Glacial microbiota are hydrologically connected and temporally variable

. 2020 Aug ; 22 (8) : 3172-3187. [epub] 20200527

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32383292

Grantová podpora
Center for Permafrost (CENPERM), University of Copenhagen, Internal Bursary - International
FNU 10-085274 Danish Research Council - International
663830 H2020 Marie Skłodowska-Curie Actions - International
Higher Education Funding Council for Wales through the Sêr Cymru National Research Network for Low Carbon, Energy, and Environment - International
VKR 023121 Villum Fonden - International

Glaciers are melting rapidly. The concurrent export of microbial assemblages alongside glacial meltwater is expected to impact the ecology of adjoining ecosystems. Currently, the source of exported assemblages is poorly understood, yet this information may be critical for understanding how current and future glacial melt seasons may influence downstream environments. We report on the connectivity and temporal variability of microbiota sampled from supraglacial, subglacial and periglacial habitats and water bodies within a glacial catchment. Sampled assemblages showed evidence of being biologically connected through hydrological flowpaths, leading to a meltwater system that accumulates prokaryotic biota as it travels downstream. Temporal changes in the connected assemblages were similarly observed. Snow assemblages changed markedly throughout the sample period, likely reflecting changes in the surrounding environment. Changes in supraglacial meltwater assemblages reflected the transition of the glacial surface from snow-covered to bare-ice. Marked snowmelt across the surrounding periglacial environment resulted in the flushing of soil assemblages into the riverine system. In contrast, surface ice within the ablation zone and subglacial meltwaters remained relatively stable throughout the sample period. Our results are indicative that changes in snow and ice melt across glacial environments will influence the abundance and diversity of microbial assemblages transported downstream.

Zobrazit více v PubMed

Anesio, A.M., Hodson, A.J., Fritz, A., Psenner, R., and Sattler, B. (2009) High microbial activity on glaciers: importance to the global carbon cycle. Glob Change Biol 15: 955-960.

Bintanja, R., and Andry, O. (2017) Towards a rain-dominated Arctic. Nat Clim Change 7: 263-267.

Björkman, M.P., Zarsky, J.D., Kühnel, R., Hodson, A., Sattler, B., and Psenner, R. (2014) Microbial cell retention in a melting high Arctic snowpack, Svalbard. Arct Antarct Alp Res 46: 471-482.

Bradley, J.A., Singarayer, J.S., and Anesio, A.M. (2014) Microbial community dynamics in the forefield of glaciers. Proc Roy Soc B Biol Sci 281: 20140882.

Bunge, J. (2011) Estimating the number of species with CatchAll. Biocomputing 2011: 121-130.

Cameron, K.A., Hagedorn, B., Dieser, M., Christner, B.C., Choquette, K., Sletten, R., et al. (2015) Diversity and potential sources of microbiota associated with snow on western portions of the Greenland ice sheet. Environ Microbiol 17: 594-609.

Cameron, K.A., Stibal, M., Hawkings, J.R., Mikkelsen, A.B., Telling, J., Kohler, T.J., et al. (2017b) Meltwater export of prokaryotic cells from the Greenland ice sheet. Environ Microbiol 19: 524-534.

Cameron, K.A., Stibal, M., Olsen, N.S., Mikkelsen, A.B., Elberling, B., and Jacobsen, C.S. (2017a) Potential activity of subglacial microbiota transported to anoxic river delta sediments. Microb Ecol 74: 6-9.

Cameron, K.A., Stibal, M., Zarsky, J.D., Gözdereliler, E., Schostag, M., and Jacobsen, C.S. (2016) Supraglacial bacterial community structures vary across the Greenland ice sheet. FEMS Microbiol Ecol 92: fiv 164.

Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., et al. (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7: 335-336.

Cauvy-Fraunié, S., and Dangles, O. (2019) A global synthesis of biodiversity responses to glacier retreat. Nat Ecol Evol 3: 1675-1685.

Cavaco, M.A., St. Louis, V.L., Engel, K., St. Pierre, K.A., Schiff, S.L., Stibal, M., and Neufeld, J.D. (2019) Freshwater microbial community diversity in a rapidly changing high Arctic watershed. FEMS Microbiol Ecol 95: fiz161.

Comte, J., Culley, A.I., Lovejoy, C., and Vincent, W.F. (2018) Microbial connectivity and sorting in a high Arctic watershed. ISME J 12: 2988-3000.

Crump, B.C., Adams, H.E., Hobbie, J.E., and Kling, G.W. (2007) Biogeography of bacterioplankton in lakes and streams of an arctic tundra catchment. Ecology 88: 1365-1378.

Crump, B.C., Amaral-Zettler, L.A., and Kling, G.W. (2012) Microbial diversity in arctic freshwaters is structured by inoculation of microbes from soils. ISME J 6: 1629-1639.

Crump, B.C., Kling, G.W., Bahr, M., and Hobbie, J.E. (2003) Bacterioplankton community shifts in an arctic lake correlate with seasonal changes in organic matter source. Appl Environ Microbiol 69: 2253-2268.

DeSantis, T.Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E.L., Keller, K., et al. (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72: 5069-5072.

Dieser, M., Broemsen, E.L.J.E., Cameron, K.A., King, G.M., Achberger, A., Choquette, K., et al. (2014) Molecular and biogeochemical evidence for methane cycling beneath the western margin of the Greenland ice sheet. ISME J 8: 2305-2316.

Dubnick, A., Kazemi, S., Sharp, M., Wadham, J., Hawkings, J., Beaton, A., and Lanoil, B. (2017) Hydrological controls on glacially exported microbial assemblages. Eur J Vasc Endovasc Surg 122: 1049-1061.

Edgar, R.C. (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26: 2460-2461.

Edwards, A., Rassner, S.M., Anesio, A.M., Worgan, H.J., Irvine-Fynn, T.D.L., Williams, H.W., et al. (2013) Contrasts between the cryoconite and ice-marginal bacterial communities of Svalbard glaciers. Polar Res 32: 19468.

Fierer, N., Liu, Z., Rodríguez-Hernández, M., Knight, R., Henn, M., and Hernandez, M.T. (2008) Short-term temporal variability in airborne bacterial and fungal populations. Appl Environ Microbiol 74: 200-207.

Franzetti, A., Navarra, F., Tagliaferri, I., Gandolfi, I., Bestetti, G., Minora, U., et al. (2017a) Temporal variability of bacterial communities in cryoconite on an alpine glacier. Environ Microbiol Rep 9: 71-78.

Franzetti, A., Navarra, F., Tagliaferri, I., Gandolfi, I., Bestetti, G., Minora, U., et al. (2017b) Potential sources of bacteria colonizing the cryoconite of an alpine glacier. PLoS One 12: e0174786.

Gokul, J.K., Cameron, K.A., Irvine-Fynn, T.D.L., Cook, J.M., Hubbard, A., Stibal, M., et al. (2019) Illuminating the dynamic rare biosphere of the Greenland ice sheet's dark zone. FEMS Microbiol Ecol 95: fiz177.

Gutiérrez, M.H., Galand, P.E., Moffat, C., and Pantoja, S. (2015) Melting glacier impacts community structure of bacteria, archaea and fungi in a Chilean Patagonia fjord. Environ Microbiol 17: 3882-3897.

Harding, T., Jungblut, A.D., Lovejoy, C., and Vincent, W.F. (2011) Microbes in high Arctic snow and implications for the cold biosphere. Appl Environ Microbiol 77: 3234-3243.

Hauptmann, A., Markussen, T., Stibal, M., Olsen, N., Elberling, B., Baelum, J., et al. (2016) Upstream freshwater and terrestrial sources are differentially reflected in the bacterial community structure along a small Arctic river and its estuary. Front Microbiol 7: 1474.

Hawkings, J., Wadham, J., Tranter, M., Lawson, E., Sole, A., Cowton, T., et al. (2015) The effect of warming climate on nutrient and solute export from the Greenland ice sheet. Geochem Perspect Lett 1: 94-104.

Hood, E., Fellman, J., Spencer, R.G.M., Hernes, P.J., Edwards, R., D'Amore, D., and Scott, D. (2009) Glaciers as a source of ancient and labile organic matter to the marine environment. Nature 462: 1044-1047.

Hudson, B., Overeem, I., McGrath, D., Syvitski, J., Mikkelsen, A., and Hasholt, B. (2014) MODIS observed increase in duration and spatial extent of sediment plumes in Greenland fjords. Cryosphere 8: 1161-1176.

Irvine-Fynn, T.D.L., Edwards, A., Newton, S., Langford, H., Rassner, S.M., Telling, J., et al. (2012) Microbial cell budgets of an Arctic glacier surface quantified using flow cytometry. Environ Microbiol 14: 2998-3012.

Knights, D., Kuczynski, J., Charlson, E.S., Zaneveld, J., Mozer, M.C., Collman, R.G., et al. (2011) Bayesian community-wide culture-independent microbial source tracking. Nat Methods 8: 761-763.

Kohler, T.J., Vinšová, P., Falteisek, L., Žárský, J.D., Yde, J.C., Hatton, J.E., et al. (2020) Patterns in microbial assemblages exported from the meltwater of Arctic and sub-Arctic glaciers. Front Microbiol 11: 669.

Kohler, T.J., Žárský, J.D., Yde, J.C., Lamarche-Gagnon, G., Hawkings, J.R., Tedstone, A.J., et al. (2017) Carbon dating reveals a seasonal progression in the source of particulate organic carbon exported from the Greenland ice sheet. Geophys Res Lett 44: 6209-6217.

Musilova, M., Tranter, M., Bennett, S.A., Wadham, J.L., and Anesio, A. (2015) Stable microbial community composition on the Greenland ice sheet. Front Microbiol 6: 193.

Muyzer, G., De Waal, E.C., and Uitterlinden, A.G. (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. App Environ Microbiol 59: 695-700.

Niño-García, J.P., Ruiz-González, C., and del Giorgio, P.A. (2016) Landscape-scale spatial abundance distributions discriminate core from random components of boreal lake bacterioplankton. Ecol Lett 19: 1506-1515.

Nordenskiöld, A. (1872) Account of an expedition to Greenland in the year 1870. Geol Mag 9: 355-368.

Overeem, I., Hudson, B.D., Syvitski, J.P.M., Mikkelsen, A.B., Hasholt, B., van den Broeke, M.R., et al. (2017) Substantial export of suspended sediment to the global oceans from glacial erosion in Greenland. Nat Geosci 10: 859-863.

Overland, J., Dunlea, E., Box, J.E., Corell, R., Forsius, M., Kattsov, V., et al. (2019) The urgency of Arctic change. Polar Sci 21: 6-13.

Paulsen, M.L., Nielsen, S.E.B., Müller, O., Møller, E.F., Stedmon, C.A., Juul-Pedersen, T., et al. (2017) Carbon bioavailability in a high Arctic fjord influenced by glacial meltwater, NE Greenland. Front Mar Sci 4: 176.

Pedersen, A.K., Larsen, L., Pedersen, G.K., Heinesen, M., and Dueholm, K. (2003) Geological section along the south and south-west coast of Disko, central West Greenland. 1: 20000 coloured geological sheet. Technical report: The Geological Survey of Denmark and Greenland.

Pittino, F., Maglio, M., Gandolfi, I., Azzoni, R.S., Diolaiuti, G., Ambrosini, R., and Franzetti, A. (2018) Bacterial communities of cryoconite holes of a temperate alpine glacier show both seasonal trends and year-to-year variability. Ann Glaciol 59: 1-9.

Rime, T., Hartmann, M., and Frey, B. (2016) Potential sources of microbial colonizers in an initial soil ecosystem after retreat of an alpine glacier. ISME J 10: 1625-1641.

Ruiz-González, C., Niño-García, J.P., and del Giorgio, P.A. (2015) Terrestrial origin of bacterial communities in complex boreal freshwater networks. Ecol Lett 18: 1198-1206.

Ryan, J.C., Smith, L.C., van As, D., Cooley, S.W., Cooper, M.G., Pitcher, L.H., and Hubbard, A. (2019) Greenland ice sheet surface melt amplified by snowline migration and bare ice exposure. Sci Adv 5: eaav3738.

Šantl-Temkiv, T., Gosewinkel, U., Starnawski, P., Lever, M., and Finster, K. (2018) Aeolian dispersal of bacteria in Southwest Greenland: their sources, abundance, diversity and physiological states. FEMS Microbiol Ecol 94: fiy031.

Schostag, M., Stibal, M., Jacobsen, C.S., Baelum, J., Taş, N., Elberling, B., et al. (2015) Distinct summer and winter bacterial communities in the active layer of Svalbard permafrost revealed by DNA- and RNA-based analyses. Front Microbiol 6: 399.

Södergren, A.H., McDonald, A.J., and Bodeker, G.E. (2017) An energy balance model exploration of the impacts of interactions between surface albedo, cloud cover and water vapor on polar amplification. Clim Dyn 51: 1639-1658.

Stibal, M., Box, J.E., Cameron, K.A., Langen, P.L., Yallop, M.L., Mottram, R.H., et al. (2017) Algae drive enhanced darkening of bare ice on the Greenland ice sheet. Geophys Res Lett 44: 11463-11471.

Stibal, M., Bradley, J.A., Edwards, A., Hotaling, S., Zawierucha, K., Rosvold, J., et al. (2020) Glacial ecosystems are essential to understanding biodiversity responses to glacier retreat. Nat Ecol Evol 4: 686-687.

Stibal, M., Gözdereliler, E., Cameron, K.A., Box, J.E., Stevens, I.T., Gokul, J.K., et al. (2015b) Microbial abundance in surface ice on the Greenland ice sheet. Front Microbiol 6: 225.

Stibal, M., Schostag, M., Cameron, K.A., Hansen, L.H., Chandler, D.M., Wadham, J.L., and Jacobsen, C.S. (2015a) Different bulk and active bacterial communities in cryoconite from the margin and interior of the Greenland ice sheet. Environ Microbiol Rep 7: 293-300.

Thomas, F.A., Sinha, R.K., and Krishnan, K.P. (2019) Bacterial community structure of a glacio-marine system in the Arctic (Ny-Ålesund, Svalbard). Sci Total Environ 718: 135264.

Vavrus, S., Waliser, D., Schweiger, A., and Francis, J. (2009) Simulations of 20th and 21st century Arctic cloud amount in the global climate models assessed in the IPCC AR4. Clim Dyn 33: 1099-1115.

Wang, Q., Garrity, G.M., Tiedje, J.M., and Cole, J.R. (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73: 5261-5267.

Žárský, J.D., Kohler, T.J., Yde, J.C., Falteisek, L., Lamarche-Gagnon, G., Hawkings, J.R., et al. (2018) Prokaryotic assemblages in suspended and subglacial sediments within a glacierized catchment on Qeqertarsuaq (Disko Island), West Greenland. FEMS Microbiol Ecol 94: fiy100.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...