Storage and export of microbial biomass across the western Greenland Ice Sheet
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
34172727
PubMed Central
PMC8233322
DOI
10.1038/s41467-021-24040-9
PII: 10.1038/s41467-021-24040-9
Knihovny.cz E-resources
- MeSH
- Biomass * MeSH
- Hydrology MeSH
- Carbon Cycle MeSH
- Ice Cover chemistry microbiology MeSH
- Weather MeSH
- Colony Count, Microbial MeSH
- Carbon analysis MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Greenland MeSH
- Names of Substances
- Carbon MeSH
The Greenland Ice Sheet harbours a wealth of microbial life, yet the total biomass stored or exported from its surface to downstream environments is unconstrained. Here, we quantify microbial abundance and cellular biomass flux within the near-surface weathering crust photic zone of the western sector of the ice sheet. Using groundwater techniques, we demonstrate that interstitial water flow is slow (~10-2 m d-1), while flow cytometry enumeration reveals this pathway delivers 5 × 108 cells m-2 d-1 to supraglacial streams, equivalent to a carbon flux up to 250 g km-2 d-1. We infer that cellular carbon accumulation in the weathering crust exceeds fluvial export, promoting biomass sequestration, enhanced carbon cycling, and biological albedo reduction. We estimate that up to 37 kg km-2 of cellular carbon is flushed from the weathering crust environment of the western Greenland Ice Sheet each summer, providing an appreciable flux to support heterotrophs and methanogenesis at the bed.
Bristol Glaciology Centre School of Geographical Sciences University of Bristol Bristol UK
Department of Ecology Faculty of Science Charles University Prague Czechia
Department of Environmental Science Aarhus University Frederiksborgvej Roskilde Denmark
Department of Geography and Earth Sciences Aberystwyth University Aberystwyth UK
Department of Geography University of Sheffield Sheffield UK
Department of Glaciology and Climate Geological Survey of Denmark and Greenland Copenhagen Denmark
Geography Research Unit University of Oulu Oulu Finland
Institute at Brown for Environment and Society Brown University Providence RI USA
Institute of Biological Environmental and Rural Sciences Aberystwyth University Aberystwyth UK
School of Geographical and Earth Sciences University of Glasgow Glasgow UK
School of Geography Politics and Sociology Newcastle University Newcastle upon Tyne UK
See more in PubMed
Stibal M, Šabacká M, Žárský J. Biological processes on glacier and ice sheet surfaces. Nat. Geosci. 2012;5:771–774. doi: 10.1038/ngeo1611. DOI
Hood E, Battin TJ, Fellman J, O’Neel S, Spencer RGM. Storage and release of organic carbon from glaciers and ice sheets. Nat. Geosci. 2015;8:91–96. doi: 10.1038/ngeo2331. DOI
Musilova M, et al. Microbially driven export of labile organic carbon from the Greenland ice sheet. Nat. Geosci. 2017;10:360–365. doi: 10.1038/ngeo2920. DOI
Lamarche-Gagnon G, et al. Greenland melt drives continuous export of methane from the ice-sheet bed. Nature. 2019;565:73–77. doi: 10.1038/s41586-018-0800-0. PubMed DOI
Hodson A, et al. The cryoconite ecosystem on the Greenland ice sheet. Ann. Glaciol. 2010;51:123–129. doi: 10.3189/172756411795931985. DOI
Cook JM, et al. An improved estimate of microbially mediated carbon fluxes from the Greenland ice sheet. J. Glaciol. 2012;58:1098–1108. doi: 10.3189/2012JoG12J001. DOI
Uetakea J, Naganumac T, Hebsgaardd MB, Kandab H, Kohshima S. Communities of algae and cyanobacteria on glaciers in west Greenland. Polar Sci. 2010;4:71–80. doi: 10.1016/j.polar.2010.03.002. DOI
Cameron KA, et al. Supraglacial bacterial community structures vary across the Greenland ice sheet. FEMS Microbiol. Ecol. 2016;92:fiv164. doi: 10.1093/femsec/fiv164. PubMed DOI
Yallop ML, et al. Photophysiology and albedo-changing potential of the ice algal community on the surface of the Greenland ice sheet. ISME J. 2012;6:2302–2313. doi: 10.1038/ismej.2012.107. PubMed DOI PMC
Stibal M, et al. Microbial abundance in surface ice on the Greenland Ice Sheet. Front. Microbiol. 2015;6:00225. doi: 10.3389/fmicb.2015.00225. PubMed DOI PMC
Ryan JC, et al. Dark zone of the Greenland Ice Sheet controlled by distributed biologically-active impurities. Nat. Commun. 2018;9:1065. doi: 10.1038/s41467-018-03353-2. PubMed DOI PMC
Stibal M, et al. Algae drive enhanced darkening of bare ice on the Greenland Ice Sheet. Geophys. Res. Lett. 2017;44:11463–11471. doi: 10.1002/2017GL075958. DOI
Cook JM, et al. Glacier algae accelerate melt rates on the south-western Greenland Ice Sheet. Cryosphere. 2020;14:309–330. doi: 10.5194/tc-14-309-2020. DOI
Williamson CJ, et al. Algal photophysiology drives darkening and melt of the Greenland Ice Sheet. Proc. Natl Acad. Sci. USA. 2020;117:5694–5705. doi: 10.1073/pnas.1918412117. PubMed DOI PMC
Cameron KA, Hodson AJ, Osborn AM. Carbon and nitrogen biogeochemical cycling potentials of supraglacial cryoconite communities. Polar Biol. 2012;35:1375–1393. doi: 10.1007/s00300-012-1178-3. DOI
Cook J, et al. An improved estimate of microbially mediated carbon fluxes from the Greenland ice sheet. J. Glaciol. 2012;58:1098–1108. doi: 10.3189/2012JoG12J001. DOI
Telling J, et al. Microbial nitrogen cycling on the Greenland Ice Sheet. Biogeosciences. 2012;9:2431–2442. doi: 10.5194/bg-9-2431-2012. DOI
Hauptmann AL, et al. Contamination of the Arctic reflected in microbial metagenomes from the Greenland ice sheet. Environ. Res. Lett. 2017;12:074019. doi: 10.1088/1748-9326/aa7445. DOI
Stibal M, et al. Microbial degradation of 2,4-dichlorophenoxyacetic acid on the Greenland Ice sheet. Appl. Environ. Microbiol. 2012;78:5070–5076. doi: 10.1128/AEM.00400-12. PubMed DOI PMC
Ryan JC, et al. Greenland Ice Sheet surface melt amplified by snowline migration and bare ice exposure. Sci. Adv. 2019;5:eaav3738. doi: 10.1126/sciadv.aav3738. PubMed DOI PMC
Smith LC, et al. Efficient meltwater drainage through supraglacial streams and rivers on the southwest Greenland ice sheet. Proc. Natl Acad. Sci. USA. 2015;112:1001–1006. doi: 10.1073/pnas.1413024112. PubMed DOI PMC
Yang K, Smith LC. Internally drained catchments dominate supraglacial hydrology of the southwest Greenland Ice Sheet. J. Geophys. Res. Earth Surf. 2016;121:1891–1910. doi: 10.1002/2016JF003927. DOI
Andrews MG, Jacobson AD, Osburn MR, Flynn TM. Dissolved carbon dynamics in meltwaters from the Russell Glacier, Greenland Ice Sheet. J. Geophys. Res. Biogeosci. 2018;123:2922–2940. doi: 10.1029/2018JG004458. DOI
Paulsen ML, et al. Carbon bioavailability in a high Arctic fjord influenced by glacial meltwater, NE Greenland. Front. Mar. Sci. 2017;4:00176. doi: 10.3389/fmars.2017.00176. DOI
Kohler TJ, et al. Patterns in Microbial assemblages exported from the meltwater of arctic and sub-arctic glaciers. Front. Microbiol. 2020;11:00669. doi: 10.3389/fmicb.2020.00669. PubMed DOI PMC
Ryan JC, et al. Derivation of high spatial resolution albedo from UAV digital imagery: application over the Greenland Ice Sheet. Front. Earth Sci. 2017;5:00040. doi: 10.3389/feart.2017.00040. DOI
Yang K, et al. Fluvial morphometry of supraglacial river networks on the southwest Greenland Ice Sheet. GIScience Remote Sens. 2016;53:459–482. doi: 10.1080/15481603.2016.1162345. DOI
Yang K, et al. A new surface meltwater routing model for use on the Greenland Ice Sheet surface. Cryosphere. 2018;12:3791–3811. doi: 10.5194/tc-12-3791-2018. DOI
Steger CR, Reijmer CH, van den Broeke MR. The modelled liquid water balance of the Greenland Ice Sheet. Cryosphere. 2017;11:2507–2526. doi: 10.5194/tc-11-2507-2017. DOI
Smith LC, et al. Direct measurements of meltwater runoff on the Greenland ice sheet surface. Proc. Natl Acad. Sci. USA. 2018;115:E6097–E6097. doi: 10.1073/pnas.1809300115. PubMed DOI PMC
Cooper MG, et al. Meltwater storage in low-density near-surface bare ice in the Greenland ice sheet ablation zone. Cryosphere. 2018;12:955–970. doi: 10.5194/tc-12-955-2018. DOI
Smith LC, et al. Direct measurements of meltwater runoff on the Greenland ice sheet surface. Proc. Natl Acad. Sci. USA. 2017;114:E10622–E10631. doi: 10.1073/pnas.1707743114. PubMed DOI PMC
Irvine-Fynn TDL, Edwards A. A frozen asset: the potential of flow cytometry in constraining the glacial biome. Cytom. Part A. 2014;85:3–7. doi: 10.1002/cyto.a.22411. PubMed DOI
Rassner SME, et al. Can the bacterial community of a High Arctic glacier surface escape viral control? Front. Microbiol. 2016;7:00956. doi: 10.3389/fmicb.2016.00956. PubMed DOI PMC
Christner BC, et al. Microbial processes in the weathering crust aquifer of a temperate glacier. Cryosphere. 2018;12:3653–3669. doi: 10.5194/tc-12-3653-2018. DOI
Stevens IT, et al. Near-surface hydraulic conductivity of northern hemisphere glaciers. Hydrological Process. 2018;32:850–865. doi: 10.1002/hyp.11439. DOI
WQA. Common contaminants: bacterial and virus issues, available at: https://www.wqa.org/Learn-About-Water/Common-Contaminants (2018).
Tedstone AJ, et al. Dark ice dynamics of the south-west Greenland Ice Sheet. Cryosphere. 2017;11:2491–2506. doi: 10.5194/tc-11-2491-2017. DOI
Sptiz, K., Moreno, J. A practical guide to groundwater and solute transport modeling. (John Wiley & Sons, 1996).
Miller OL, et al. Hydraulic conductivity of a firn aquifer in southeast Greenland. Front. Earth Sci. 2017;5:00038. doi: 10.3389/feart.2017.00038. DOI
Theakstone WH, Knudsen NT. Dye tracing tests of water movement at the glacier Austre Okstindbreen, Norwary. Nor. Geografisk Tidsskr. 1981;35:21–28. doi: 10.1080/00291958108621970. DOI
Karlstrom L, Zok A, Manga M. Near-surface permeability in a supraglacial drainage basin on the Llewellyn Glacier, Juneau Icefield, British Columbia. Cryosphere. 2014;8:537–546. doi: 10.5194/tc-8-537-2014. DOI
Rippin DM, Pomfret A, King N. High resolution mapping of supra-glacial drainage pathways reveals link between micro-channel drainage density, surface roughness and surface reflectance. Earth Surf. Process. Landf. 2015;40:1279–1290. doi: 10.1002/esp.3719. DOI
Cook JM, Hodson AJ, Irvine-Fynn TDL. Supraglacial weathering crust dynamics inferred from cryoconite hole hydrology. Hydrol. Process. 2016;30:433–446. doi: 10.1002/hyp.10602. DOI
McGrath D, Colgan W, Steffen K, Lauffenburger P, Balog J. Assessing the summer water budget of a moulin basin in the Sermeq Avannarleq ablation region, Greenland ice sheet. J. Glaciol. 2011;57:954–964. doi: 10.3189/002214311798043735. DOI
Gleason CJ, et al. Characterizing supraglacial meltwater channel hydraulics on the Greenland Ice Sheet from in situ observations. Earth Surf. Process. Landf. 2016;41:2111–2122. doi: 10.1002/esp.3977. DOI
Eicken H, Krouse HR, Kadko D, Perovich DK. Tracer studies of pathways and rates of meltwater transport through Arctic summer sea ice. J. Geophys. Res. Oceans. 2002;107:SHE22-1. doi: 10.1029/2000JC000583. DOI
Müller F, Keeler CM. Errors in short-term ablation measurements on melting ice surfaces. J. Glaciol. 1969;8:91–105. doi: 10.1017/S0022143000020785. DOI
Irvine-Fynn TDL, et al. Microbial cell budgets of an Arctic glacier surface quantified using flow cytometry. Environ. Microbiol. 2012;14:2998–3012. doi: 10.1111/j.1462-2920.2012.02876.x. PubMed DOI
Anesio AM, et al. Carbon fluxes through bacterial communities on glacier surfaces. Ann. Glaciol. 2010;51:32–40. doi: 10.3189/172756411795932092. DOI
Nicholes MJ, et al. Bacterial Dynamics in Supraglacial Habitats of the Greenland Ice Sheet. Front. Microbiol. 2019;10:01366. doi: 10.3389/fmicb.2019.01366. PubMed DOI PMC
Norland, S. in Handbook of Methods in Aquatic Microbial Ecology (eds. Kemp, P. F., Sherr, B. F. & Cole, J. J.), 303–307 (L Erlbaum Associates, 1993).
Mader HM, Pettitt ME, Wadham JL, Wolff EW, Parkes RJ. Subsurface ice as a microbial habitat. Geology. 2006;34:169–172. doi: 10.1130/G22096.1. DOI
Raymond JA, Christner BC, Schuster SC. A bacterial ice-binding protein from the Vostok ice core. Extremophiles. 2008;12:713–717. doi: 10.1007/s00792-008-0178-2. PubMed DOI
Langford H, Hodson A, Banwart S, Bøggild C. The microstructure and biogeochemistry of Arctic cryoconite granules. Ann. Glaciol. 2010;51:87–94. doi: 10.3189/172756411795932083. DOI
Holland AT, et al. Dissolved organic nutrients dominate melting surface ice of the Dark Zone (Greenland Ice Sheet) Biogeosciences. 2019;16:3283–3296. doi: 10.5194/bg-16-3283-2019. DOI
Adrien, N. G. Computational hydraulics and hydrology: an illustrated dictionary. (CRC Press, 2004).
Williamson CJ, et al. Ice algal bloom development on the surface of the Greenland Ice Sheet. FEMS Microbiol. Ecol. 2018;94:fiy025. doi: 10.1093/femsec/fiy025. PubMed DOI PMC
del Giorgio, P. A. Bacterial growth efficiency in natural aquatic systems. Annu. Rev. Ecol. Systemat.29, 503–541 (1998).
Bradford SA, Wang YS, Kim H, Torkzaban S, Simunek J. Modeling microorganism transport and survival in the subsurface. J. Environ. Qual. 2014;43:421–440. doi: 10.2134/jeq2013.05.0212. PubMed DOI
Bøggild CE, Brandt RE, Brown KJ, Warren SG. The ablation zone in northeast Greenland: ice types, albedos, and impurities. J. Glaciol. 2010;56:101–113. doi: 10.3189/002214310791190776. DOI
Munneke PK, et al. The K-transect on the western Greenland Ice Sheet: Surface energy balance (2003-2016) Arct. Antarct. Alp. Res. 2018;50:e1420952. doi: 10.1080/15230430.2017.1420952. DOI
Dieser M, et al. Molecular and biogeochemical evidence for methane cycling beneath the western margin of the Greenland Ice Sheet. ISME J. 2014;8:2305–2316. doi: 10.1038/ismej.2014.59. PubMed DOI PMC
Hofer S, Tedstone AJ, Fettweis X, Bamber JL. Decreasing cloud cover drives the recent mass loss on the Greenland Ice Sheet. Sci. Adv. 2017;3:8. doi: 10.1126/sciadv.1700584. PubMed DOI PMC
Oltmanns M, Straneo F, Tedesco M. Increased Greenland melt triggered by large-scale, year-round cyclonic moisture intrusions. Cryosphere. 2019;13:815–825. doi: 10.5194/tc-13-815-2019. DOI
Shimada R, Takeuchi N, Aoki T. Inter-annual and geographical variations in the extent of bare ice and dark ice on the Greenland ice sheet derived from MODIS satellite images. Front. Earth Sci. 2016;4:00043. doi: 10.3389/feart.2016.00043. DOI
Scott D, Hood E, Nassry M. In-stream uptake and retention of C, N and P in a supraglacial stream. Ann. Glaciol. 2010;51:80–86. doi: 10.3189/172756411795932065. DOI
Foreman CM, et al. Microbial growth under humic-free conditions in a supraglacial stream system on the Cotton Glacier, Antarctica. Environ. Res. Lett. 2013;8:035022. doi: 10.1088/1748-9326/8/3/035022. DOI
Koziol KA, Moggridge HL, Cook JM, Hodson AJ. Organic carbon fluxes of a glacier surface: a case study of Foxfonna, a small Arctic glacier. Earth Surf. Process. Landf. 2019;44:405–416. doi: 10.1002/esp.4501. DOI
McCrimmon DO, Bizimis M, Holland A, Ziolkowski LA. Supraglacial microbes use young carbon and not aged cryoconite carbon. Org. Geochem. 2018;118:63–72. doi: 10.1016/j.orggeochem.2017.12.002. DOI
Booth AD, et al. Thin-layer effects in glaciological seismic amplitude-versus-angle (AVA) analysis: implications for characterising a subglacial till unit, Russell Glacier, West Greenland. Cryosphere. 2012;6:909–922. doi: 10.5194/tc-6-909-2012. DOI
Kulessa B, et al. Seismic evidence for complex sedimentary control of Greenland Ice Sheet flow. Sci. Adv. 2017;3:e1603071. doi: 10.1126/sciadv.1603071. PubMed DOI PMC
Smeets P, et al. The K-transect in west Greenland: automatic weather station data (1993-2016) Arct. Antarct. Alp. Res. 2018;50:S100002. doi: 10.1080/15230430.2017.1420954. DOI
Wientjes IGM, Van de Wal RSW, Reichart GJ, Sluijs A, Oerlemans J. Dust from the dark region in the western ablation zone of the Greenland ice sheet. Cryosphere. 2011;5:589–601. doi: 10.5194/tc-5-589-2011. DOI
Goelles T, Boggild CE. Albedo reduction of ice caused by dust and black carbon accumulation: a model applied to the K-transect, West Greenland. J. Glaciol. 2017;63:1063–1076. doi: 10.1017/jog.2017.74. DOI
Hills BH, et al. Processes influencing heat transfer in the near-surface ice of Greenland’s ablation zone. Cryosphere. 2018;12:3215–3227. doi: 10.5194/tc-12-3215-2018. DOI
Arnold NS, Brock BW. A spreadsheet-based (Microsoft Excel) point surface energy balance model for glacier and snow melt studies. Earth Surf. Process. Landf. 2000;25:649–658. doi: 10.1002/1096-9837(200006)25:6<649::AID-ESP97>3.0.CO;2-U. DOI
Munro DS. Surface roughness and bulk heat transfer on a gacier: comparison with eddy correlation. J. Glaciol. 1989;35:343–348. doi: 10.1017/S0022143000009266. DOI
Smeets CJPP, van den Broeke MR. Temporal and spatial variations of the aerodynamic roughness length in the ablation zone of the Greenland Ice Sheet. Bound. Layer. Meteorol. 2008;128:315–338. doi: 10.1007/s10546-008-9291-0. DOI
Santibanez PA, McConnell JR, Priscu JC. A flow cytometric method to measure prokaryotic records in ice cores: an example from the West Antarctic Ice Sheet Divide drilling site. J. Glaciol. 2016;62:655–673. doi: 10.1017/jog.2016.50. DOI
Stevens, I. T. The eco-hydrology of glacier surfaces. PhD thesis, Aberystwyth University (2018).
Miteva, V. in Psychrophiles: from Biodiversity to Biotechnology (eds. Margesin, R., Schinner, F., Marx, J.-C. & Gerday, C.) 31–50 (Springer, 2008).
Lee S, Fuhrman JA. Relationships between biovolume and biomass of naturally derived marine bacterioplankton. Appl. Environ. Microbiol. 1987;53:1298–−1303. doi: 10.1128/aem.53.6.1298-1303.1987. PubMed DOI PMC
Montagnes DJS, Berges JA, Harrison PJ, Taylor FJR. Estimating carbon, nitrogen, protein, and chlorophyll-a from volume in marine-phytoplankton. Limnol. Oceanogr. 1994;39:1044–−1060. doi: 10.4319/lo.1994.39.5.1044. DOI
Norland S, Heldal M, Tumyr O. On the relation between dry-matter and volume of bacteria. Microb. Ecol. 1987;13:95–101. doi: 10.1007/BF02011246. PubMed DOI
Bratbak G. Bacterial biovolume and biomass estimations. Appl. Environ. Microbiol. 1985;49:1488–1493. doi: 10.1128/aem.49.6.1488-1493.1985. PubMed DOI PMC
Hillebrand H, Durselen CD, Kirschtel D, Pollingher U, Zohary T. Biovolume calculation for pelagic and benthic microalgae. J. Phycol. 1999;35:403–424. doi: 10.1046/j.1529-8817.1999.3520403.x. DOI
Strathmann RR. Estimating organic carbon content of phytoplankton from cell volume or plasma volume. Limnol. Oceanogr. 1967;12:411–418. doi: 10.4319/lo.1967.12.3.0411. DOI
Miteva VI, Brenchley JE. Detection and isolation of ultrasmall microorganisms from a 120,000-year-old Greenland glacier ice core. Appl. Environ. Microbiol. 2005;71:7806–7818. doi: 10.1128/AEM.71.12.7806-7818.2005. PubMed DOI PMC
James MR, Robson S. Mitigating systematic error in topographic models derived from UAV and ground-based image networks. Earth Surf. Process. Landf. 2014;39:1413–1420. doi: 10.1002/esp.3609. DOI
Noh MJ, Howat IM. Automated stereo-photogrammetric DEM generation at high latitudes: surface extraction with TIN-based search-space minimisation (SETSM) validation and demonstration over glaciated regions. GIScience Remote Sens. 2015;52:198–217. doi: 10.1080/15481603.2015.1008621. DOI
Bunting P, Clewley D, Lucas RM, Gillingham S. The Remote Sensing and GIS Software Library (RSGISLib) Computers Geosci. 2014;62:216–226. doi: 10.1016/j.cageo.2013.08.007. DOI
King L, Hassan MA, Yang K, Flowers G. Flow routing for delineating supraglacial meltwater channel networks. Remote Sens. 2016;8:988. doi: 10.3390/rs8120988. DOI
Hamasaki K, Satoh F, Kikuchi T, Toda T, Tagichi S. Biomass and production of cyanobacterial in a coastal water of Sagami Bay. J. Plankton Res. 1999;21:1583–1591. doi: 10.1093/plankt/21.8.1583. DOI