Cercariae of a Bird Schistosome Follow a Similar Emergence Pattern under Different Subarctic Conditions: First Experimental Study

. 2022 Jun 03 ; 11 (6) : . [epub] 20220603

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35745501

Grantová podpora
17-20936Y Czech Science Foundation
213610 The Research Council of Norway
RVO: 60077344 Czech Academy of Sciences

The emergence of cercariae from infected mollusks is considered one of the most important adaptive strategies for maintaining the trematode life cycle. Short transmission opportunities of cercariae are often compensated by periodic daily rhythms in the cercarial release. However, there are virtually no data on the cercarial emergence of bird schistosomes from freshwater ecosystems in northern latitudes. We investigated the daily cercarial emergence rhythms of the bird schistosome Trichobilharzia sp. "peregra" from the snail host Radix balthica in a subarctic lake under both natural and laboratory seasonal conditions. We demonstrated a circadian rhythm with the highest emergence during the morning hours, being seasonally independent of the photo- and thermo-period regimes of subarctic summer and autumn, as well as relatively high production of cercariae at low temperatures typical of northern environments. These patterns were consistent under both field and laboratory conditions. While light intensity triggered and prolonged cercarial emergence, the temperature had little effect on cercarial rhythms but regulated seasonal output rates. This suggests an adaptive strategy of bird schistosomes to compensate for the narrow transmission window. Our results fill a gap in our knowledge of the transmission dynamics and success of bird schistosomes under high latitude conditions that may serve as a basis for elucidating future potential risks and implementing control measures related to the spread of cercarial dermatitis due to global warming.

Zobrazit více v PubMed

Colley D.G., Bustinduy A.L., Secor W.E., King C.H. Human schistosomiasis. Lancet. 2014;383:2253–2264. doi: 10.1016/S0140-6736(13)61949-2. PubMed DOI PMC

Jamieson B.G.M. Schistosoma: Biology, Pathology and Control. CRC Press; Boca Raton, FL, USA: 2017. p. 523. DOI

Brant S.V., Loker E.S. Molecular systematics of the avian schistosome genus Trichobilharzia (Trematoda: Schistosomatidae) in North America. J. Parasitol. 2009;95:941–963. doi: 10.1645/GE-1870.1. PubMed DOI PMC

Soldánová M., Selbach C., Kalbe M., Kostadinova A., Sures B. Swimmer’s itch: Etiology, impact, and risk factors in Europe. Trends Parasitol. 2013;29:65–74. doi: 10.1016/j.pt.2012.12.002. PubMed DOI

Horák P., Mikeš L., Lichtenbergová L., Skála V., Soldánová M., Brant S.V. Avian schistosomes and outbreaks of cercarial dermatitis. Clin. Microbiol. Rev. 2015;28:165–190. doi: 10.1128/CMR.00043-14. PubMed DOI PMC

Galaktionov K.V., Dobrovolskij A. The Biology and Evolution of Trematodes: An Essay on the Biology, Morphology, Life Cycles, Transmissions, and Evolution of Digenetic Trematodes. Kluwer Academic Publishers; Dordrecht, The Netherlands: 2003. p. 592.

Pandian T.J. Reproduction and Development in Platyhelminthes. CRC Press; Boca Raton, FL, USA: 2020. p. 320.

Combes C., Fournier A., Moné H., Théron A. Behaviours in trematode cercariae that enhance parasite transmission: Patterns and processes. Parasitology. 1994;109:3–13. doi: 10.1017/S0031182000085048. PubMed DOI

Joosse J., van Elk R. Trichobilharzia ocellata: Physiological characterization of giant growth, glycogen depletion, and absence of reproductive activity in the intermediate snail host, Lymnaea stagnalis. Exp. Parasitol. 1986;62:1–13. doi: 10.1016/0014-4894(86)90002-0. PubMed DOI

Gérard C., Théron A. Age/size- and time-specific effects of Schistosoma mansoni on energy allocation patterns of its snail host Biomphalaria glabrata. Oecologia. 1997;112:447–452. doi: 10.1007/s004420050331. PubMed DOI

Żbikowska E., Marszewska A. Thermal preferences of bird schistosome snail hosts increase the risk of swimmer’s itch. J. Therm. Biol. 2018;78:22–26. doi: 10.1016/j.jtherbio.2018.08.023. PubMed DOI

Skála V., Walker A.J., Horák P. Snail defence responses to parasite infection: The Lymnaea stagnalis-Trichobilharzia szidati model. Dev. Comp. Immunol. 2020;102:103464. doi: 10.1016/j.dci.2019.103464. PubMed DOI

Loker E.S. A comparative study of the life-histories of mammalian schistosomes. Parasitology. 1983;87:343–369. doi: 10.1017/S0031182000052689. PubMed DOI

Haas W. Physiological analyses of host-finding behaviour in trematode cercariae: Adaptations for transmission success. Parasitology. 1994;109:S15–S29. doi: 10.1017/S003118200008505X. PubMed DOI

Saap K.K., Loker E.S. Mechanisms underlying digenean-snail specificity: Role of miracidial attachment and host plasma factors. J. Parasitol. 2000;86:1012–1019. doi: 10.1645/0022-3395(2000)086[1012:MUDSSR]2.0.CO;2. PubMed DOI

Haas W. Parasitic worm: Strategies of host finding, recognition and invasion. Zoology. 2003;106:349–364. doi: 10.1078/0944-2006-00125. PubMed DOI

Combes C., Bartoli P., Théron A. Trematode transmission strategies. In: Lewis E.E., Campbell J.F., Sukhdeo M.V.K., editors. The Behavioural Ecology of Parasites. CABI; Wallingford, UK: 2002. pp. 1–12. DOI

Morley N.J. Cercariae (Platyhelminthes: Trematoda) as neglected components of zooplankton communities in freshwater habitats. Hydrobiologia. 2012;691:7–19. doi: 10.1007/s10750-012-1029-9. DOI

Esch G.W., Curtis L.A., Barger M.A. A perspective on the ecology of trematode communities in snails. Parasitology. 2001;123:S57–S75. doi: 10.1017/S0031182001007697. PubMed DOI

Théron A. Chronobiology of trematode cercarial emergence: From data recovery to epidemiological, ecological and evolutionary implications. Adv. Parasitol. 2015;88:123–164. doi: 10.1016/bs.apar.2015.02.003. PubMed DOI

Mouahid G., Idris M.A., Verneau O., Théron A., Shaban M.M., Moné H. A new chronotype of Schistosoma mansoni: Adaptive significance. Trop. Med. Int. Health. 2012;17:727–732. doi: 10.1111/j.1365-3156.2012.02988.x. PubMed DOI

Mouahid G., Mintsa Nguema R., Al Mashikhi K.M., Al Yafae S.A., Idris M.A., Moné H. Host-parasite life-histories of the diurnal vs. nocturnal chronotypes of Schistosoma mansoni: Adaptive significance. Trop. Med. Int. Health. 2019;24:692–700. doi: 10.1111/tmi.13227. PubMed DOI

Wang S.R., Zhu Y.J., Ge Q.P., Yang M.J., Huang J.L., Huang W.Q., Zhuge H.X., Lu D.B. Effect of photoperiod change on chronobiology of cercarial emergence of Schistosoma japonicum derived from hilly and marshy regions of China. Exp. Parasitol. 2015;159:227–232. doi: 10.1016/j.exppara.2015.10.004. PubMed DOI

Cort W.W. Studies on schistosome dermatitis XI. Status of knowledge after more than 20 years. Am. J. Hyg. 1950;52:251–307. PubMed

Neuhaus W. Biologie und Entwicklung von Trichobilharzia szidati n. sp. (Trematoda Schistosomatidae), einem Erreger von Dermatitis bei Menschen. Z. Parasitenkd. 1952;15:203–266. doi: 10.1007/BF00260453. PubMed DOI

Chernogorenko M.I., Boryak Y.V. The biology of cercariae of Trichobilharzia ocellata La Val., 1854. Gidrobiol. Zhurnal. 1973;9:104–108. (In Russian)

Anderson P.A., Nowosielski J.W., Croll N.A. The emergence of cercariae of Trichobilharzia ocellata and its relationship to the activity of its snail host Lymnaea stagnalis. Can. J. Zool. 1976;54:1481–1487. doi: 10.1139/z76-171. PubMed DOI

Appleton C.C., Lethbridge R.C. Schistosome dermatitis in the Swan Estuary, Western Australia. Med. J. Aust. 1979;1:141–145. doi: 10.5694/j.1326-5377.1979.tb128947.x. PubMed DOI

Sluiters J.E., Brussaard-Wust C.M., Meuleman E.A. The relationship between miracidial dose, production of cercariae, and reproductive activity of the host in the combination Trichobilharzia ocellata and Lymnaea stagnalis. Z. Parasitenkd. 1980;63:13–26. doi: 10.1007/BF00927722. PubMed DOI

Leighton B.J., Zervos S., Webster J.M. Ecological factors in schistosome transmission, and an environmentally benign method for controlling snails in a recreational lake with a record of schistosome dermatitis. Parasitol. Int. 2000;49:9–17. doi: 10.1016/S1383-5769(99)00034-3. PubMed DOI

Soldánová M., Selbach C., Sures B. The early worm catches the bird? Productivity and patterns of Trichobilharzia szidati cercarial emission from Lymnaea stagnalis. PLoS ONE. 2016;11:e0149678. doi: 10.1371/journal.pone.0149678. PubMed DOI PMC

Rudko S.P., Reimink R.L., Froelich K., Gordy M.A., Blankespoor C.L., Hanington P.C. Use of qPCR-based cercariometry to assess swimmer’s itch in recreational lakes. Ecohealth. 2018;15:827–839. doi: 10.1007/s10393-018-1362-1. PubMed DOI PMC

Al-Jubury A., Kania P., Bygum A., Buchmann K. Temperature and light effects on Trichobilharzia szidati cercariae with implications for a risk analysis. Acta. Vet. Scand. 2020;62:54. doi: 10.1186/s13028-020-00553-z. PubMed DOI PMC

Oyarzún-Ruiz P., Thomas P., Santodomingo A., Collado G., Muñoz P., Moreno L. Morphological, behavioral, and molecular characterization of avian schistosomes (Digenea: Schistosomatidae) in the native snail Chilina dombeyana (Chilinidae) from Southern Chile. Pathogens. 2022;11:332. doi: 10.3390/pathogens11030332. PubMed DOI PMC

Rojo-Vazquez F.A., Simon-Martin F. Algunos aspectos de la biología de las cercarias de Trichobilharzia sp. del Rio Canedo (Provinciade Salamanca, Espana) Rev. Iber. Parasitol. 1985;45:141–148. (In Spanish)

Rind S. Three ocellate schistosome cercariae (Trematoda: Schistosomatidae) in Gyraulus corinna, with reference to Cercaria longicauda MacFarlane, 1944 in Lymnaea tomentosa. N. Z. J. Zool. 1991;18:53–62. doi: 10.1080/03014223.1991.10757948. DOI

Shakarbayev U.A., Akramova F.D., Norkobilov B.T., Azimov D.A. Cercariae of trematodes of mollusks (Gastropoda, Pulmonates) in reservoirs of Uzbekistan. Pharma Innov. J. 2020;9:607–611.

Shostak A.W., Esch G.W. Photocycle-dependent emergence by cercariae of Halipegus occidualis from Helisoma anceps, with special reference to cercarial emergence patterns as adaptations for transmission. J. Parasitol. 1990;76:790–795. doi: 10.2307/3282796. DOI

Poulin R. Global warming and temperature-mediated increases in cercarial emergence in trematode parasites. Parasitology. 2006;132:143–151. doi: 10.1017/S0031182005008693. PubMed DOI

Morley N.J., Lewis J.W. Thermodynamics of cercarial development and emergence in trematodes. Parasitology. 2013;140:1211–1224. doi: 10.1017/S0031182012001783. PubMed DOI

Selbach C., Poulin R. Some like it hotter: Trematode transmission under changing temperature conditions. Oecologia. 2020;194:745–755. doi: 10.1007/s00442-020-04800-y. PubMed DOI

Wolmarans C.T., de Kock K.N., Strauss H.D., Bornman M. Daily emergence of Schistosoma mansoni and S. haematobium cercariae from naturally infected snails under field conditions. J. Helminthol. 2002;76:273–277. doi: 10.1079/JOH2002122. PubMed DOI

Lu D.B., Wang T.P., Rudge J.W., Donnelly C.A., Fang G.R., Webster J.P. Evolution in a multi-host parasite: Chronobiological circadian rhythm and population genetics of Schistosoma japonicum cercariae indicates contrasting definitive host reservoirs by habitat. Int. J. Parasitol. 2009;39:1581–1588. doi: 10.1016/j.ijpara.2009.06.003. PubMed DOI

Skírnisson K., Aldhoun J.A., Kolářová L. A review on swimmer’s itch and the occurrence of bird schistosomes in Iceland. J. Helminthol. 2009;83:165–171. doi: 10.1017/S0022149X09336408. PubMed DOI

Nikolaev K.E., Levakin I.A., Galaktionov K.V. A month for the mission: Using a sentinel approach to determine the transmission window of digenean cercariae in the subarctic White Sea. J. Helminthol. 2021;95:e50. doi: 10.1017/S0022149X21000456. PubMed DOI

Galaktionov K.V. Patterns and processes influencing helminth parasites of Arctic coastal communities during climate change. J. Helminthol. 2017;91:387–408. doi: 10.1017/S0022149X17000232. PubMed DOI

Brassard P., Curtis M.A., Rau M.E. Seasonality of Diplostomum spathaceum (Trematoda, Strigeidae) transmission to brook trout (Salvelinus fontinalis) in northern Quebec, Canada. Can. J. Zool. 1982;60:2258–2263. doi: 10.1139/z82-291. DOI

Prokofiev V.V., Galaktionov K.V., Levakin I.A., Nikolaev K.E. Light or temperature? What regulates the emergency of trematode cercariae from the molluscan hosts and how it is done. Parazitologiya. 2020;54:179–197. (In Russian)

Larsen A.H., Bresciani J., Buchmann K. Increasing frequency of cercarial dermatitis at higher latitudes. Acta Parasitol. 2004;49:217–221.

Aldhoun J.A., Faltýnková A., Karvonen A., Horák P. Schistosomes in the North: A unique finding from a prosobranch snail using molecular tools. Parasitol. Int. 2009;58:314–317. doi: 10.1016/j.parint.2009.03.007. PubMed DOI

Soleng A., Mehl R. Geographical distribution of cercarial dermatitis in Norway. J. Helminthol. 2011;85:345–352. doi: 10.1017/S0022149X10000672. PubMed DOI

Gordy M.A., Cobb T.P., Hanington P.C. Swimmer’s itch in Canada: A look at the past and survey of the present to plan for the future. Environ. Health. 2018;17:73. doi: 10.1186/s12940-018-0417-7. PubMed DOI PMC

Gordy M.A., Hanington P.C. A fine-scale phylogenetic assessment of digenean trematodes in central Alberta reveals we have yet to uncover their total diversity. Ecol. Evol. 2019;9:3153–3238. doi: 10.1002/ece3.4939. PubMed DOI PMC

Soldánová M., Georgieva S., Roháčová J., Knudsen R., Kuhn J.A., Henriksen E.H., Siwertsson A., Shaw J.C., Kuris A.M., Amundsen P.-A., et al. Molecular analyses reveal high species diversity of trematodes in a sub-Arctic lake. Int. J. Parasitol. 2017;47:327–345. doi: 10.1016/j.ijpara.2016.12.008. PubMed DOI

Born-Torrijos A., Paterson R.A., van Beest G.S., Schwelm J., Vyhlídalová T., Henriksen E.H., Knudsen R., Kristoffersen R., Amundsen P.-A., Soldánová M. Temperature does not influence functional response of amphipods consuming different trematode prey. Parasitol. Res. 2020;119:4271–4276. doi: 10.1007/s00436-020-06859-1. PubMed DOI PMC

Born-Torrijos A., Paterson R.A., van Beest G.S., Vyhlídalová T., Henriksen E.H., Knudsen R., Kristoffersen R., Amundsen P.-A., Soldánová M. Cercarial behaviour alters the consumer functional response of three-spined sticklebacks. J. Anim. Ecol. 2021;90:978–988. doi: 10.1111/1365-2656.13427. PubMed DOI

Born-Torrijos A., van Beest G.S., Vyhlídalová T., Knudsen R., Kristoffersen R., Amundsen P., Thieltges D.W., Soldánová M. Taxa-specific activity loss and mortality patterns in freshwater trematode cercariae under subarctic conditions. Parasitology. 2022;149:457–468. doi: 10.1017/S0031182021002006. PubMed DOI PMC

Soldánová M., Kundid P., Scholz T., Kristoffersen R., Knudsen R. Somatic dimorphism in cercariae of a bird schistosome. Pathogens. 2022;11:290. doi: 10.3390/pathogens11030290. PubMed DOI PMC

Marcogliese D.J. Implications of climate change for parasitism of animals in the aquatic environment. Can. J. Zool. 2001;79:1331–1352. doi: 10.1139/z01-067. DOI

Kutz S.J., Jenkins E.J., Veitch A.M., Ducrocq J., Polley L., Elkin B., Lair S. The Arctic as a model for anticipating, preventing, and mitigating climate change impacts on host-parasite interactions. Vet. Parasitol. 2009;163:217–228. doi: 10.1016/j.vetpar.2009.06.008. PubMed DOI

Mas-Coma S., Valero A.V., Bargues M.D. Climate change effects on trematodiases, with emphasis on zoonotic fascioliasis and schistosomiasis. Vet. Parasitol. 2009;163:264–280. doi: 10.1016/j.vetpar.2009.03.024. PubMed DOI

Hoberg E.P., Cook J.A., Agosta S.J., Boeger W., Galbreath K.E., Laaksonen S., Kutz S.J., Brooks D.R. Arctic systems in the Quaternary: Ecological collision, faunal mosaics and the consequences of a wobbling climate. J. Helminthol. 2017;91:409–421. doi: 10.1017/S0022149X17000347. PubMed DOI

Lashaki E.K., Teshnizi S.H., Gholami S., Fakhar M., Brant S.V., Dodangeh S. Global prevalence status of avian schistosomes: A systematic review with meta-analysis. Parasite Epidemiol. Control. 2020;9:e00142. doi: 10.1016/j.parepi.2020.e00142. PubMed DOI PMC

Prokofiev V.V., Galaktionov K.V., Levakin I.A. Patterns of parasite transmission in polar seas: Daily rhythms of cercarial emergence from intertidal snails. J. Sea Res. 2016;113:85–98. doi: 10.1016/j.seares.2015.07.007. DOI

Vyhlídalová T., Soldánová M. Species-specific patterns in cercarial emergence of Diplostomum spp. from snails Radix lagotis. Int. J. Parasitol. 2020;50:1177–1188. doi: 10.1016/j.ijpara.2020.07.009. PubMed DOI

Anderson R.M., May R.M. Prevalence of schistosome infections within molluscan populations: Observed patterns and theoretical predictions. Parasitology. 1979;79:63–94. doi: 10.1017/S0031182000051982. PubMed DOI

N’Goran E., Brémond P., Sellin E., Sellin B., Théron A. Intraspecific diversity of Schistosoma haematobium in west Africa: Chronobiology of cercarial emergence. Acta Trop. 1997;66:35–44. doi: 10.1016/S0001-706X(97)00676-1. PubMed DOI

Noda S., Sato K., Katsumata T., Nojima H., Muhoho N.D. The influence of shadowing on emergence of Schistosoma haematobium during day time. Jpn. J. Parasitol. 1986;35:249.e251.

Arp C.D., Jones B.M., Whitman M., Larsen A., Urban F.E. Lake temperature and ice cover regimes in the Alaskan Subarctic and Arctic: Integrated monitoring, remote sensing, and modeling. J. Am. Water Resour. Assoc. 2010;46:777–791. doi: 10.1111/j.1752-1688.2010.00451.x. DOI

Thieltges D.W., Rick J. Effect of temperature on emergence, survival and infectivity of cercariae of the marine trematode Renicola roscovita (Digenea: Renicolidae) Dis. Aquat. Org. 2006;73:63–68. PubMed

Thieltges D.W., Jensen K.T., Poulin R. The role of biotic factors in the transmission of free-living endohelminth stages. Parasitology. 2008;135:407–426. doi: 10.1017/S0031182007000248. PubMed DOI

Johnson P.T.J., Dobson A., Lafferty K.D., Marcogliese D.J., Memmott J., Orlofske S.A., Poulin R., Thieltges D.W. When parasites become prey: Ecological and epidemiological significance of eating parasites. Trends Ecol. Evol. 2010;25:362–371. doi: 10.1016/j.tree.2010.01.005. PubMed DOI

Koprivnikar J. The enemy of my enemy is my friend: Consumption of parasite infectious stages benefits hosts and predators depending on transmission mode. J. Anim. Ecol. 2022;91:4–7. doi: 10.1111/1365-2656.13625. PubMed DOI

Morley N.J., Adam M.E., Lewis J.W. The effects of host size and temperature on the emergence of Echinoparyphium recurvatum cercariae from Lymnaea peregra under natural light conditions. J. Helminthol. 2010;84:317–326. doi: 10.1017/S0022149X09990666. PubMed DOI

Graham L.A. Effect of snail size on the prevalence and intensity of avian schistosome infection: Relating laboratory to field studies. J. Parasitol. 2003;89:458–463. doi: 10.1645/0022-3395(2003)089[0458:EOSSAA]2.0.CO;2. PubMed DOI

Lim H.K., Heyneman D. Intramolluscan inter-trematode antagonism: A review of factors influencing the host-parasite system and its possible role in biological control. Adv. Parasitol. 1972;10:191–268. doi: 10.1016/s0065-308x(08)60175-x. PubMed DOI

McCarthy A.M. Photoperiodic cercarial emergence patterns of the digeneans Echinoparyphium recurvatum and Plagiorchis sp. from a mixed infection in Lymnaea peregra. J. Helminthol. 1999;73:59–62. doi: 10.1017/S0022149X99000074. DOI

Soldánová M., Kuris A.M., Scholz T., Lafferty K.D. The role of spatial and temporal heterogeneity and competition in structuring trematode communities in the great pond snail, Lymnaea stagnalis (L.) J. Parasitol. 2012;98:460–471. doi: 10.1645/GE-2964.1. PubMed DOI

Massoud J. The effect of variation in miracidial exposure dose on laboratory infections of Ornithobilharzia turkestanicum in Lymnaea gedrosiana. J. Helminthol. 1974;4:139–144. doi: 10.1017/S0022149X00022732. PubMed DOI

Seppälä O., Liljeroos K., Karvonen A., Jokela J. Host condition as a constraint for parasite reproduction. Oikos. 2008;117:749–753. doi: 10.1111/j.0030-1299.2008.16396.x. DOI

Berkhout B.W., Lloyd M.M., Poulin R., Studer A. Variation among genotypes in response to increasing temperature in a marine parasite: Evolutionary potential in the face of global warming? Int. J. Parasitol. 2014;44:1019–1027. doi: 10.1016/j.ijpara.2014.07.002. PubMed DOI

Klemetsen A., Knudsen R. Diversity and abundance of water birds in a subarctic lake during three decades. Fauna Norv. 2013;33:21–27. doi: 10.5324/fn.v33i0.1584. DOI

Sayler R.D., Afton A.D. Ecological aspects of common goldeneyes Bucephala clangula wintering on the upper Mississippi River. Ornis Scand. 1981;12:99–108. doi: 10.2307/3676033. DOI

Danell K., Sjöberg K. Seasonal and diel changes in the feeding behaviour of some dabbling duck species on a breeding lake in northern Sweden. Ornis Scand. 1982;13:129–134. doi: 10.2307/3676199. DOI

Amundsen P.-A., Primicerio R., Smalås A., Henriksen E.H., Knudsen R., Kristoffersen R., Klemetsen A. Long-term ecological studies in northern lakes - challenges, experiences, and accomplishments. Limnol. Oceanogr. 2019;64:S11–S21. doi: 10.1002/lno.10951. DOI

Jouet D., Skírnisson K., Kolářová L., Ferté H. Molecular diversity of Trichobilharzia franki in two intermediate hosts (Radix auricularia and Radix peregra): A complex of species. Infect. Genet. Evol. 2010;10:1218–1227. doi: 10.1016/j.meegid.2010.08.001. PubMed DOI

WMO (World Meteorological Organization) 2018 Annual Report: WMO for the the Twenty-First Century. WMO; Geneva, Switzerland: 2018. p. 24.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...