Microbial abundance in surface ice on the Greenland Ice Sheet

. 2015 ; 6 () : 225. [epub] 20150324

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid25852678

Measuring microbial abundance in glacier ice and identifying its controls is essential for a better understanding and quantification of biogeochemical processes in glacial ecosystems. However, cell enumeration of glacier ice samples is challenging due to typically low cell numbers and the presence of interfering mineral particles. We quantified for the first time the abundance of microbial cells in surface ice from geographically distinct sites on the Greenland Ice Sheet (GrIS), using three enumeration methods: epifluorescence microscopy (EFM), flow cytometry (FCM), and quantitative polymerase chain reaction (qPCR). In addition, we reviewed published data on microbial abundance in glacier ice and tested the three methods on artificial ice samples of realistic cell (10(2)-10(7) cells ml(-1)) and mineral particle (0.1-100 mg ml(-1)) concentrations, simulating a range of glacial ice types, from clean subsurface ice to surface ice to sediment-laden basal ice. We then used multivariate statistical analysis to identify factors responsible for the variation in microbial abundance on the ice sheet. EFM gave the most accurate and reproducible results of the tested methodologies, and was therefore selected as the most suitable technique for cell enumeration of ice containing dust. Cell numbers in surface ice samples, determined by EFM, ranged from ~ 2 × 10(3) to ~ 2 × 10(6) cells ml(-1) while dust concentrations ranged from 0.01 to 2 mg ml(-1). The lowest abundances were found in ice sampled from the accumulation area of the ice sheet and in samples affected by fresh snow; these samples may be considered as a reference point of the cell abundance of precipitants that are deposited on the ice sheet surface. Dust content was the most significant variable to explain the variation in the abundance data, which suggests a direct association between deposited dust particles and cells and/or by their provision of limited nutrients to microbial communities on the GrIS.

Zobrazit více v PubMed

Abyzov S. S., Mitskevich I. N., Poglazova M. N., Barkov N. I., Lipenkov V. Y., Bobin N. E., et al. . (2001). Microflora of the basal strata at Antarctic ice core above the Vostok Lake. Adv. Space Sci. 28, 701–706. 10.1016/S0273-1177(01)00318-0 PubMed DOI

Albers C. N., Bælum J., Jensen A., Jacobsen C. S. (2013). Inhibition of DNA polymerases used in Q-PCR by structurally different soil-derived humic substances. Geomicrobiol. J. 30, 675–681 10.1080/01490451.2012.758193 DOI

Amalfitano S., Fazi S. (2008). Recovery and quantification of bacterial cells associated with streambed sediments. J. Microbiol. Meth. 75, 237–243. 10.1016/j.mimet.2008.06.004 PubMed DOI

Amato P., Hennebelle R., Magand O., Sancelme M., Delort A.-M., Barbante C., et al. . (2007). Bacterial characterization of the snow cover at Spitzberg, Svalbard. FEMS Microbiol. Ecol. 59, 255–264. 10.1111/j.1574-6941.2006.00198.x PubMed DOI

An L. Z., Chen Y., Xiang S.-R., Shang T.-C., Tian L.-D. (2010). Differences in community composition of bacteria in four glaciers in western China. Biogeosciences 7, 1937–1952 10.5194/bg-7-1937-2010 DOI

Anesio A. M., Laybourn-Parry J. (2012). Glaciers and ice sheets as a biome. Trends Ecol. Evol. 27, 219–225. 10.1016/j.tree.2011.09.012 PubMed DOI

Anesio A. M., Sattler B., Foreman C., Telling J., Hodson A., Tranter M., et al. (2010). Carbon fluxes through bacterial communities on glacier surfaces. Ann. Glaciol. 51, 32–40 10.3189/172756411795932092 DOI

Antony R., Krishnan K. P., Laluraj C. M., Thamban M., Dhakephalkar P. K., Engineer A. S., et al. . (2012). Diversity and physiology of culturable bacteria associated with a coastal Antarctic ice core. Microbiol. Res. 167, 372–380. 10.1016/j.micres.2012.03.003 PubMed DOI

Bagshaw E. A., Tranter M., Fountain A. G., Welch K. A., Basagic H., Lyons W. B. (2007). Biogeochemical evolution of cryoconite holes on Canada Glacier, Taylor Valley, Antarctica. J. Geophys. Res. 112, G04S35 10.1029/2007JG000442 DOI

Björkman M. P., Zarsky J. D., Kühnel R., Hodson A., Sattler B., Psenner R. (2014). Microbial cell retention in a melting High Arctic snowpack, Svalbard. Arct. Antarct. Alp. Res. 46, 471–482 10.1657/1938-4246-46.2.471 DOI

Bowers R. M., McCubbin I. B., Hallar A. G., Fierer N. (2012). Seasonal variability in airborne bacterial communities at a high-elevation site. Atmos. Environ. 50, 41–49 10.1016/j.atmosenv.2012.01.005 DOI

Box J. E., Fettweis X., Stroeve J. C., Tedesco M., Hall D. K., Steffen K. (2012). Greenland ice sheet albedo feedback: thermodynamics and atmospheric drivers. Cryosphere 6, 821–839 10.5194/tc-6-821-2012 DOI

ter Braak C. J. F., Šmilauer P. (2012). Canoco Reference Manual and User's Guide: Software for Ordination (Version 5.0). Ithaca, NY: Microcomputer Power.

Cameron K. A., Hagedorn B., Dieser M., Christner B. C., Choquette K., Sletten R., et al. . (2015). Diversity and potential sources of microbiota associated with snow on western portions of the Greenland Ice Sheet. Environ. Microbiol. 17, 594–609. 10.1111/1462-2920.12446 PubMed DOI

Carpenter E. J., Lin S., Capone D. G. (2000). Bacterial activity in South Pole snow. Appl. Environ. Microbiol. 66, 4514–4517. 10.1128/AEM.66.10.4514-4517.2000 PubMed DOI PMC

Christner B. C., Morris C., Foreman C. M., Cai R., Sands D. C. (2008). Ubiquity of biological ice nucleators in snowfall. Science 319, 1214. 10.1126/science.1149757 PubMed DOI

Delort A.-M., Vaïtilingom M., Amato P., Sancelme M., Parazols M., Mailhot G., et al. (2010). A short overview of the microbial population in clouds: potential roles in atmospheric chemistry and nucleation processes. Atmos. Res. 98, 249–260 10.1016/j.atmosres.2010.07.004 DOI

Fettweis X., Tedesco M., van den Broeke M., Ettema J. (2011). Melting trends over the Greenland ice sheet (1958–2009) from spaceborne microwave data and regional climate models. Cryosphere 5, 359–375 10.5194/tc-5-359-2011 DOI

Foght J. M., Aislabie J., Turner S., Brown C. E., Ryburn J., Saul D. J., et al. . (2004). Culturable bacteria in subglacial sediments and ice from two southern hemisphere glaciers. Microb. Ecol. 47, 329–340. 10.1007/s00248-003-1036-5 PubMed DOI

Foreman C. M., Sattler B., Mikucki D. L., Porazinska D. L., Priscu J. C. (2007). Metabolic activity and diversity of cryoconites in the Taylor Valley, Antarctica. J. Geophys. Res. 112, G04S32 10.1029/2006JG000358 DOI

Hamilton T. L., Peters J. W., Skidmore M. L., Boyd E. S. (2013). Molecular evidence for an active endogenous microbiome beneath glacial ice. ISME J. 7, 1402–1412. 10.1038/ismej.2013.31 PubMed DOI PMC

Hell K., Edwards A., Zarsky J., Podmirseg S. M., Girdwood S., Pachebat J. A., et al. . (2013). The dynamic bacterial communities of a melting High Arctic glacier snowpack. ISME J. 7, 1814–1826. 10.1038/ismej.2013.51 PubMed DOI PMC

Hodson A., Anesio A. M., Ng F., Watson R., Quirk J., Irvine-Fynn T., et al. (2007). A glacier respires: quantifying the distribution and respiration CO2 flux of cryoconite across an entire Arctic supraglacial ecosystem. J. Geophys. Res. 112, G04S36 10.1029/2007JG000452 DOI

Hodson A., Bøggild C., Hanna E., Huybrechts P., Langford H., Cameron K., et al. (2010a). The cryoconite ecosystem on the Greenland ice sheet. Ann. Glaciol. 51, 123–129 10.3189/172756411795931985 DOI

Hodson A., Cameron K., Bøggild C., Irvine-Fynn T., Langford H., Pearce D., et al. (2010b). The structure, biological activity and biogeochemistry of cryoconite aggregates upon an Arctic valley glacier: Longyearbreen, Svalbard. J. Glaciol. 56, 349–362 10.3189/002214310791968403 DOI

Hodson A., Paterson H., Westwood K., Cameron K., Laybourn-Parry J. (2013). A blue-ice ecosystem on the margins of the East Antarctic ice sheet. J. Glaciol. 59, 255–268 10.3189/2013JoG12J052 DOI

Hodson A. J., Anesio A. M., Tranter M., Fountain A., Osborn M., Priscu J., et al. (2008). Glacial ecosystems. Ecol. Monogr. 78, 41–67 10.1890/07-0187.1 DOI

Irvine-Fynn T. D. L., Edwards A. (2014). A frozen asset: the potential of flow cytometry in constraining the glacial biome. Cytometry A. 85, 3–7. 10.1002/cyto.a.22411 PubMed DOI

Irvine-Fynn T. D. L., Edwards A., Newton S., Langford H., Rassner S. M., Telling J., et al. . (2012). Microbial cell budgets of an Arctic glacier surface quantified using flow cytometry. Environ. Microbiol. 14, 2998–3012. 10.1111/j.1462-2920.2012.02876.x PubMed DOI

Karl D. M., Bird D. F., Björkman K., Houlihan T., Shackelford R., Tupas L. (1999). Microorganisms in the accreted ice of Lake Vostok, Antarctica. Science 286, 2144–3147. 10.1126/science.286.5447.2144 PubMed DOI

Klappenbach J. A., Saxman P. R., Cole J. R., Schmidt T. M. (2001). rrndb: the ribosomal RNA operon copy number database. Nucl. Acids Res. 29, 181–184. 10.1093/nar/29.1.181 PubMed DOI PMC

Krsek M., Wellington E. M. H. (1999). Comparison of different methods for the isolation and purification of total community DNA from soil. J. Microbiol. Meth. 39, 1–16. 10.1016/S0167-7012(99)00093-7 PubMed DOI

Langford H., Hodson A., Banwart S., Bøggild C. (2010). The microstructure and biogeochemistry of Arctic cryoconite granules. Ann. Glaciol. 51, 87–94 10.3189/172756411795932083 DOI

Lindberg E., Albrechtsen H. J., Jacobsen C. S. (2007). Inhibition of real-time PCR in DNA extracts from aquifer sediment. Geomicrobiol. J. 24, 343–352 10.1080/01490450701456701 DOI

Liu Y., Yao T., Jiao N., Kang S., Xu B., Zeng Y., et al. . (2009). Bacterial diversity in the snow over Tibetan Plateau glaciers. Extremophiles 13, 411–423. 10.1007/s00792-009-0227-5 PubMed DOI

Lucas-Picher P., Wulff-Nielsen M., Christensen J. H., Aðalgeirsdóttir G., Mottram R., Simonsen S. B. (2012). Very high resolution regional climate model simulations over Greenland: identifying added value. J. Geophys. Res. 117, D02108 10.1029/2011JD016267 DOI

Mindl B., Anesio A. M., Meirer K., Hodson A. J., Laybourn-Parry J., Sommaruga R., et al. . (2007). Factors influencing bacterial dynamics along a transect from supraglacial runoff to proglacial lakes of a high Arctic glacier. FEMS Microbiol. Ecol. 59, 307–317. 10.1111/j.1574-6941.2006.00262.x PubMed DOI

Miteva V., Teacher C., Sowers T., Brenchley J. (2009). Comparison of the microbial diversity at different depths of the GISP2 Greenland ice core in relationship to deposition climates. Environ. Microbiol. 11, 640–656. 10.1111/j.1462-2920.2008.01835.x PubMed DOI

Møller A. K., Søborg D. A., Al-Soud W. A., Sørensen S. J., Kroer N. (2013). Bacterial community structure in High-Arctic snow and freshwater as revealed by pyrosequencing of 16S rRNA genes and cultivation. Polar Res. 32:17390 10.3402/polar.v32i0.17390 DOI

Montross S., Skidmore M., Christner B., Samyn D., Tison J.-L., Lorrain R., et al. (2014). Debris-rich basal ice as a microbial habitat, Taylor Glacier, Antarctica. Geomicrobiol. J. 31, 76–81 10.1080/01490451.2013.811316 DOI

Nghiem S. V., Hall D. K., Mote T. L., Tedesco M., Albert M. R., Keegan K., et al. (2012). The extreme melt across the Greenland ice sheet in 2012. Geophys. Res. Lett. 39, L20502 10.1029/2012GL053611 DOI

Priscu J. C., Adams E. E., Lyons W. B., Voytek M. A., Mogk D. W., Brown R. L., et al. . (1999). Geomicrobiology of subglacial ice above lake Vostok, Antarctica. Science 286, 2141–2144. 10.1126/science.286.5447.2141 PubMed DOI

Sattler B., Puxbaum H., Psenner R. (2001). Bacterial growth in supercooled cloud droplets. Geophys. Res. Lett. 28, 239–242 10.1029/2000GL011684 DOI

Säwström C., Mumford P., Marshall W., Hodson A., Laybourn-Parry J. (2002). The microbial communities and primary productivity of cryoconite holes in an Arctic glacier (Svalbard 79°N). Polar Biol. 25, 591–596 10.1007/s00300-002-0388-5 DOI

Sheridan P. P., Miteva V. I., Brenchley J. E. (2003). Phylogenetic analysis of anaerobic psychrophilic enrichment cultures obtained from a Greenland glacier ice core. Appl. Environ. Microbiol. 69, 2153–2160. 10.1128/AEM.69.4.2153-2160.2003 PubMed DOI PMC

Skidmore M., Anderson S. P., Sharp M., Foght J., Lanoil B. D. (2005). Comparison of microbial community composition in two subglacial environments reveals a possible role for microbes in chemical weathering processes. Appl. Environ. Microbiol. 71, 6986–6997. 10.1128/AEM.71.11.6986-6997.2005 PubMed DOI PMC

Stibal M., Anesio A. M., Blues C. J. D., Tranter M. (2009). Phosphatase activity and organic phosphorus turnover on a high Arctic glacier. Biogeosciences 6, 913–922 10.5194/bg-6-913-2009 DOI

Stibal M., Lawson E. C., Lis G. P., Mak K. M., Wadham J. L., Anesio A. M. (2010). Organic matter content and quality in supraglacial debris across the ablation zone of the Greenland ice sheet. Ann. Glaciol. 51, 1–8. 10.3189/172756411795931958 PubMed DOI

Stibal M., Šabacká M., Žárský J. (2012a). Biological processes on glacier and ice sheet surfaces. Nat. Geosci. 5, 771–774 10.1038/ngeo1611 DOI

Stibal M., Schostag M., Cameron K. A., Hansen L. H., Chandler D. M., Wadham J. L., et al. . (2015). Different bulk and active bacterial communities in cryoconite from the margin and interior of the Greenland ice sheet. Environ. Microbiol. Rep. 7, 293–300. 10.1111/1758-2229.12246 PubMed DOI

Stibal M., Telling J., Cook J., Mak K. M., Hodson A., Anesio A. M. (2012b). Environmental controls on microbial abundance and activity on the Greenland ice sheet: a multivariate analysis approach. Microb. Ecol. 63, 74–84. 10.1007/s00248-011-9935-3 PubMed DOI

Stibal M., Tranter M., Benning L. G., Řehák J. (2008a). Microbial primary production on an Arctic glacier is insignificant in comparison with allochthonous organic carbon input. Environ. Microbiol. 10, 2172–2178. 10.1111/j.1462-2920.2008.01620.x PubMed DOI

Stibal M., Tranter M., Telling J., Benning L. G. (2008b). Speciation, phase association and potential bioavailability of phosphorus on a Svalbard glacier. Biogeochemistry 90, 1–13 10.1007/s10533-008-9226-3 DOI

Svensson A., Biscaye P. E., Grousset F. E. (2000). Characterization of late glacial continental dust in the Greenland ice Sheet project ice core. J. Geophys. Res. 105, 4637–4656 10.1029/1999JD901093 DOI

Takeuchi N., Kohshima S., Seko K. (2001). Structure, formation, darkening process of albedo-reducing material (cryoconite) on a Himalayan glacier: a granular algal mat growing on the glacier. Arct. Antarct. Alp. Res. 33, 115–122 10.2307/1552211 DOI

Telling J., Stibal M., Anesio A. M., Tranter M., Nias I., Cook J., et al. (2012). Microbial nitrogen cycling on the Greenland ice sheet. Biogeosciences 9, 2431–2442 10.5194/bg-9-2431-2012 DOI

Tranter M., Fountain A. G., Fritsen C. H., Lyons W. B., Priscu J. C., Statham P., et al. (2004). Extreme hydrochemical conditions in natural microcosms entombed within Antarctic ice. Hydrol. Process. 18, 379–387 10.1002/hyp.5217 DOI

Tung H. C., Bramall N. E., Price P. B. (2005). Microbial origin of excess of methane in glacial ice and implications for life on Mars. Proc. Natl. Acad. Sci. U.S.A. 102, 18292–18296. 10.1073/pnas.0507601102 PubMed DOI PMC

Vesey G., Narai J., Ashbolt N., Williams K., Veal D. (1994). Detection of specific microorganisms in environmental samples using flow cytometry. Meth. Cell Biol. 42, 489–522. 10.1016/S0091-679X(08)61092-4 PubMed DOI

Whitman W. B., Coleman D. C., Wiebe W. J. (1998). Prokaryotes: the unseen majority. Proc. Natl. Acad. Sci. U.S.A. 95, 6578–6583. 10.1073/pnas.95.12.6578 PubMed DOI PMC

Wientjes I. G. M., Van de Wal R. S. W., Reichart G. J., Sluijs A., Oerlemans J. (2011). Dust from the dark region in the western ablation zone of the Greenland ice sheet. Cryosphere 5, 589–601 10.5194/tc-5-589-2011 DOI

Xiang S.-R., Shang T.-C., Chen Y., Yao T.-D. (2009). Deposition and post-deposition mechanisms as possible drivers of microbial population variability in glacier ice. FEMS Microbiol. Ecol. 70, 165–176. 10.1111/j.1574-6941.2009.00759.x PubMed DOI

Yallop M. L., Anesio A. M., Perkins R. G., Cook J., Telling J., Fagan D., et al. . (2012). Photophysiology and albedo-changing potential of the ice algae community on the surface of Greenland Ice Sheet. ISME J. 6, 2302–2313. 10.1038/ismej.2012.107 PubMed DOI PMC

Yao T., Liu Y., Kang S., Jiao N., Zeng Y., Liu X., et al. (2008). Bacteria variabilities in a Tibetan ice core and their relations with climate change. Glob. Biogeochem. Cycl. 22, GB4017 10.1029/2007GB003140 DOI

Yde J. C., Finster K. W., Raiswell R., Steffensen J. P., Heinemeier J., Olsen J., et al. (2010). Basal ice microbiology at the margin of the Greenland ice sheet. Ann. Glaciol. 51, 71–79 10.3189/172756411795931976 DOI

Zarsky J. D., Stibal M., Hodson A., Sattler B., Schostag M., Hansen L. H., et al. (2013). Large cryoconite aggregates on a Svalbard glacier support a diverse microbial community including ammonium oxidizing archaea. Environ. Res. Lett. 8:035044 10.1088/1748-9326/8/3/035044 DOI

Zeng Y.-X., Yan M., Yu Y., Li H.-R., He J.-F., Sun K., et al. . (2013). Diversity of bacteria in surface ice of Austre Lovénbreen glacier, Svalbard. Arch. Microbiol. 195, 313–322. 10.1007/s00203-013-0880-z PubMed DOI

Zhang S., Hou S., Wu Y., Qin D. (2008a). Bacteria in Himalayan glacial ice and its relationship to dust. Biogeosciences 5, 1741–1750 10.5194/bg-5-1741-2008 DOI

Zhang X. F., Yao T. D., Tian L. D., Xu S. J., An L. Z. (2008b). Phylogenetic and physiological diversity of bacteria isolated from Puruogangri ice core. Microb. Ecol. 55, 476–488. 10.1007/s00248-007-9293-3 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...