Methylotrophic Communities Associated with a Greenland Ice Sheet Methane Release Hotspot
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
A32524
Hartmann Fonden
0135-00229B
Danish Independent Research Fund
LL2004 'MARCH4G'
Czech Ministry of Education, Youth and Sports
PubMed
37843656
PubMed Central
PMC10640400
DOI
10.1007/s00248-023-02302-x
PII: 10.1007/s00248-023-02302-x
Knihovny.cz E-zdroje
- Klíčová slova
- Greenland Ice Sheet, Methanotrophs, Methylotrophs, Subglacial environment,
- MeSH
- ledový příkrov * mikrobiologie MeSH
- methan * analýza MeSH
- podnebí MeSH
- roční období MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Grónsko MeSH
- Názvy látek
- methan * MeSH
Subglacial environments provide conditions suitable for the microbial production of methane, an important greenhouse gas, which can be released from beneath the ice as a result of glacial melting. High gaseous methane emissions have recently been discovered at Russell Glacier, an outlet of the southwestern margin of the Greenland Ice Sheet, acting not only as a potential climate amplifier but also as a substrate for methane consuming microorganisms. Here, we describe the composition of the microbial assemblage exported in meltwater from the methane release hotspot at Russell Glacier and its changes over the melt season and as it travels downstream. We found that a substantial part (relative abundance 27.2% across the whole dataset) of the exported assemblage was made up of methylotrophs and that the relative abundance of methylotrophs increased as the melt season progressed, likely due to the seasonal development of the glacial drainage system. The methylotrophs were dominated by representatives of type I methanotrophs from the Gammaproteobacteria; however, their relative abundance decreased with increasing distance from the ice margin at the expense of type II methanotrophs and/or methylotrophs from the Alphaproteobacteria and Betaproteobacteria. Our results show that subglacial methane release hotspot sites can be colonized by microorganisms that can potentially reduce methane emissions.
Department of Ecology Faculty of Science Charles University Prague Czechia
Department of Ecoscience Arctic Environment Aarhus University Roskilde Denmark
Department of Geoscience and Natural Resource Management University of Copenhagen Copenhagen Denmark
Zobrazit více v PubMed
Wadham JL, Hawkings JR, Tarasov L, et al. Ice sheets matter for the global carbon cycle. Nat Commun. 2019;10:3567. doi: 10.1038/s41467-019-11394-4. PubMed DOI PMC
Vinšová P, Kohler TJ, Simpson MJ, et al. The biogeochemical legacy of arctic subglacial sediments exposed by glacier retreat. Global Biogeochem Cycles. 2022;36:e2021GB007126. doi: 10.1029/2021GB007126. DOI
Wadham JL, Bottrell S, Tranter M, Raiswell R. Stable isotope evidence for microbial sulphate reduction at the bed of a polythermal high Arctic glacier. Earth Planet Sci Lett. 2004;219:341–355. doi: 10.1016/S0012-821X(03)00683-6. DOI
Tranter M, Skidmore M, Wadham J. Hydrological controls on microbial communities in subglacial environments. Hydrol Process. 2005;19:995–998. doi: 10.1002/hyp.5854. DOI
Boyd ES, Skidmore M, Mitchell AC, et al. Methanogenesis in subglacial sediments. Environ Microbiol Rep. 2010;2:685–692. doi: 10.1111/j.1758-2229.2010.00162.x. PubMed DOI
Dieser M, Broemsen ELJE, Cameron KA, et al. Molecular and biogeochemical evidence for methane cycling beneath the western margin of the Greenland ice sheet. ISME J. 2014;8:2305–2316. doi: 10.1038/ismej.2014.59. PubMed DOI PMC
Michaud AB, Dore JE, Achberger AM, et al. Microbial oxidation as a methane sink beneath the West Antarctic Ice Sheet. Nat Geosci. 2017;10:582–586. doi: 10.1038/NGEO2992. DOI
Lamarche-Gagnon G, Wadham JL, Sherwood Lollar B, et al. Greenland melt drives continuous export of methane from the ice-sheet bed. Nature. 2019;565:73–77. doi: 10.1038/s41586-018-0800-0. PubMed DOI
Stibal M, Wadham JL, Lis GP, et al. Methanogenic potential of Arctic and Antarctic subglacial environments with contrasting organic carbon sources. Glob Chang Biol. 2012;18:3332–3345. doi: 10.1111/j.1365-2486.2012.02763.x. DOI
Wadham JL, Tranter M, Tulaczyk S, Sharp M (2008) Subglacial methanogenesis: a potential climatic amplifier? Global Biogeochem Cycles 22:2. 10.1029/2007GB002951
Wadham JL, Arndt S, Tulaczyk S, et al. Potential methane reservoirs beneath Antarctica. Nature. 2012;488:633–637. doi: 10.1038/nature11374. PubMed DOI
Christiansen JR, Jørgensen CJ. First observation of direct methane emission to the atmosphere from the subglacial domain of the Greenland Ice Sheet. Sci Rep. 2018;8:1–6. doi: 10.1038/s41598-018-35054-7. PubMed DOI PMC
Burns R, Wynn PM, Barker P, et al. Direct isotopic evidence of biogenic methane production and efflux from beneath a temperate glacier. Sci Rep. 2018;8:1–8. doi: 10.1038/s41598-018-35253-2. PubMed DOI PMC
Christiansen JR, Röckmann T, Popa ME, et al. Carbon emissions from the edge of the Greenland ice sheet reveal subglacial processes of methane and carbon dioxide turnover. J Geophys Res Biogeosciences. 2021;126:e2021JG006308. doi: 10.1029/2021JG006308. DOI
Pain AJ, Martin JB, Martin EE, et al. Heterogeneous CO2and CH4content of glacial meltwater from the Greenland Ice Sheet and implications for subglacial carbon processes. Cryosphere. 2021;15:1627–1644. doi: 10.5194/tc-15-1627-2021. DOI
Dedysh SN, Knief C (2018) Diversity and phylogeny of described aerobic methanotrophs. In: Kalyuzhnaya M, Xing XH. (eds) Methane biocatalysis: paving the way to sustainability. Springer, Cham. 10.1007/978-3-319-74866-5_2
Chistoserdova L, Kalyuzhnaya MG, Lidstrom ME. The expanding world of methylotrophic metabolism. Annu Rev Microbiol. 2009;63:477–499. doi: 10.1146/annurev.micro.091208.073600. PubMed DOI PMC
Beck DAC, Kalyuzhnaya MG, Malfatti S, et al. (2013) A metagenomic insight into freshwater methane-utilizing communities and evidence for cooperation between the Methylococcaceae and the Methylophilaceae. PeerJ 1:e23. 10.7717/peerj.23 PubMed PMC
van Grinsven S, Sinninghe Damsté JS, Harrison J, et al. Nitrate promotes the transfer of methane-derived carbon from the methanotroph Methylobacter sp. to the methylotroph Methylotenera sp. in eutrophic lake water. Limnol Oceanogr. 2021;66:878–891. doi: 10.1002/lno.11648. DOI
Cameron KA, Stibal M, Hawkings JR, et al. Meltwater export of prokaryotic cells from the Greenland ice sheet. Environ Microbiol. 2017;19:524–534. doi: 10.1111/1462-2920.13483. PubMed DOI
Vrbická K, Kohler TJ, Falteisek L, et al. Catchment characteristics and seasonality control the composition of microbial assemblages exported from three outlet glaciers of the Greenland Ice Sheet. Front Microbiol. 2022;13:4757. doi: 10.3389/fmicb.2022.1035197. PubMed DOI PMC
Lindbäck K, Pettersson R, Hubbard AL, et al. Subglacial water drainage, storage, and piracy beneath the Greenland ice sheet. Geophys Res Lett. 2015;42:7606–7614. doi: 10.1002/2015GL065393. DOI
Carrivick JL, Yde JC, Knudsen NT, Kronborg C (2018) Ice-dammed lake and ice-margin evolution during the Holocene in the Kangerlussuaq area of west Greenland. Arctic, Antarct Alp Res 50:1. 10.1080/15230430.2017.1420854
Hawkings JR, Linhoff BS, Wadham JL, et al. Large subglacial source of mercury from the southwestern margin of the Greenland Ice Sheet. Nat Geosci. 2021;14:496–502. doi: 10.1038/s41561-021-00753-w. DOI
Mankoff KD, Noël B, Fettweis X, et al. Greenland liquid water discharge from 1958 through 2019. Earth Syst Sci Data. 2020;12:2811–2841. doi: 10.5194/essd-12-2811-2020. DOI
Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–1414. doi: 10.1111/1462-2920.13023. PubMed DOI
Apprill A, Mcnally S, Parsons R, Weber L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat Microb Ecol. 2015;75:129–137. doi: 10.3354/ame01753. DOI
Větrovský T, Baldrian P, Morais D. SEED 2: a user-friendly platform for amplicon high-throughput sequencing data analyses. Bioinformatics. 2018;34:2292–2294. doi: 10.1093/bioinformatics/bty071. PubMed DOI PMC
Callahan BJ, McMurdie PJ, Rosen MJ, et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–583. doi: 10.1038/nmeth.3869. PubMed DOI PMC
Aronesty E. Comparison of sequencing utility programs. Open Bioinforma J. 2013;7:1–8. doi: 10.2174/1875036201307010001. DOI
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet Journal. 2011;17:10. doi: 10.14806/ej.17.1.200. DOI
Quast C, Pruesse E, Yilmaz P, et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–D596. doi: 10.1093/nar/gks1219. PubMed DOI PMC
Salter SJ, Cox MJ, Turek EM, et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 2014;12:87. doi: 10.1186/s12915-014-0087-z. PubMed DOI PMC
Glassing A, Dowd SE, Galandiuk S, et al. Inherent bacterial DNA contamination of extraction and sequencing reagents may affect interpretation of microbiota in low bacterial biomass samples. Gut Pathog. 2016;8:24. doi: 10.1186/s13099-016-0103-7. PubMed DOI PMC
Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. 2019;20:1160–1166. doi: 10.1093/bib/bbx108. PubMed DOI PMC
Hall TA. BIOEDIT: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/ NT. Nucleic Acids Symp Ser. 1999;41:95–98.
Edler D, Klein J, Antonelli A, Silvestro D. raxmlGUI 2.0: A graphical interface and toolkit for phylogenetic analyses using RAxML. Methods Ecol Evol. 2021;12:373–377. doi: 10.1111/2041-210X.13512. DOI
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–1313. doi: 10.1093/bioinformatics/btu033. PubMed DOI PMC
Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol. 2003;52:696–704. doi: 10.1080/10635150390235520. PubMed DOI
Page RDM. Tree View: an application to display phylogenetic trees on personal computers. Bioinformatics. 1996;12:357–358. doi: 10.1093/bioinformatics/12.4.357. PubMed DOI
Liu C, Cui Y, Li X, Yao M (2021) Microeco: an R package for data mining in microbial community ecology. FEMS Microbiol Ecol 97:2. 10.1093/femsec/fiaa255 PubMed
Kahle D, Wickham H (2013) ggmap: spatial visualization with ggplot2. R Journal 5:144–161. 10.32614/rj-2013-014
De CM, Legendre P. Associations between species and groups of sites: indices and statistical inference. Ecology. 2009;90:3566–3574. doi: 10.1890/08-1823.1. PubMed DOI
Schloss PD, Westcott SL, Ryabin T, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75:7537–7541. doi: 10.1128/AEM.01541-09. PubMed DOI PMC
Cameron KA, Müller O, Stibal M, et al. Glacial microbiota are hydrologically connected and temporally variable. Environ Microbiol. 2020;22:3172–3187. doi: 10.1111/1462-2920.15059. PubMed DOI
Dubnick A, Kazemi S, Sharp M, et al. Hydrological controls on glacially exported microbial assemblages. J Geophys Res Biogeosciences. 2017;122:1049–1061. doi: 10.1002/2016JG003685. DOI
Kohler TJ, Vinšová P, Falteisek L, et al. Patterns in microbial assemblages exported from the meltwater of arctic and sub-arctic glaciers. Front Microbiol. 2020;11:669. doi: 10.3389/fmicb.2020.00669. PubMed DOI PMC
Yde JC, Finster KW, Raiswell R, et al. Basal ice microbiology at the margin of the Greenland ice sheet. Ann Glaciol. 2010;51:71–79. doi: 10.3189/172756411795931976. DOI
Žárský JD, Kohler TJ, Yde JC, et al. (2018) Prokaryotic assemblages in suspended and subglacial sediments within a glacierized catchment on Qeqertarsuaq (Disko Island), west Greenland. FEMS Microbiol Ecol 94:7. 10.1093/femsec/fiy100 PubMed
Christiansen JR, Romero AJB, Jørgensen NOG, et al. Methane fluxes and the functional groups of methanotrophs and methanogens in a young Arctic landscape on Disko Island, West Greenland. Biogeochemistry. 2015;122:15–33. doi: 10.1007/s10533-014-0026-7. DOI
Singleton CM, McCalley CK, Woodcroft BJ, et al. Methanotrophy across a natural permafrost thaw environment. ISME J. 2018;12:2544–2558. doi: 10.1038/s41396-018-0065-5. PubMed DOI PMC
Cadieux SB, Schütte UME, Hemmerich C, et al. Exploring methane cycling in an arctic lake in Kangerlussuaq Greenland using stable isotopes and 16S rRNA gene sequencing. Front Environ Sci. 2022;10:1817. doi: 10.3389/fenvs.2022.884133. DOI
Tavormina PL, Kellermann MY, Antony CP, et al. Starvation and recovery in the deep-sea methanotroph Methyloprofundus sedimenti. Mol Microbiol. 2017;103:242–252. doi: 10.1111/mmi.13553. PubMed DOI
Krause SMB, Johnson T, Karunaratne YS, et al. Lanthanide-dependent cross-feeding of methane-derived carbon is linked by microbial community interactions. Proc Natl Acad Sci U S A. 2017;114:358–363. doi: 10.1073/pnas.1619871114. PubMed DOI PMC
Oswald K, Graf JS, Littmann S, et al. Crenothrix are major methane consumers in stratified lakes. ISME J. 2017;11:2124–2140. doi: 10.1038/ismej.2017.77. PubMed DOI PMC
Oshkin IY, Beck DAC, Lamb AE, et al. Methane-fed microbial microcosms show differential community dynamics and pinpoint taxa involved in communal response. ISME J. 2015;9:1119–1129. doi: 10.1038/ismej.2014.203. PubMed DOI PMC
He R, Wang J, Pohlman JW, et al. Metabolic flexibility of aerobic methanotrophs under anoxic conditions in Arctic lake sediments. ISME J. 2022;16:78–90. doi: 10.1038/s41396-021-01049-y. PubMed DOI PMC
Cameron KA, Stibal M, Olsen NS, et al. Potential activity of subglacial microbiota transported to anoxic river delta sediments. Microb Ecol. 2017;74:6–9. doi: 10.1007/s00248-016-0926-2. PubMed DOI PMC