals represent the normal/commonly occurring phenotype in snail populations. The probable causes and consequences of generating an alternative, much larger phenotype in the parasite infrapopulation are discussed in the context of transmission ecology as possible benefits and disadvantages facilitating or preventing the successful completion of the life cycle.
Zobrazit více v PubMed
Leimar O. The evolution of phenotypic polymorphism: Randomized strategies versus evolutionary branching. Am. Nat. 2005;165:669–681. doi: 10.1086/429566. PubMed DOI
West-Eberhard M.J. Phenotypic Plasticity. In: Jørgensen S.E., Fath B.D., editors. Encyclopedia of Ecology. Elsevier; Amsterdam, The Netherlands: 2008. pp. 2701–2707.
Fox R.J., Donelson J.M., Schunter C., Ravasi T., Gaitán-Espitia. J.D. Beyond buying time: The role of plasticity in phenotypic adaptation to rapid environmental change. Phil. Trans. R. Soc. B. 2019;374:20180174. doi: 10.1098/rstb.2018.0174. PubMed DOI PMC
Jamie G.A., Meier J.I. The persistence of polymorphisms across species radiations. Trends Ecol. Evol. 2020;35:795–808. doi: 10.1016/j.tree.2020.04.007. PubMed DOI
Ford E.B. Genetic Polymorphism. Faber & Faber; London, UK: 1965. p. 101.
Fusco G., Minelli A. Phenotypic plasticity in development and evolution: Facts and concepts. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010;365:547–556. doi: 10.1098/rstb.2009.0267. PubMed DOI PMC
Pigliucci M., Murren C.J., Schlichting C.D. Phenotypic plasticity and evolution by genetic assimilation. J. Exp. Biol. 2006;209:2362–2367. doi: 10.1242/jeb.02070. PubMed DOI
Wills B.D., Powell S., Rivera M.D., Suarez A.V. Correlates and consequences of worker polymorphism in ants. Annu. Rev. Entomol. 2018;63:575–598. doi: 10.1146/annurev-ento-020117-043357. PubMed DOI
Frances P., Burnie D. Bird: The Definitive Visual Guide. Dorling Kindersley Inc.; London, UK: 2007. p. 512.
Poulin R. The evolution of life history strategies in parasitic animals. Adv. Parasitol. 1996;37:107–134. doi: 10.1016/S0065-308X(08)60220-1. PubMed DOI
Maizels R.M., Kurniawan-Atmadja A. Variation and polymorphism in helminth parasites. Parasitology. 2002;125:25–37. doi: 10.1017/S0031182002001890. PubMed DOI
Thompson C.K., Botero A., Wayne A.F., Godfrey S.S., Lymbery A.J., Thompson R.A. Morphological polymorphism of Trypanosoma copemani and description of the genetically diverse T. vegrandis sp. nov. from the critically endangered Australian potoroid, the brush-tailed bettong (Bettongia penicillata (Gray, 1837)) Parasit. Vectors. 2013;6:121. doi: 10.1186/1756-3305-6-121. PubMed DOI PMC
Hanzelová V., Oros M., Barčák D., Miklisová D., Kirin D., Scholz T. Morphological polymorphism in tapeworms: Redescription of Caryophyllaeus laticeps (Pallas, 1781) (Cestoda: Caryophyllidea) and characterisation of its morphotypes from different fish hosts. Syst. Parasitol. 2015;90:177–190. doi: 10.1007/s11230-014-9536-x. PubMed DOI
Guo Q., Huang M., Liu Y., Zhang X., Gu Z. Morphological plasticity in Myxobolus Bütschli, 1882: A taxonomic dilemma case and renaming of a parasite species of the common carp. Parasit. Vectors. 2018;11:399. doi: 10.1186/s13071-018-2943-0. PubMed DOI PMC
Dobson A., Lafferty K.D., Kuris A.M., Hechinger R.F., Jetz W. Homage to Linnaeus: How many parasites? How many hosts? Proc. Natl. Acad. Sci. USA. 2008;105:11482–11489. doi: 10.1073/pnas.0803232105. PubMed DOI PMC
Poulin R. Parasite biodiversity revisited: Frontiers and constraints. Int. J. Parasitol. 2014;44:581–589. doi: 10.1016/j.ijpara.2014.02.003. PubMed DOI
Pandian T.J. Reproduction and Development in Platyhelminthes. CRC Press; Boca Raton, FL, USA: 2020. p. 320. DOI
Galaktionov K.V., Dobrovolskij A. The Biology and Evolution of Trematodes: An Essay on the Biology, Morphology, Life Cycles, Transmissions, and Evolution of Digenetic Trematodes. Kluwer Academic Publishers; Dordrecht, The Netherlands: 2003. p. 592.
Soldánová M., Selbach C., Kalbe M., Kostadinova A., Sures B. Swimmer’s itch: Etiology, impact, and risk factors in Europe. Trends Parasitol. 2013;29:65–74. doi: 10.1016/j.pt.2012.12.002. PubMed DOI
Jamieson B.G.M. Schistosoma: Biology, Pathology and Control. CRC Press; Boca Raton, FL, USA: 2017. p. 523. DOI
Kock S. Investigations of intermediate host specificity help to elucidate the taxonomic status of Trichobilharzia ocellata (Digenea: Schistosomatidae) Parasitology. 2001;123:67–70. doi: 10.1017/S0031182001008101. PubMed DOI
Poulin R. Morphological diversification in different trematode lineages: Body size, host type, or time? Parasitology. 2009;136:85–92. doi: 10.1017/S0031182008005179. PubMed DOI
Hechinger R.F., Wood A.C., Kuris A.M. Social organization in a flatworm: Trematode parasites form soldier and reproductive castes. Proc. R. Soc. B. 2011;278:656–665. doi: 10.1098/rspb.2010.1753. PubMed DOI PMC
Garcia-Vedrenne A.E., Quintana A.C., DeRogatis A.M., Martyn K., Kuris A.M., Hechinger R.F. Social organization in parasitic flatworms—four additional echinostomoid trematodes have a soldier caste and one does not. J. Parasitol. 2016;102:11–20. doi: 10.1645/15-853. PubMed DOI
Poulin R., Kamiya T., Lagrue C. Evolution, phylogenetic distribution and functional ecology of division of labour in trematodes. Parasit. Vectors. 2019;12:1–10. doi: 10.1186/s13071-018-3241-6. PubMed DOI PMC
Seppälä O., Karvonen A., Valtonen E.T. Phenotypic variation in infectivity of Diplostomum spathaceum cercariae within a population. J. Parasitol. 2007;93:124–1246. doi: 10.1645/GE-1187R.1. PubMed DOI
Koehler A.V., Springer Y.P., Keeney D.B., Poulin R. Intra-and interclonal phenotypic and genetic variability of the trematode Maritrema novaezealandensis. Biol. J. Linn. Soc. Lond. 2011;103:106–116. doi: 10.1111/j.1095-8312.2011.01640.x. DOI
Prokofiev V.V., Levakin I.A., Losev E.A., Zavirsky Ya A., Galaktionov K.V. Clonal variability in expression of geo-and photoorientation in cercariae of Himasthla elongata (Trematoda: Echinostomatidae) Parazitologiia. 2011;45:345–357. (In Russian) PubMed
Koehler A.V., Poulin R. Clone-specific immune reactions in a trematode-crustacean system. Parasitology. 2012;139:128–136. doi: 10.1017/S0031182011001739. PubMed DOI
Koehler A.V., Springer Y.P., Randhawa H.S., Leung T.L.F., Keeney D.B., Poulin R. Genetic and phenotypic influences on clone-level success and host specialization in a generalist parasite. J. Evol. Biol. 2012;25:66–79. doi: 10.1111/j.1420-9101.2011.02402.x. PubMed DOI
Levakin I.A., Losev E.A., Nikolaev K.E., Galaktionov K.V. In vitro encystment of Himasthla elongata cercariae (Digenea, Echinostomatidae) in the haemolymph of blue mussels Mytilus edulis as a tool for assessing cercarial infectivity and molluscan susceptibility. J. Helminthol. 2013;87:180–188. doi: 10.1017/S0022149X1200017X. PubMed DOI
Louhi K.R., Karvonen A., Rellstab C., Jokela J. Genotypic and phenotypic variation in transmission traits of a complex life cycle parasite. Ecol. Evol. 2013;3:2116–2127. doi: 10.1002/ece3.621. PubMed DOI PMC
Neves R.H., Costa-Silva M., Martinez E.M., Branquinho T.B., de Oliveira R.M., Lenzi H.L., Gomes D.C., Machado-Silva J.R. Phenotypic plasticity in adult worms of Schistosoma mansoni (Trematoda: Schistosomatidae) evidenced by brightfield and confocal laser scanning microscopies. Mem. Inst. Oswaldo Cruz. 2004;99:131–136. doi: 10.1590/S0074-02762004000200003. PubMed DOI
Mati V.L.T., Freitas R.M., Bicalho R.S., Melo A.L. Phenotypic plasticity of male Schistosoma mansoni from the peritoneal cavity and hepatic portal system of laboratory mice and hamsters. J. Helminthol. 2015;89:294–301. doi: 10.1017/S0022149X14000066. PubMed DOI
Bayne C.J., Grevelding C.G. Cloning of Schistosoma mansoni sporocysts in vitro and detection of genetic heterogeneity among individuals within clones. J. Parasitol. 2003;89:1056–1060. doi: 10.1645/GE-3186RN. PubMed DOI
Théron A., Sire C., Rognon A., Prugnolle F., Durand P. Molecular ecology of Schistosoma mansoni transmission inferred from the genetic composition of larval and adult infrapopulations within intermediate and definitive hosts. Parasitology. 2004;129:571–585. doi: 10.1017/S0031182004005943. PubMed DOI
Shalaby I., Gherbawy Y., Banaja A. Genetic diversity among Schistosoma mansoni population in the western region of Saudi Arabia. Trop. Biomed. 2011;28:90–101. PubMed
Korsunenko A., Chrisanfova G., Lopatkin A., Beer S.A., Voronin M., Ryskov A.P., Semyenova S.K. Genetic differentiation of cercariae infrapopulations of the avian schistosome Trichobilharzia szidati based on RAPD markers and mitochondrial cox1 gene. Parasitol. Res. 2012;110:833–841. doi: 10.1007/s00436-011-2562-6. PubMed DOI
Gu M.J., Li Y.W., Emery A.M., Li S.Z., Jiang Y.Z., Dong H.F., Zhao Q.P. The genetic variation of different developmental stages of Schistosoma japonicum: Do the distribution in snails and pairing preference benefit the transmission? Parasit. Vectors. 2020;13:360. doi: 10.1186/s13071-020-04240-w. PubMed DOI PMC
Mitta G., Adema C.M., Gourbal B., Loker E.S., Theron A. Compatibility polymorphism in snail/schistosome interactions: From field to theory to molecular mechanisms. Dev. Comp. Immunol. 2012;37:1–8. doi: 10.1016/j.dci.2011.09.002. PubMed DOI PMC
Lima M.G., Montresor L.C., Pontes J., Augusto R.C., da Silva J.P., Thiengo S.C. Compatibility polymorphism based on long-term host-parasite relationships: Cross talking between Biomphalaria glabrata and the trematode Schistosoma mansoni from endemic areas in Brazil. Front. Immunol. 2019;10:328. doi: 10.3389/fimmu.2019.00328. PubMed DOI PMC
Pino L.A., Matinella L., Morales G. The size polymorphism of the cercariae of a Venezuelan strain of Schistosoma mansoni. Rev. Soc. Bras. Med. Trop. 1999;32:443–446. doi: 10.1590/S0037-86821999000400016. PubMed DOI
Jouet D., Skírnisson K., Kolářová L., Ferté H. Molecular diversity of Trichobilharzia franki in two intermediate hosts (Radix auricularia and Radix peregra): A complex of species. Infect. Genet. Evol. 2010;10:1218–1227. doi: 10.1016/j.meegid.2010.08.001. PubMed DOI
Born-Torrijos A., Paterson R.A., van Beest G.S., Schwelm J., Vyhlídalová T., Henriksen E.H., Knudsen R., Kristoffersen R., Amundsen P.-A., Soldánová M. Temperature does not influence functional response of amphipods consuming different trematode prey. Parasitol. Res. 2020;119:4271–4276. doi: 10.1007/s00436-020-06859-1. PubMed DOI PMC
Born-Torrijos A., Paterson R.A., van Beest G.S., Vyhlídalová T., Henriksen E.H., Knudsen R., Kristoffersen R., Amundsen P.-A., Soldánová M. Cercarial behaviour alters the consumer functional response of three-spined sticklebacks. J. Anim. Ecol. 2021;90:978–988. doi: 10.1111/1365-2656.13427. PubMed DOI
Esch G.W., Curtis L.A., Barger M.A. A perspective on the ecology of trematode communities in snails. Parasitology. 2001;123:57–75. doi: 10.1017/S0031182001007697. PubMed DOI
Combes C., Bartoli P., Théron A. Trematode Transmission Strategies. In: Lewis E.E., Campbell J.F., Sukhdeo M.V.K., editors. The Behavioural Ecology of Parasites. CABI; Wallingford, UK: 2002. pp. 1–12. DOI
Morley N.J. Cercariae (Platyhelminthes: Trematoda) as neglected components of zooplankton communities in freshwater habitats. Hydrobiologia. 2012;691:7–19. doi: 10.1007/s10750-012-1029-9. DOI
Pietrock M., Marcogliese D.J. Free-living endohelminth stages: At the mercy of environmental conditions. Trends Parasitol. 2003;19:293–299. doi: 10.1016/S1471-4922(03)00117-X. PubMed DOI
Thieltges D.W., Jensen K.T., Poulin R. The role of biotic factors in the transmission of free-living endohelminth stages. Parasitology. 2008;135:407–426. doi: 10.1017/S0031182007000248. PubMed DOI
Combes C., Fournier A., Moné H., Théron A. Behaviours in trematode cercariae that enhance parasite transmission: Patterns and processes. Parasitology. 1994;109:3–13. doi: 10.1017/S0031182000085048. PubMed DOI
Haas W. Parasitic worms: Strategies of host finding, recognition and invasion. Zoology. 2003;106:349–364. doi: 10.1078/0944-2006-00125. PubMed DOI
Horák P., Mikeš L., Lichtenbergová L., Skála V., Soldánová M., Brant S.V. Avian schistosomes and outbreaks of cercarial dermatitis. Clin. Microbiol. Rev. 2015;28:165–190. doi: 10.1128/CMR.00043-14. PubMed DOI PMC
Soldánová M., Selbach C., Sures B. The early worm catches the bird? Productivity and patterns of Trichobilharzia szidati cercarial emission from Lymnaea stagnalis. PLoS ONE. 2016;11:e0149678. doi: 10.1371/journal.pone.0149678. PubMed DOI PMC
Ginetsinskaya T.A. Glycogen in cercariae, and the dependence of its distribution on the specific characters of the parasite. Dokl. Akad. Nauk SSSR. 1960;135:1012–1015.
Ginetsinskaya T.A. Trematodes; Their Life-Cycles, Biology and Evolution. Amerind Publ. Co., Pvt. Ltd.; New Delhi, India: 1988. p. 559.
Morley N.J. Cercarial swimming performance and its potential role as a key variable of trematode transmission. Parasitology. 2020;147:1369–1374. doi: 10.1017/S0031182020001171. PubMed DOI PMC
Lawson R.J., Wilson R.A. The survival of the cercariae of Schistosoma mansoni in relation to water temperature and glycogen utilization. Parasitology. 1980;81:337–348. doi: 10.1017/S0031182000056079. PubMed DOI
Lowenberger C.A., Rau M.E. Plagiorchis elegans: Emergence, longevity and infectivity of cercariae, and host behavioural modifications during cercarial emergence. Parasitology. 1994;109:65–72. doi: 10.1017/S0031182000077775. PubMed DOI
Pechenik J.A., Fried B. Effect of temperature on survival and infectivity of Echinostoma trivolvis cercariae: A test of the energy limitation hypothesis. Parasitology. 1995;111:373–378. doi: 10.1017/S0031182000081920. DOI
Karvonen A., Paukku S., Valtonen E.T., Hudson P.J. Transmission, infectivity and survival of Diplostomum spathaceum cercariae. Parasitology. 2003;127:217–224. doi: 10.1017/S0031182003003561. PubMed DOI
Johnson P.T.J., Thieltges D.W. Diversity, decoys and the dilution effect: How ecological communities affect disease risk. J. Exp. Biol. 2010;213:961–970. doi: 10.1242/jeb.037721. PubMed DOI
Johnson P.T.J., Dobson A., Lafferty K.D., Marcogliese D.J., Memmott J., Orlofske S.A., Poulin R., Thieltges D.W. When parasites become prey: Ecological and epidemiological significance of eating parasites. Trends Ecol. Evol. 2010;25:362–371. doi: 10.1016/j.tree.2010.01.005. PubMed DOI
Keesing F., Belden L.K., Daszak P., Dobson A., Harvell C.D., Holt R.D., Hudson P., Jolles A., Jones K.E., Mitchell C.E., et al. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature. 2010;468:647–652. doi: 10.1038/nature09575. PubMed DOI PMC
Goedknegt A., Welsh J., Thieltges D.W. Parasites as Prey. John Wiley & Sons, Ltd.; Hoboken, NJ, USA: 2012. p. 7. DOI
Stanicka A., Migdalski Ł., Szopieray K., Cichy A., Jermacz Ł., Lombardo P., Żbikowska E. Invaders as diluents of the cercarial dermatitis etiological agent. Pathogens. 2021;10:740. doi: 10.3390/pathogens10060740. PubMed DOI PMC
Kaplan A.T., Rebhal S., Lafferty K.D., Kuris A.M. Small estuarine fishes feed on large trematode cercariae: Lab and field investigations. J. Parasitol. 2009;95:477–480. doi: 10.1645/GE-1737.1. PubMed DOI
Orlofske S.A., Jadin R.C., Johnson P.T.J. It’s a predator-eat-parasite world: How characteristics of predator, parasite and environment affect consumption. Oecologia. 2015;178:537–547. doi: 10.1007/s00442-015-3243-4. PubMed DOI
Catania S.V., Koprivnikar J., McCauley S.J. Size-dependent predation alters interactions between parasites and predators. Can. J. Zool. 2016;94:631–635. doi: 10.1139/cjz-2016-0088. DOI
Welsh J.E., Hempel A., Markovic M., Van der Meer J., Thieltges D.W. Consumer and host body size effects on the removal of trematode cercariae by ambient communities. Parasitology. 2019;146:342–347. doi: 10.1017/S0031182018001488. PubMed DOI
Gilbert S.F. Ecological developmental biology: Developmental biology meets the real world. Dev. Biol. 2001;233:1–12. doi: 10.1006/dbio.2001.0210. PubMed DOI
Loker E.S. A comparative study of the life-histories of mammalian schistosomes. Parasitology. 1983;87:343–369. doi: 10.1017/S0031182000052689. PubMed DOI
Gérard C.J., Moné H., Théron A. Schistosoma mansoni-Biomphalaria glabrata: Dynamics of the sporocyst population in relation to the miracidial dose and the host size. Can. J. Zool. 1993;71:1880–1885. doi: 10.1139/z93-268. DOI
Podhorský M., Hůzová Z., Mikeš L., Horák P. Cercarial dimensions and surface structures as a tool for species determination of Trichobilharzia spp. Acta Parasitol. 2009;54:28–36. doi: 10.2478/s11686-009-0011-9. DOI
Poulin R. Global warming and temperature-mediated increases in cercarial emergence in trematode parasites. Parasitology. 2006;132:143–151. doi: 10.1017/S0031182005008693. PubMed DOI
Horák P., Kolářová L., Adema C.M. Biology of the schistosome genus Trichobilharzia. Adv. Parasitol. 2002;52:155–233. doi: 10.1016/S0065-308X(02)52012-1. PubMed DOI
Grevelding C.G. Genomic instability in Schistosoma mansoni. Mol. Biochem. Parasitol. 1999;101:207–216. doi: 10.1016/S0166-6851(99)00078-X. PubMed DOI
Semyenova S.K., Khrisanfova G.G., Korsunenko A.V., Voronin M.V., Beer S.V., Vodyanitskaya S.V., Serbina E.A., Yurlova N.I., Ryskov A.P. Multilocus variation in cercariae, parthenogenetic progeny of different species of the class Trematoda. Dokl. Biol. Sci. 2007;414:235–238. doi: 10.1134/S0012496607030192. PubMed DOI
Galaktionov N.K., Podgornaya O.I., Strelkov P.P., Galaktionov K.V. Genomic diversity of cercarial clones of Himasthla elongata (Trematoda, Echinostomatidae) determined with AFLP technique. Parasitol. Res. 2016;115:4587–4593. doi: 10.1007/s00436-016-5249-1. PubMed DOI
Minchella D.J., Sollenberger K.M., Pereira de Souza C. Distribution of schistosome genetic diversity within molluscan intermediate hosts. Parasitology. 1995;111:217–220. doi: 10.1017/S0031182000064970. PubMed DOI
Davies C.M., Webster J.P., Krüger O., Munatsi A., Ndamba J., Woolhouse M.E. Host–parasite population genetics: A cross-sectional comparison of Bulinus globosus and Schistosoma haematobium. Parasitology. 1999;119:295–302. doi: 10.1017/S0031182099004722. PubMed DOI
Soldánová M., Georgieva S., Roháčová J., Knudsen R., Kuhn J.A., Henriksen E.H., Siwertsson A., Shaw J.C., Kuris A.M., Amundsen P.-A., et al. Molecular analyses reveal high species diversity of trematodes in a sub-Arctic lake. Int. J. Parasitol. 2017;47:327–345. doi: 10.1016/j.ijpara.2016.12.008. PubMed DOI
Reier S., Haring E., Billinger F., Blatterer H., Duda M., Gorofsky C., Grasser H.P., Heinisch W., Hörweg C., Kruckenhauser L., et al. First confirmed record of Trichobilharzia franki Müller & Kimmig, 1994, from Radix auricularia (Linnaeus, 1758) for Austria. Parasitol. Res. 2020;119:4135–4141. doi: 10.1007/s00436-020-06938-3. PubMed DOI PMC
Helmer N., Blatterer H., Hörweg C., Reier S., Sattmann H., Schindelar J., Szucsich N.U., Haring E. First record of Trichobilharzia physellae (Talbot, 1936) in Europe, a possible causative agent of cercarial dermatitis. Pathogens. 2021;10:1473. doi: 10.3390/pathogens10111473. PubMed DOI PMC
Brant S.V., Loker E.S. Molecular systematics of the avian schistosome genus Trichobilharzia (Trematoda: Schistosomatidae) in North America. J. Parasitol. 2009;95:941–963. doi: 10.1645/GE-1870.1. PubMed DOI PMC
Abràmoff M.D., Magalhães P.J., Ram S.J. Image processing with ImageJ. Biophotonics Int. 2004;11:36–42.