Dark zone of the Greenland Ice Sheet controlled by distributed biologically-active impurities
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29540720
PubMed Central
PMC5852041
DOI
10.1038/s41467-018-03353-2
PII: 10.1038/s41467-018-03353-2
Knihovny.cz E-zdroje
- MeSH
- ledový příkrov * MeSH
- monitorování životního prostředí MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Grónsko MeSH
Albedo-a primary control on surface melt-varies considerably across the Greenland Ice Sheet yet the specific surface types that comprise its dark zone remain unquantified. Here we use UAV imagery to attribute seven distinct surface types to observed albedo along a 25 km transect dissecting the western, ablating sector of the ice sheet. Our results demonstrate that distributed surface impurities-an admixture of dust, black carbon and pigmented algae-explain 73% of the observed spatial variability in albedo and are responsible for the dark zone itself. Crevassing and supraglacial water also drive albedo reduction but due to their limited extent, explain just 12 and 15% of the observed variability respectively. Cryoconite, concentrated in large holes or fluvial deposits, is the darkest surface type but accounts for <1% of the area and has minimal impact. We propose that the ongoing emergence and dispersal of distributed impurities, amplified by enhanced ablation and biological activity, will drive future expansion of Greenland's dark zone.
Department of Ecology Faculty of Science Charles University 12844 Prague Czech Republic
Department of Geochemistry Geological Survey of Denmark and Greenland 1350 Copenhagen Denmark
Department of Geography University of California Los Angeles Los Angeles CA 90095 USA
Department of Geography University of Sheffield Sheffield S10 2TN UK
Institute at Brown for Environment and Society Brown University Providence RI 02906 USA
Zobrazit více v PubMed
Box, J. E. et al. Changes to Arctic land ice. In Snow, Water, Ice and Permafrost in the Arctic (SWIPA) 137–168 (Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, 2017).
Hanna E, et al. Ice-sheet mass balance and climate change. Nature. 2013;498:51–59. doi: 10.1038/nature12238. PubMed DOI
Enderlin EM, et al. An improved mass budget for the Greenland ice sheet. Geophys. Res. Lett. 2014;41:866–872. doi: 10.1002/2013GL059010. DOI
van den Broeke MR, et al. On the recent contribution of the Greenland ice sheet to sea level change. Cryosphere. 2016;10:1933–1946. doi: 10.5194/tc-10-1933-2016. DOI
Gardner AS, Sharp MJ. A review of snow and ice albedo and the development of a new physically based broadband albedo parameterization. J. Geophys. Res. Earth Surf. 2010;115:1–15.
van den Broeke MR, et al. Partitioning of melt energy and meltwater fluxes in the ablation zone of the west Greenland ice sheet. Cryosphere. 2008;2:179–189. doi: 10.5194/tc-2-179-2008. DOI
Mikkelsen AB, et al. Extraordinary runoff from the Greenland ice sheet in 2012 amplified by hypsometry and depleted firn retention. Cryosphere. 2016;10:1147–1159. doi: 10.5194/tc-10-1147-2016. DOI
Knap WH, Oerlemans J. The surface albedo of the Greenland ice sheet: satellite-derived and in situ measurements in the Søndre Strømfjord area during the 1991 melt season. J. Glaciol. 1996;42:364–374. doi: 10.1017/S0022143000004214. DOI
Wientjes IGM, Oerlemans J. An explanation for the dark region in the western melt zone of the Greenland ice sheet. Cryosphere. 2010;4:261–268. doi: 10.5194/tc-4-261-2010. DOI
Wientjes I, et al. Carbonaceous particles reveal that Late Holocene dust causes the dark region in the western ablation zone of the Greenland ice sheet. J. Glaciol. 2012;58:787–794. doi: 10.3189/2012JoG11J165. DOI
Shimada R, Takeuchi N, Aoki T. Inter-annual and geographical variations in the extent of bare ice and dark ice on the Greenland Ice Sheet derived from MODIS satellite images. Front. Earth Sci. 2016;4:1–10. doi: 10.3389/feart.2016.00043. DOI
Tedstone AJ, et al. Dark ice dynamics of the south-west Greenland Ice Sheet. Cryosphere. 2017;11:2491–2506. doi: 10.5194/tc-11-2491-2017. DOI
Moustafa SE, et al. Multi-modal albedo distributions in the ablation area of the southwestern Greenland Ice Sheet. Cryosphere. 2015;9:1–11. doi: 10.5194/tc-9-905-2015. DOI
Ryan, J. C. et al. Attribution of Greenland’s ablating ice surfaces on ice sheet albedo using unmanned aerial systems. The Cryosphere Discuss. 1–23. https://doi.org/10.5194/tc-2016-204 (2016).
Ryan, J. C. et al. Derivation of high spatial resolution albedo from UAV digital imagery: application over the Greenland Ice Sheet. Front. Earth Sci. 5, 40 (2017).
Colgan W, et al. An increase in crevasse extent, West Greenland: Hydrologic implications. Geophys. Res. Lett. 2011;38:L18502. doi: 10.1029/2011GL048491. DOI
Colgan W, et al. Glacier crevasses: observations, models and mass balance implications. Rev. Geophys. 2016;54:119–161. doi: 10.1002/2015RG000504. DOI
Greuell W. Melt-water accumulation on the surface of the Greenland Ice Sheet: effect on albedo and mass balance. Geogr. Ann. A Phys. Geogr. 2000;82:489–498. doi: 10.1111/j.0435-3676.2000.00136.x. DOI
Smith LC, et al. Efficient meltwater drainage through supraglacial streams and rivers on the southwest Greenland ice sheet. Proc. Natl Acad. Sci. USA. 2015;112:1001–1006. doi: 10.1073/pnas.1413024112. PubMed DOI PMC
Bøggild CE, Brandt RE, Brown KJ, Warren SG. The ablation zone in northeast Greenland: ice types, albedos and impurities. J. Glaciol. 2010;56:101–113. doi: 10.3189/002214310791190776. DOI
Chandler DM, Alcock JD, Wadham JL, Mackie SL, Telling J. Seasonal changes of ice surface characteristics and productivity in the ablation zone of the Greenland Ice Sheet. Cryosphere. 2015;9:487–504. doi: 10.5194/tc-9-487-2015. DOI
Stibal M, et al. Algae drive enhanced darkening of bare ice on the Greenland ice sheet. Geophys. Res. Lett. 2017;44:11463–11471. doi: 10.1002/2017GL075958. DOI
Stibal M, et al. Organic matter content and quality in supraglacial debris across the ablation zone of the Greenland ice sheet. Ann. Glaciol. 2010;51:1–8. doi: 10.3189/172756411795931958. DOI
Yallop ML, et al. Photophysiology and albedo-changing potential of the ice algal community on the surface of the Greenland ice sheet. ISME J. 2012;6:2302–2313. doi: 10.1038/ismej.2012.107. PubMed DOI PMC
Dumont M, et al. Contribution of light-absorbing impurities in snow to Greenland’s darkening since 2009. Nat. Geosci. 2014;7:509–512. doi: 10.1038/ngeo2180. DOI
Keegan KM, Albert MR, McConnell JR, Baker I. Climate change and forest fires synergistically drive widespread melt events of the Greenland Ice Sheet. Proc. Natl Acad. Sci. USA. 2014;111:7964–7967. doi: 10.1073/pnas.1405397111. PubMed DOI PMC
Wientjes IGM, Van de Wal RSW, Reichart GJ, Sluijs A, Oerlemans J. Dust from the dark region in the western ablation zone of the Greenland ice sheet. Cryosphere. 2011;5:589–601. doi: 10.5194/tc-5-589-2011. DOI
Pfeffer, W. T. & Bretherton, C. S. The effect of crevasses on the solar heating of a glacier surface. In Proc. of the Vancouver Symposium, August 1987, IAHS Publ. no. 170, 191–205 (IAHS Publications, Wallingford, UK, 1987).
Cathles LM, Abbot DS, Bassis JN, MacAyeal DR. Modeling surface-roughness/solar-ablation feedback: application to small-scale surface channels and crevasses of the Greenland Ice Sheet. Ann. Glaciol. 2011;52:99–108. doi: 10.3189/172756411799096268. DOI
Langford H, Hodson A, Banwart S, Bøggild C. The microstructure and biogeochemistry of Arctic cryoconite granules. Ann. Glaciol. 2010;51:87–94. doi: 10.3189/172756411795932083. DOI
Cook J, Edwards A, Takeuchi N, Irvine-Fynn T. Cryoconite: the dark biological secret of the cryosphere. Prog. Phys. Geogr. 2015;40:66–111. doi: 10.1177/0309133315616574. DOI
Takeuchi N. Optical characteristics of cryoconite (surface dust) on glaciers: the relationships between light absorbency and the property of organic matter contained in the cryoconite. Ann. Glaciol. 2002;34:409–414. doi: 10.3189/172756402781817743. DOI
Remias D, et al. Characterization of an UV- and VIS-absorbing, purpurogallin-derived secondary pigment new to algae and highly abundant in Mesotaenium berggrenii (Zygnematophyceae, Chlorophyta), an extremophyte living on glaciers. FEMS Microbiol. Ecol. 2012;79:638–648. doi: 10.1111/j.1574-6941.2011.01245.x. PubMed DOI
Stibal M, Šabacká M, Žárský J. Biological processes on glacier and ice sheet surfaces. Nat. Geosci. 2012;5:771–774. doi: 10.1038/ngeo1611. DOI
Stibal M, et al. Microbial abundance in surface ice on the Greenland Ice Sheet. Front. Microbiol. 2015;6:225. doi: 10.3389/fmicb.2015.00225. PubMed DOI PMC
Lutz S, et al. The biogeography of red snow microbiomes and their role in melting arctic glaciers. Nat. Commun. 2016;7:1–9. doi: 10.1038/ncomms11968. PubMed DOI PMC
Ryser C, et al. Cold ice in the ablation zone: Its relation to glacier hydrology and ice water content. J. Geophys. Res. Earth Surf. 2013;118:693–705. doi: 10.1029/2012JF002526. DOI
Lüthje M, Pedersen LT, Reeh N, Greuell W. Modelling the evolution of supraglacial lakes on the west Greenland ice-sheet margin. J. Glaciol. 2006;52:608–618. doi: 10.3189/172756506781828386. DOI
Tedesco M, Steiner N. In-situ multispectral and bathymetric measurements over a supraglacial lake in western Greenland using a remotely controlled watercraft. Cryosphere. 2011;5:445–452. doi: 10.5194/tc-5-445-2011. DOI
Fitzpatrick AAW, et al. A decade (2002-2012) of supraglacial lake volume estimates across Russell Glacier, West Greenland. Cryosphere. 2014;8:107–121. doi: 10.5194/tc-8-107-2014. DOI
Leeson A, et al. Supraglacial lakes on the Greenland ice sheet advance inland under warming climate. Nat. Clim. Chang. 2015;5:51–55. doi: 10.1038/nclimate2463. DOI
Hubbard AL, Blatter H, Nienow P, Mair D, Hubbard B. Comparison of a three-dimensional model for glacier flow with field data from Haut Glacier d’ Arolla, Switzerland. J. Glaciol. 1998;44:368–378. doi: 10.1017/S0022143000002690. DOI
van der Veen CJ. Crevasses on glaciers. Polar Geogr. 1999;23:1–33. doi: 10.1080/10889379909377661. DOI
van de Wal RSW, et al. Large and rapid melt-induced velocity changes in the ablation zone of the Greenland Ice Sheet. Science. 2008;321:111–113. doi: 10.1126/science.1158540. PubMed DOI
Doyle SH, et al. Persistent flow acceleration within the interior of the Greenland ice sheet. Geophys. Res. Lett. 2014;41:899–905. doi: 10.1002/2013GL058933. DOI
Christoffersen, P., Bougamont, M., Hubbard, A., Doyle, S. & Grigsby, S. Tensile shock triggers cascading lake drainage on the Greenland Ice Sheet. Nat. Commun. https://doi.org/10.1038/s41467-018-03420-8 (2018). PubMed PMC
Scheick, J. Investigating Greenland Crevasses at Raven Camp. Field Notes, Polar Field Services Newsletter, http://www.polarfield.com/blog/blog/investigating-greenland-crevasses-raven-camp. Accessed 25 May 2014 (2012).
Poinar K, et al. Limits to future expansion of surface-melt-enhanced ice flow into the interior of western Greenland. Geophys. Res. Lett. 2015;42:1800–1807. doi: 10.1002/2015GL063192. DOI
Hodson A, et al. A glacier respires: quantifying the distribution and respiration CO2 flux of cryoconite across an entire Arctic supraglacial ecosystem. J. Geophys. Res. 2007;112:G04S36. doi: 10.1029/2007JG000452. DOI
Wiscombe WJ, Warren SG. A model for the spectral albedo of snow. I: Pure snow. J. Atmos. Sci. 1980;37:2712–2733. doi: 10.1175/1520-0469(1980)037<2712:AMFTSA>2.0.CO;2. DOI
Zuo Z, Oerlemans J. Modelling albedo and specific balance of the Greenland ice sheet: calculations for the Sondre Strømfjord transect. J. Glaciol. 1996;42:305–316. doi: 10.1017/S0022143000004160. DOI
Hock R. Glacier melt: a review of processes and their modelling. Prog. Phys. Geogr. 2005;29:362–391. doi: 10.1191/0309133305pp453ra. DOI
Alexander PM, et al. Assessing spatio-temporal variability and trends in modelled and measured Greenland Ice Sheet albedo (2000-2013) Cryosphere. 2014;8:2293–2312. doi: 10.5194/tc-8-2293-2014. DOI
Tedesco M, et al. The role of albedo and accumulation in the 2010 melting record in Greenland. Environ. Res. Lett. 2011;6:014005. doi: 10.1088/1748-9326/6/1/014005. DOI
Box JE, et al. Greenland ice sheet albedo feedback: thermodynamics and atmospheric drivers. Cryosphere. 2012;6:821–839. doi: 10.5194/tc-6-821-2012. DOI
van Angelen JH, et al. Sensitivity of Greenland Ice Sheet surface mass balance to surface albedo parameterization: a study with a regional climate model. Cryosphere. 2012;6:1175–1186. doi: 10.5194/tc-6-1175-2012. DOI
Langen PL, et al. Liquid water flow and retention on the Greenland Ice Sheet in the regional climate model HIRHAM5: local and large-scale impacts. Front. Earth Sci. 2017;4:110. doi: 10.3389/feart.2016.00110. DOI
Hall DK, Riggs GA. MODIS/Terra Snow Cover Daily L3 Global 500m Grid, Version 6. Boulder: NASA National Snow and Ice Data Center Distributed Active Archive Center; 2016.
Stroeve JC, Box JE, Haran T. Evaluation of the MODIS (MOD10A1) daily snow albedo product over the Greenland ice sheet. Remote Sens. Environ. 2006;105:155–171. doi: 10.1016/j.rse.2006.06.009. DOI
van As D, et al. Large surface meltwater discharge from the Kangerlussuaq sector of the Greenland ice sheet during the record-warm year 2010 explained by detailed energy balance observations. Cryosphere. 2012;6:199–209. doi: 10.5194/tc-6-199-2012. DOI
Ryan JC, et al. UAV photogrammetry and structure from motion to assess calving dynamics at Store Glacier, a large outlet draining the Greenland ice sheet. Cryosphere. 2015;9:1–11. doi: 10.5194/tc-9-1-2015. DOI
Ryan JC, et al. How robust are in situ observations for validating satellite-derived albedo over the dark zone of the Greenland Ice Sheet? Geophys. Res. Lett. 2017;44:6218–6225. doi: 10.1002/2017GL073661. DOI
Howat IM, Negrete A, Smith BE. The Greenland Ice Mapping Project (GIMP) land classification and surface elevation data sets. Cryosphere. 2014;8:1509–1518. doi: 10.5194/tc-8-1509-2014. DOI
Pedregosa F, Weiss R, Brucher M. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 2011;12:2825–2830.
Canny J. A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986;8:679–698. doi: 10.1109/TPAMI.1986.4767851. PubMed DOI
Knap WH, Reijmer CH. Anisotropy of the reflected radiation field over melting glacier ice: measurements in Landsat TM bands 2 and 4. Remote Sens. Environ. 1998;65:93–104. doi: 10.1016/S0034-4257(98)00015-7. DOI