Timing matters: exploring emergence patterns of two species of trematode furcocercariae from their snail hosts

. 2025 Mar 05 ; 72 () : . [epub] 20250305

Jazyk angličtina Země Česko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40065685

Cercariae are motile infectious larval stages of digenetic trematodes that emerge from their molluscan first intermediate host to seek the next host in their life cycle. A crucial transmission strategy of trematodes involves releasing the maximum number of cercariae at times that coincide with the presence and activity of the next hosts, thereby increasing the likelihood of successful infection and continuation of the parasite's life cycle. We investigated the cercarial emergence of two furcocercous (with forked tail) trematodes Tylodelphys clavata (von Nordmann, 1832) and unidentified species of Sanguinicola Plehn, 1905 from naturally infected Ampullaceana balthica (Linnaeus) and Radix auricularia (Linnaeus) snails under natural light and constant temperature conditions. Both trematodes, which are important fish pathogens, showed distinct daily emergence rhythms influenced by light intensity, with emergence peaking at sunset and night for T. clavata and at night for Sanguinicola sp. The daily emergence rhythms of T. clavata cercariae were consistent in both summer and autumn, indicating adaptability to natural changes in seasonal photoperiods. The interspecific differences in emergence patterns are likely related to the behavioural patterns of upstream, i.e., next in the life cycle, fish hosts. Cercarial output also varied between trematode species and seasons, likely due to combined effects of snail size, intensity of trematode infection in snails and size of cercariae rather than seasonal temperatures. The trematodes were molecularly characterised using mitochondrial (cox1) and nuclear (28S rDNA and ITS1-5.8S-ITS2) regions to confirm their identity and facilitate future studies. This study highlights the importance of light-regulated and host-synchronised cercarial emergence rhythms for increased trematode transmission success and reveals significant variation in cercarial output influenced by environmental and biological factors, contributing to a deeper understanding of trematode ecology and disease management.

Zobrazit více v PubMed

Abràmoff M.D., Magalhães P.J., Ram S.J. 2004: Image processing with ImageJ. Biophotonics Int. 11: 36-42.

Aksenova O.V., Bolotov I.N., Gofarov M.Y., Kondakov A.V., Vinarski M.V., Bespalaya Y.V., Kolosova Y.S., Palatov D.M., Sokolova S.E., Spitsyn V.M., Tomilova A.A., Travina O.V., Vikhrev I.V. 2018: Species richness, molecular taxonomy and biogeography of the radicine pond snails (Gastropoda: Lymnaeidae) in the Old World. Sci. Rep. 8: 11199. PubMed DOI

Almeyda-Artigas R.J., Bargues M.D., Mas-Coma S. 2000: ITS-2 rDNA sequencing of Gnathostoma species (Nematoda) and elucidation of the species causing human gnathostomiasis in the Americas. J. Parasitol. 86: 537-544. DOI

Anderson P.A., Nowosielski J.W., Croll N.A. 1976: The emergence of cercariae of Trichobilharzia ocellata and its relationship to the activity of its snail host Lymnaea stagnalis. Can. J. Zool. 54: 1481-1487. PubMed DOI

Anderson R.M., Whitfield P.J., Dobson A.P., Keymer A.E. 1978: Concomitant predation and infection processes: an experimental study. J. Anim. Ecol. 47: 891-911. DOI

Bajer P.G., Lim H., Travaline M.J., Miller B.D., Sorensen P.W. 2010: Cognitive aspects of food searching behavior in free-ranging wild common carp. Environ. Biol. Fish. 88: 295-300. DOI

Bargues M.D., Vigo M., Horák P., Dvořák J., Patzner R.A., Pointier J.P., Jackiewicz M., Meier-Brook C., Mas-Coma S. 2001: European Lymnaeidae (Mollusca: Gastropoda), intermediate hosts of trematodiases, based on nuclear ribosomal DNA ITS-2 sequences. Infect. Genet. Evol. 1: 85-107. PubMed DOI

Baruš V., Oliva O. 1995: [Lampreys and Fish - Petromyzontes and Osteichthyes (2).] Fauna ČR a SR. Academia, Prague, 698 pp. (In Czech.)

Bažant J. 2015: [Waterbirds on lake Most 2013-2015]. Sbor. Obl. Muz. Most, Nat. Sci. 37: 61-80. (In Czech.)

Bažant J. 2018: [Interesting ornithological observations in the Most district (Northwestern Bohemia)]. Sbor. Obl. Muz. Most, Nat. Sci. 39: 143-153. (In Czech.)

Bažant J. 2020: [Birds of the sandpit in Polerady village (Most County, Northwestern Bohemia)]. Sbor. Obl. Muz. Most, Nat. Sci. 40: 122-134. (In Czech.)

Beran L. 2019: Colonisation of the newly-created artificial lake Medard and its surroundings by aquatic molluscs. Folia Malacol. 27: 91-100. DOI

Berkhout B.W., Lloyd M.M., Poulin R. Studer A. 2014: Variation among genotypes in responses to increasing temperature in a marine parasite: evolutionary potential in the face of global warming? Int. J. Parasitol. 44: 1019-1027. PubMed DOI

Beuret J., Pearson J.C. 1994: Description of a new zygocercous cercaria (Opisthorchioidea: Heterophyidae) from prosobranch gastropods collected at Heron Island (Great Barrier Reef, Australia) and a review of zygocercariae. Syst. Parasitol. 27: 105-125. DOI

Blasco-Costa I., Cutmore S.C., Miller T.L., Nolan M.J. 2016: Molecular approaches to trematode systematics: 'best practice' and implications for future study. Syst. Parasitol. 93: 295-306. PubMed DOI

Born-Torrijos A., van Beest G.S., Vyhlídalová T., Knudsen R., Kristoffersen R., Amundsen P.-A., Thieltges D.W., Soldánová M. 2022: Taxa-specific activity loss and mortality patterns in freshwater trematode cercariae under subarctic conditions. Parasitology 149: 457-468. PubMed DOI

Born-Torrijos A., Holzer A.S., Raga J.A., Kostadinova A. 2014: Same host, same lagoon, different transmission pathways: effects of exogenous factors on larval emergence in two marine digenean parasites. Parasitol. Res. 113: 545-554. PubMed DOI

Brassard P., Curtis M.A., Rau M.E. 1982: Seasonality of Diplostomum spathaceum (Trematoda: Strigeidae) transmission to brook trout (Salvelinus fontinalis) in northern Quebec, Canada. Can. J. Zool. 60: 2258-2263. DOI

Burrough R.J. 1978: The population biology of two species of eyefluke, Diplostomum spathaceum and Tylodelphys clavata, in roach and rudd. J. Fish. Biol. 13: 19-32. DOI

Bush A.O., Lafferty K.D., Lotz J.M., Shostak A.W. 1997: Parasitology meets ecology on its own terms: Margolis et al. revisited. J. Parasitol. 83: 575-583. DOI

Byers J.E., Blakeslee A.M., Linder E., Cooper A.B., Maguire T.J. 2008: Controls of spatial variation in the prevalence of trematode parasites infecting a marine snail. Ecology 89: 439-451. PubMed DOI

Chappell L.H., Hardie L.J., Secombes C.J. 1994. Diplostomiasis: the disease and host-parasite interactions. In: A.W. Pike and J.W. Lewis (Eds.), Parasitic Diseases of Fish. Samara Publishing Limited, Tresaith, pp. 59-86.

Chapuis E. 2009: Correlation between parasite prevalence and adult size in a trematode-mollusc system: evidence for evolutionary gigantism in the freshwater snail Galba truncatula? J. Mollusc. Stud. 75: 391-396. DOI

Chizinski C.J., Bajer P.G., Headrick M.E., Sorensen P.W. 2016: Different migratory strategies of invasive common carp and native northern pike in the American Midwest suggest an opportunity for selective management strategies. North. Am. J. Fish. Manag. 36: 769-779. DOI

Combes C., Bartoli P., Théron A. 2002: Trematode transmission strategies. In: E.E. Lewis, J.F. Campbell and M.V.K. Sukhdeo (Eds.), The Behavioral Ecology of Parasites. CABI Publishing, Wallingford, pp. 1-12. DOI

Combes C., Fournier A., Moné H. Théron A. 1994: Behaviours in trematode cercariae that enhance parasite transmission: patterns and processes. Parasitology 109: 3-13. PubMed DOI

Cornet S., Nicot A., Rivero A., Gandon S. 2014: Evolution of plastic transmission strategies in avian malaria. PLoS Pathog. 10: e1004308. PubMed DOI

Craig J.M., Scott A.L. 2014: Helminths in the lungs. Parasite Immunol. 36: 463-474. PubMed DOI

Darriba D., Taboada G.L., Doallo R., Posada D. 2012: jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 9: 772. PubMed DOI

Dzika E., Kuształa M., Kozłowski J. 2008: Metazoan parasite fauna of fish species from Lake Kortowskie. Fish. Aquat. Life 16: 75-86. DOI

Esch G.W., Barger M.A., Fellis K.J. 2002: The transmission of digenetic trematodes: style, elegance, complexity. Integr. Comp. Biol. 42: 304-312. PubMed DOI

Faltýnková A., Karvonen A., Jyrkkä M., Valtonen E.T. 2009: Being successful in the world of narrow opportunities: transmission patterns of the trematode Ichthyocotylurus pileatus. Parasitology 136: 1375-1382. PubMed DOI

Faltýnková A., Kudlai O., Pantoja C., Jouet D., Skírnisson K. 2023: Prey-mimetism in cercariae of Apatemon (Digenea, Strigeidae) in freshwater in northern latitudes. Parasitol. Res. 122: 815-831. PubMed DOI

Faltýnková A., Našincová V., Kablásková L. 2007: Larval trematodes (Digenea) of the great pond snail, Lymnaea stagnalis (L.), (Gastropoda, Pulmonata) in Central Europe: a survey of species and key to their identification. Parasite 14: 39-51. PubMed DOI

Faltýnková A., Sures B., Kostadinova A. 2016: Biodiversity of trematodes in their intermediate mollusc and fish hosts in the freshwater ecosystems of Europe. Syst. Parasitol. 93: 283-293. PubMed DOI

Fingerut J.T., Zimmer C.A., Zimmer R.K. 2003: Patterns and processes of larval emergence in an estuarine parasite system. Biol. Bull. 205: 110-120. PubMed DOI

Fredensborg B.L., Mouritsen K.N., Poulin R. 2005: Impact of trematodes on host survival and population density in the intertidal gastropod Zeacumantus subcarinatus. Mar. Ecol. Prog. Ser. 290: 109-117. DOI

Fredensborg B.L., Mouritsen K.N., Poulin R. 2006: Relating bird host distribution and spatial heterogeneity in trematode infections in an intertidal snail - from small to large scale. Mar. Biol. 149: 275-283. DOI

Fretter V., Peake J. (Eds.) 1975: Pulmonates. Volume 1 - Functional Anatomy and Physiology. Academic Press, London, 417 pp.

Galaktionov K.V., Dobrovolskij A.A. 2003: The Biology and Evolution of Trematodes. Kluwer Academic Publishers, Dordrecht, 592 pp. DOI

Galazzo D.E., Dayanandan S., Marcogliese D.J., McLaughlin J.D. 2002: Molecular systematics of some North American species of Diplostomum (Digenea) based on rDNA-sequence data and comparisons with European congeners. Can. J. Zool. 80: 2207-2217. DOI

Gibson D.I., Bray R.A., Harris E.A. (Compilers) 2005: Host-Parasite Database of the Natural History Museum. London. Available online: https://www.nhm.ac.uk/research-curation/scientific-resources/taxonomy-systematics/host-parasites/index.html.

Ginetsinskaya T.A. 1960: [Glycogen in cercariae, and the dependence of its distribution on the specific characters of the parasite.] Dokl. Akad. Nauk. SSSR 135: 1012-1015. (In Russian.)

Glöer P. 2002: Die Süßwassergastropoden Nord- und Mitteleuropas. Bestimmungschlüssel, Lebensweise, Verbreitung. ConchBooks, Harxheim, 327 pp.

Glöer P. 2019: The Freshwater Gastropods of the West-Palaearctis. Volume 1: Fresh- and Brackish Waters except Spring and Subterranean Snails. Biodiversity Research Lab, Hetlingen, 399 pp.

Guindon S., Dufayard J.F., Lefort V., Anisimova M., Hordijk W., Gascuel O. 2010: New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59: 307-321. PubMed DOI

Haas W. 1994: Physiological analyses of host-finding behaviour in trematode cercariae: adaptations for transmission success. Parasitology 109: 15-29. PubMed DOI

Haas W. 2003: Parasitic worms: strategies of host finding, recognition and invasion. Zoology 106: 349-364. PubMed DOI

Haas W., Beran B., Loy C. 2008: Selection of the host's habitat by cercariae: from laboratory experiments to the field. J. Parasitol. 94: 1233-1238. PubMed DOI

Hammoud C., Kayenbergh A., Tumusiime J., Verschuren D., Albrecht C., Huyse T., Van Bocxlaer B. 2022: Trematodeinfection affects shell shape and size in Bulinus tropicus. Int. J. Parasitol. Parasites Wildl. 18: 300-311. PubMed DOI

Hannon E.R., Calhoun D.M., Chadalawada S., Johnson P.T.J. 2018: Circadian rhythms of trematode parasites: applying mixed models to test underlying patterns. Parasitology 145: 783-791. PubMed DOI

Heneberg P., Sitko J. 2021: Cryptic speciation among Tylodelphys spp.: the major helminth pathogens of fish and amphibians. Parasitol. Res. 120: 1687-1697. PubMed DOI

Holland C.V., Kennedy C.R. 1997: A checklist of parasitic helminth and crustacean species recorded in freshwater fish from Ireland. Biol. Environ. Proc. R. Irish Acad. 97: 225-243.

Huňová K., Kašný M., Hampl V., Leontovyč R., Kuběna A., Mikeš L., Horák P. 2012: Radix spp.: identification of trematode intermediate hosts in the Czech Republic. Acta Parasitol. 57: 273-284. PubMed DOI

Jacobsen L., Berg S., Baktoft H., Skov C. 2015: Behavioural strategy of large perch Perca fluviatilis varies between a mesotrophic and a hypereutrophic lake. J. Fish Biol. 86: 1016-1029. PubMed DOI

Johnson P.T.J., Chase J.M., Dosch K.L., Hartson R.B., Gros J.A., Larson D.J., Sutherland D.R., Carpenter S.R. 2007: Aquatic eutrophication promotes pathogenic infection in amphibians. Proc. Natl. Acad. Sci. USA 104: 15781-15786. PubMed DOI

Johnson P.T.J., Thieltges D.W. 2010: Diversity, decoys and the dilution effect: how ecological communities affect disease risk. J. Exp. Biol. 213: 961-970. PubMed DOI

Jouet D., Skírnisson K., Kolářová L., Ferté H. 2010: Molecular diversity of Trichobilharzia franki in two intermediate hosts (Radix auricularia and Radix peregra): a complex of species. Infect. Genet. Evol. 10: 1218-1227. PubMed DOI

Kadlec D., Šimková A., Jarkovský J., Gelnar M. 2003: Parasite communities of freshwater fish under flood conditions. Parasitol. Res. 89: 272-283. PubMed DOI

Kanarek G., Gabrysiak J., Pyrka E., Jeżewski W., Stanicka A., Cichy A., Żbikowska E., Zaleśny G., Hildebrand J. 2024: Hyperparasitism among larval stages of Digenea in snail hosts: sophisticated life strategy or pure randomness? The scenario of Cotylurus sp. Zool. J. Linn. Soc. 200: 865-875. DOI

Karvonen A., Kirsi S., Hudson P.J., Valtonen E.T. 2004: Patterns of cercarial production from Diplostomum spathaceum: terminal investment or bet hedging? Parasitology 129: 87-92. PubMed DOI

Karvonen A., Terho P., Seppälä O., Jokela J., Valtonen E.T. 2006: Ecological divergence of closely related Diplostomum (Trematoda) parasites. Parasitology 133: 229-235. PubMed DOI

Kennedy C.R. 1975: Ecological Animal Parasitology. Blackwell Scientific Publications, Oxford, 163 pp.

Kennedy C.R. 1981: Long term studies on the population biology of two specie of eyefluke, Diplostomum gasterostei and Tylodelphys clavata (Digenea: Diplostomatidae), concurrently infecting the eyes of perch, Perca fluviatilis. J. Fish Biol. 19: 221-236. DOI

Khosravi M., Díaz-Morales D.M., Thieltges D.W., Wahl M., Vajedsamiei J. 2023: Thermal optima of cercarial emergence in trematodes from a marine high-temperature ecosystem, the Persian Gulf. Sci. Rep. 13: 4923. DOI

Kirk R.S. 2012: Sanguinicola inermis and related species. In: P.T.K. Woo and K. Buchmann (Eds.), Fish Parasites: Pathobiology and Protection. CABI, Wallingford, pp. 270-281. DOI

Kiatsopit N., Sithithaworn P., Kopolrat K., Andrews R.H., Petney T.N. 2014: Seasonal cercarial emergence patterns of Opisthorchis viverrini infecting Bithynia siamensis goniomphalus from Vientiane Province, Lao PDR. Parasit. Vectors 7: 551. DOI

Kirk R.S., Lewis J.W. 1992: The laboratory maintenance of Sanguinicola inermis Plehn, 1905 (Digenea: Sanguinicolidae). Parasitology 104: 121-127. PubMed DOI

Kirk R.S., Lewis J.W. 1993. The life-cycle and morphology of Sanguinicola inermis Plehn, 1905 (Digenea: Sanguinicolidae). Syst. Parasitol. 25:125-133. DOI

Koprivnikar J., Poulin R. 2009: Effects of temperature, salinity, and water level on the emergence of marine cercariae. Parasitol. Res. 105: 957-965. PubMed DOI

Koprivnikar J., Thieltges D.W., Johnson P.T.J. 2023: Consumption of trematode parasite infectious stages: from conceptual synthesis to future research agenda. J. Helminthol. 97: e33. PubMed DOI

Kottelat M., Freyhof J. 2007: Handbook of European Freshwater Fishes. Publications Kottelat, Cornol and Feyhof, Berlin, 646 pp.

Kozicka J., Niewiadomska K. 1960: Studies on the biology and taxonomy of trematodes of the genus Tylodelphys Diesing, 1850 (Diplostomatidae). Acta. Parasitol. Pol. 8: 379-401.

Kudlai O., Oros M., Kostadinova A., Georgieva S. 2017: Exploring the diversity of Diplostomum (Digenea: Diplostomidae) in fishes from the River Danube using mitochondrial DNA barcodes. Parasit. Vectors 10: 592. PubMed DOI

Kundid P., Pantoja C., Janovcová K., Soldánová M. 2024: Molecular diversity of the genus Plagiorchis Lühe, 1899 in snail hosts of Central Europe with evidence of new lineages. Diversity 16: 158. DOI

Kuris A.M., Hechinger R.F., Shaw J.C., Whitney K.L., Aguirre-Macedo L., Boch C.A., Dobson A.P., Dunham E.J.., Fredensborg B.L., Huspeni T.C., Lorda J., Mababa L., Mancini F.T., Mora A.B., Pickering M., Talhouk N.L., Torchin M.E., Lafferty K.D. 2008: Ecosystem energetic implications of parasite and free-living biomass in three estuaries. Nature 454: 515-518. PubMed DOI

Kuris A.M., Lafferty K.D. 2005: Population and community ecology of larval trematodes in molluscan first intermediate hosts. In: K. Rohde (Ed.). Marine Parasitology. CSIRO Publishing, Victoria, pp. 321-326.

Lafferty K.D., Kuris A.M. 2009: Parasitic castration: the evolution and ecology of body snatchers. Trends Parasitol. 25: 564-572. PubMed DOI

Le Clecʼh W., Diaz R., Chevalier F.D., McDew-White M., Anderson T.J. 2019: Striking differences in virulence, transmission and sporocyst growth dynamics between two schistosome populations. Parasit. Vectors 12: 485. PubMed DOI

Levri E.P. 1998: The influence of non-host predators on parasite-induced behavioral changes in a freshwater snail. Oikos 81: 531-537. DOI

Levri E.P., Dillard J., Martin T. 2005: Trematode infection correlates with shell shape and defence morphology in a freshwater snail. Parasitology 130: 699-708. PubMed DOI

Levri E.P., Lively C.M. 1996: The effects of size, reproductive condition, and parasitism on foraging behaviour in a freshwater snail, Potamopyrgus antipodarum. Anim. Behav. 51: 891-901. DOI

Lewis M.C., Welsford I.G., Uglem G.L. 1989: Cercarial emergence of Proterometra macrostoma and P. edneyi (Digenea: Azygiidae): contrasting responses to light: dark cycling. Parasitology 99: 215-223. DOI

Littlewood D.T.J., Curini-Galletti M., Herniou E.A. 2000: The interrelationships of Proseriata (Platyhelminthes: Seriata) tested with molecules and morphology. Mol. Phylogenet. Evol. 16: 449-466. PubMed DOI

Littlewood D.T.J., Rohde K., Clough K.A. 1997: Parasite speciation within or between host species? Phylogenetic evidence from site-specific polystome monogeneans. Int. J. Parasitol. 27: 1289-1297. PubMed DOI

Lo C.T., Lee K.M. 1996: Pattern of emergence and the effects of temperature and light on the emergence and survival of heterophyid cercariae (Centrocestus formosanus and Haplorchis pumilio). J. Parasitol. 82: 347-350. DOI

Lockyer A.E., Olson P.D., Østergaard P., Rollinson D., Johnston D.A., Attwood S.W., Southgate V.R., Horák P., Snyder S.D., Le T.H., Agatsuma D.P., McManus D.P., Carmichael A.C., Naem S., Littlewood D.T.J. 2003: The phylogeny of the Schistosomatidae based on three genes with emphasis on the interrelationships of Schistosoma Weinland, 1858. Parasitology 126: 203-224. PubMed DOI

Loker E.S. 1983: A comparative study of the life-histories of mammalian schistosomes. Parasitology 87: 343-369. PubMed DOI

Lu D.B., Wang T.P., Rudge J.W., Donnelly C.A., Fang G.R., Webster J.P. 2009: Evolution in a multi-host parasite: chronobiological circadian rhythm and population genetics of Schistosoma japonicum cercariae indicates contrasting definitive host reservoirs by habitat. Int. J. Parasitol. 39: 1581-1588. PubMed DOI

Martin S., Vazquez R. 1984: Biology and behaviour of the cercariae of a Sanguinicola sp. in the River Cilloruelo (Salamanca, Spain). Ann. Parasitol. Hum. Comp. 59: 231-236. PubMed DOI

Massoud J. 1974: The effect of variation in miracidial exposure dose on laboratory infections of Ornithobilharzia turkestanicum in Lymnaea gedrosiana. J. Helminthol. 4: 139-144. PubMed DOI

McCarthy A.M. 1999: Photoperiodic cercarial emergence patterns of the digeneans Echinoparyphium recurvatum and Plagiorchis sp. from a mixed infection in Lymnaea peregra. J. Helminthol. 73: 59-62. DOI

McCarthy H.O., Fitzpatrick S., Irwin S.W.B. 2002. Life history and life cycles: production and behavior of trematode cercariae in relation to host exploitation and next-host characteristics. J. Parasitol. 88: 910-918. DOI

Miller M.A., Pfeiffer W., Schwartz T. 2010: Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE), New Orleans, 14 November 2010, pp. 1-8. DOI

Morley N.J. 2012: Cercariae (Platyhelminthes: Trematoda) as neglected components of zooplankton communities in freshwater habitats. Hydrobiologia 691: 7-19. DOI

Morley N.J. 2020: Cercarial swimming performance and its potential role as a key variable of trematode transmission. Parasitology 147: 1369-1374. PubMed DOI

Morley N.J., Adam M.E., Lewis J.W. 2010: The effects of host size and temperature on the emergence of Echinoparyphium recurvatum cercariae from Lymnaea peregra under natural light conditions. J. Helminthol. 84: 317-326. PubMed DOI

Morley N.J., Crane M., Lewis J.W. 2003: Cadmium toxicity and snail-digenean interactions in a population of Lymnaea spp. J. Helminthol. 77: 49-55. PubMed DOI

Morley N.J., Lewis J.W. 2013: Thermodynamics of cercarial development and emergence in trematodes. Parasitology 140: 1211-1224. PubMed DOI

Morozińska-Gogol J. 2007: Metazoan parasites of fish from the Lebsko Lagoon (Central Coast, Poland). Baltic Coastal Zone 11: 51-58.

Moszczynska A., Locke S.A., McLaughlin J.D., Marcogliese D.J., Crease T.J. 2009: Development of primers for the mitochondrial cytochrome c oxidase I gene in digenetic trematodes (Platyhelminthes) illustrates the challenge of barcoding parasitic helminths. Mol. Ecol. Resour. 9: 75-82. PubMed DOI

Mouahid G., Idris M.A., Verneau O., Théron A., Shaban M.M., Moné H. 2012: A new chronotype of Schistosoma mansoni: adaptive significance. Trop. Med. Int. Health 17: 727-732. PubMed DOI

Mouritsen K.N. 2002: The Hydrobia ulvae-Maritrema subdolum association: influence of temperature, salinity, light, water-pressure and secondary host exudates on cercarial emergence and longevity. J. Helminthol. 76: 341-347. PubMed DOI

Nakayama S., Doering-Arjes P., Linzmaier S., Briege J., Klefoth T., Pieterek T., Arlinghaus R. 2018: Fine-scale movement ecology of a freshwater top predator, Eurasian perch (Perca fluviatilis), in response to the abiotic environment over the course of a year. Ecol. Freshw. Fish 27: 798-812. DOI

Našincová V. 1992: [Trematode developmental stages in Czech aquatic snails and life-cycles of selected species of the family Omphalometridae and Echinostomatidae.] PhD Thesis, Czechoslovak Academy of Sciences, Institute of Parasitology in České Budějovice, 268 pp. (In Czech.)

Nezhybová V., Janáč M., Reichard M., Ondračková M. 2020: Risk-taking behaviour in African killifish - a case of parasitic manipulation? J. Vertebr. Biol. 69: 1-14. DOI

O'Dwyer K., Lynch A., Poulin R. 2014: Reduced attachment strength of rocky shore gastropods caused by trematode infection. J. Exp. Mar. Bio. Ecol. 458: 1-5. DOI

Olson P.D., Cribb T.H., Tkach V.V., Bray R.A., Littlewood D.T.J. 2003: Phylogeny and classification of the Digenea (Platyhelminthes: Trematoda). Int. J. Parasitol. 33: 733-755. PubMed DOI

Orlofske S.A., Jadin R.C., Johnson P.T.J. 2015: It's a predator-eat-parasite world: how characteristics of predator, parasite and environment affect consumption. Oecologia 178: 537-547. PubMed DOI

Outa J.O., Avenant-Oldewage A. 2024: Underreported and taxonomically problematic: characterization of sanguinicolid larvae from freshwater limpets (Burnupiidae), with comments on the phylogeny and intermediate hosts of sanguinicolids. Parasitology 151: 108-124. PubMed DOI

Patke A., Young M.W., Axelrod S. 2020: Molecular mechanisms and physiological importance of circadian rhythms. Nat. Rev. Mol. Cell. Biol. 21: 67-84. PubMed DOI

Pešout P., Porteš M., Pixová K.Č., Hendrychová M., Kříž P., Lacina D. 2022. Ecosystem restoration of brown coal open-pit mines. Nat. Conserv. J. 77: 34-39.

Peterka J., Hejzlar J., Nedoma J., Znachor P., Seďa J., Vejřík L. 2022: [Hydrobiological monitoring of Lake Medard in 2022]. Report of the Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, 23 pp. (In Czech.)

Pietrock M., Marcogliese D.J. 2003: Free-living endohelminth stages: at the mercy of environmental conditions. Trends Parasitol. 19: 293-299. PubMed DOI

Podhorský M., Hůzová Z., Mikeš L., Horák P. 2009: Cercarial dimensions and surface structures as a tool for species determination of Trichobilharzia spp. Acta Parasitol. 54: 28-36. DOI

Pojmanska T., Grabda-Kazubska B., Kazubski S.L., Machalska J., Niewiadomska K. 1980: Parasite fauna of five fish species from the Konin lakes complex, artificially heated with thermal effluents, and from Gopło Lake. Acta Parasitol. Pol. 27: 319-357.

Poulin R. 2006: Global warming and temperature-mediated increases in cercarial emergence in trematode parasites. Parasitology 132: 143-151. PubMed DOI

Poulin R. 2011: The many roads to parasitism: a tale of convergence. Adv. Parasitol. 74: 1-40. PubMed DOI

Preston D.L., Orlofske S.A., Lambden J.P., Johnson P.T.J. 2013: Biomass and productivity of trematode parasites in pond ecosystems. J. Anim. Ecol. 82: 509-517. PubMed DOI

Přikryl I., Havel L. 2010: [Hydric recultivation of residual pits after brown coal mining II - Barbora and Chabařovice.] Limnol. Nov. 4: 1-6. (In Czech.)

Prokofiev V.V., Galaktionov K.V., Levakin I.A. 2016: Patterns of parasite transmission in polar seas: daily rhythms of cercarial emergence from intertidal snails. J. Sea Res. 113: 85-98. DOI

Prokofiev V.V., Galaktionov K.V., Levakin I.A., Nikolaev K.E. 2023: Light or temperature? What regulates the emergence of trematode cercariae from the molluscan hosts and how it is done. Biol. Bull. Rev. 13: 172-183. DOI

Reier S., Haring E., Billinger F., Blatterer H., Duda M., Gorofsky C., Grasser H.-P., Heinisch W., Hörweg C., Kruckenhauser L., Szucsich N.U., Wanka A., Sattmann H. 2020: First confirmed record of Trichobilharzia franki Müller & Kimmig, 1994, from Radix auricularia (Linnaeus, 1758) for Austria. Parasitol. Res. 119: 4135-4141. PubMed DOI

Rijo-Ferreira F., Acosta-Rodriguez V.A., Abel J.H., Kornblum I., Bento I., Kilaru G., Klerman E.B., Mota M.M., Takahashi J.S. 2020: The malaria parasite has an intrinsic clock. Science 368: 746-753. PubMed DOI

Sajdlová Z., Frouzová J., Draštík V., Jůza T., Peterka J., Prchalová M., Říha M., Vašek M., Kubečka J., Čech M. 2018: Are diel vertical migrations of European perch (Perca fluviatilis L.) early juveniles under direct control of light intensity? Evidence from a large field experiment. Freshw. Biol. 63: 473-482. DOI

Schniebs K., Glöer P., Vinarski M.V., Hundsdoerfer A.K. 2011: Intraspecific morphological and genetic variability in Radix balthica (Linnaeus 1758) (Gastropoda: Basommatophora: Lymnaeidae) with morphological comparison to other European Radix species. J. Conchol. 40: 657-677.

Selbach C., Poulin R. 2018: Parasites in space and time: a novel method to assess and illustrate host-searching behaviour of trematode cercariae. Parasitology 145: 1469-1474. PubMed DOI

Sereno-Uribe A.L., Andrade-Gómez L., Pérez-Ponce de León G., García-Varela M. 2019: Exploring the genetic diversity of Tylodelphys (Diesing, 1850) metacercariae in the cranial and body cavities of Mexican freshwater fishes using nuclear and mitochondrial DNA sequences, with the description of a new species. Parasitol. Res. 118: 203-217. PubMed DOI

Shostak A.W., Esch G.W. 1990: Photocycle-dependent emergence by cercariae of Halipegus occidualis from Helisoma anceps, with special reference to cercarial emergence patterns as adaptations for transmission. J. Parasitol. 76: 790-795. DOI

Smyth J.D., Halton D.W. 1983: The Physiology of Trematodes, Second edition. Cambridge University Press, Cambridge, 446 pp.

Sokolov S.G., Yang P., Lebedeva D.I. 2022: New record of Tylodelphys metacercariae (Diplostomidae) from Perccottus glenii (Odontobutidae) and their phylogenetic assessment. Acta Vet. Hung. 70: 274-281. PubMed DOI

Soldánová M., Born-Torrijos A., Kristoffersen R., Knudsen R., Amundsen P.-A., Scholz T. 2022a: Cercariae of a bird schistosome follow a similar emergence pattern under different subarctic conditions: first experimental study. Pathogens 11: 647. PubMed DOI

Soldánová M., Kostadinova A. 2011: Rapid colonisation of Lymnaea stagnalis by larval trematodes in eutrophic ponds in central Europe. Int. J. Parasitol. 41: 981-990. PubMed DOI

Soldánová M., Kundid P., Scholz T., Kristoffersen R., Knudsen R. 2022b: Somatic dimorphism in cercariae of a bird schistosome. Pathogens 11: 290. PubMed DOI

Soldánová M., Selbach C., Kalbe M., Kostadinova A., Sures B. 2013: Swimmer's itch: etiology, impact, and risk factors in Europe. Trends Parasitol. 29: 65-74. PubMed DOI

Soldánová M., Selbach C., Sures B. 2016: The early worm catches the bird? Productivity and patterns of Trichobilharzia szidati cercarial emission from Lymnaea stagnalis. PLoS ONE 11: e0149678. PubMed DOI

Sommerville C., Iqbal N.A.M. 1991: The process of infection, migration, growth and development of Sanguinicola inermis Plehn, 1905 (Digenea: Sanguinicolidae) in carp, Cyprinus carpio L. J. Fish. Dis. 14: 211-219. DOI

Sorensen R.E., Minchella D.J. 2001: Snail-trematode life history interactions: past trends and future directions. Parasitology 123: 3-18. PubMed DOI

Stien A., Voutilainen L., Haukisalmi V., Fuglei E., Mørk T., Yoccoz N.G., Ims R.A., Henttonen H. 2010: Intestinal parasites of the Arctic fox in relation to the abundance and distribution of intermediate hosts. Parasitology 137: 149-157. PubMed DOI

Stift M., Michel E., Sitnikova T.Y., Mamonova E.Y., Sherbakov D.Y. 2004: Palaearctic gastropod gains a foothold in the dominion of endemics: range expansion and morphological change of Lymnaea (Radix) auricularia in Lake Baikal. Hydrobiologia 513: 101-108. DOI

Stumbo A.D., Poulin R. 2016: Possible mechanism of host manipulation resulting from a diel behaviour pattern of eye-dwelling parasites? Parasitology 143: 1261-1267. PubMed DOI

Théron A. 1984: Early and late shedding patterns of Schistosoma mansoni cercariae: ecological significance in transmission to human and murine hosts. J. Parasitol. 70: 652-655. DOI

Théron A. 1989: Hybrids between Schistosoma mansoni and Schistosoma rodhaini: characterization by cercarial emergence patterns. Parasitology 99: 225-228. PubMed DOI

Théron A. 2015: Chronobiology of trematode cercarial emergence: from data recovery to epidemiological, ecological and evolutionary implications. Adv. Parasitol. 88: 123-164. PubMed DOI

Théron A., Mouahid G., Moné H. 1997: Schistosoma mansoni: cercarial shedding patterns from a mixed infection of Biomphalaria glabrata with two (early and late) chronobiological variants. Parasitol. Res. 83: 356-358. PubMed DOI

Thieltges D.W., Amundsen P.-A., Hechinger R.F., Johnson P.T.J., Lafferty K.D., Mouritsen K.N., Preston D.L., Reise K., Zander C.D., Poulin R. 2013: Parasites as prey in aquatic food webs: implications for predator infection and parasite transmission. Oikos 122: 1473-1482. DOI

Thieltges D.W., Jensen K.T., Poulin R. 2008a: The role of biotic factors in the transmission of free-living endohelminth stages. Parasitology 135: 407-426. PubMed DOI

Thieltges D.W., de Montaudouin X., Fredensborg B., Jensen K.T., Koprivnikar J., Poulin R. 2008b: Production of marine trematode cercariae: a potentially overlooked path of energy flow in benthic systems. Mar. Ecol. Prog. Ser. 372: 147-155. DOI

Thieltges D.W., Rick J. 2006: Effect of temperature on emergence, survival and infectivity of cercariae of the marine trematode Renicola roscovita (Digenea: Renicolidae). Dis. Aquat. Org. 73: 63-68. PubMed DOI

Thomas F., Schmidt-Rhaesa A., Martin G., Manu C., Durand P., Renaud F. 2002: Do hairworms (Nematomorpha) manipulate the water seeking behaviour of their terrestrial hosts? J. Evol. Biol. 15: 356-361. DOI

Thorpe J.E. 1977: Morphology, physiology, behaviour and ecology of Perca fluviatilis L. and Perca flavescens Mitchill. J. Fish. Res. Board Can. 34: 1504-1514. DOI

Tkach V.V., Littlewood D.T.J., Olson P.D., Kinsella J.M., Swiderski Z.P. 2003: Molecular phylogenetic analysis of the Microphalloidea Ward, 1901 (Trematoda: Digenea). Syst. Parasitol. 56: 1-15. PubMed DOI

Unger P., Suthar J., Baustian F., Neitemeier-Duventester X., Kleinertz S., Palm H.W. 2022: Seasonality of salmonid parasites from flow-through aquaculture in northern Germany: emphasis on pathogenicity of Diplostomum spp. metacercaria. Aquac. Fish Fish. 2: 1-11. DOI

Valtonen E.T., Holmes J.C., Aronen J., Rautalahti I. 2003: Parasite communities as indicators of recovery from pollution: parasites of roach (Rutilus rutilus) and perch (Perca fluviatilis) in Central Finland. Parasitology 126: S43-S52. PubMed DOI

Vinarski M.V., Aksenova O.V. 2023: Ecology of Lymnaeid Snails. In: M.V. Vinarski and A.A. Vázquez (Eds.), The Lymnaeidae: A Handbook on Their Natural History and Parasitological Significance. Springer International Publishing, Cham, pp. 227-263. DOI

Vivas Muñoz J.C., Bierbach D., Knopf K. 2019: Eye fluke (Tylodelphys clavata) infection impairs visual ability and hampers foraging success in European perch. Parasitol. Res. 118: 2531-2541. PubMed DOI

Vivas Muñoz J.C., Staaks G., Knopf K. 2017: The eye fluke Tylodelphys clavata affects prey detection and intraspecific competition of European perch (Perca fluviatilis). Parasitol. Res. 116:2561-2567. PubMed DOI

Vyhlídalová T., Soldánová M. 2020: Species-specific patterns in cercarial emergence of Diplostomum spp. from snails Radix lagotis. Int. J. Parasitol. 50: 1177-1188. PubMed DOI

Wesołowska W., Wesołowski T. 2014: Do Leucochloridium sporocysts manipulate the behaviour of their snail hosts? J. Zool. 292: 151-155. DOI

Whittington I.D., Kearn G.C. 2011: Hatching strategies in monogenean (Platyhelminth) parasites that facilitate host infection. Integr. Comp. Biol. 51: 91-99. PubMed DOI

Young M.W., Kay S.A. 2001: Time zones: a comparative genetics of circadian clocks. Nat. Rev. Genet. 2: 702-715. PubMed DOI

Žák J. 2021: Diel pattern in common carp landings from angling competitions corresponds to their assumed foraging activity. Fish. Res. 243: 106086. DOI

Żbikowska E. 2004: Does behavioural fever occur in snails parasitised with trematode larvae? J. Therm. Biol. 29: 675-679. DOI

Żbikowska E. 2011: One snail - three Digenea species, different strategies in host-parasite interaction. Anim. Biol. 61: 1-19. DOI

Żbikowska E., Cichy A. 2012: Symptoms of behavioural anapyrexia - reverse fever as a defence response of snails to fluke invasion. J. Invertebr. Pathol. 109: 269-273. PubMed DOI

Żbikowska E., Marszewska A. 2018: Thermal preferences of bird schistosome snail hosts increase the risk of swimmer's itch. J. Therm. Biol. 78: 22-26. PubMed DOI

Zhokhov A.E., Pugacheva M.N., Poddubnaya L.G. 2021: Freshwater trematodes Sanguinicola (Digenea: Aporocotylidae) in Europe: distribution, host range, and characteristics of fish and snail Infestation. Inland Water Biol. 14: 301-315. DOI

Zhuykova N.S. 2020: Gastropods of the family Lymnaeidae (Pulmonata) in the littoral zone and Spirogyra blooms from the northwest of Lake Baikal. Limnol. Freshw. Biol. 4: 767-768. DOI

Žižka L., Valvoda P., Burda J. 2020: Lake Medard. In: J. Burda and A. Bajcar (Eds.), Post Exploitation Lakes, Risk Assessment of Final Pits during Flooding. Zpravodaj Hnědé Uhlí, Most, pp. 47-59.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...