In the current context of climate change, the study of microbial communities along altitudinal gradients is especially useful. Only few studies considered altitude and season at the same time. We characterized four forest sites located in the Italian Alps, along an altitude gradient (545-2000 m a.s.l.), to evaluate the effect of altitude in spring and autumn on soil microbial properties. Each site in each season was characterized with regard to soil temperature, physicochemical properties, microbial activities (respiration, enzymes), community level physiological profiles (CLPP), microbial abundance and community structure (PLFA). Increased levels of soil organic matter (SOM) and nutrients were found at higher altitudes and in autumn, resulting in a significant increase of (soil dry-mass related) microbial activities and abundance at higher altitudes. Significant site- and season-specific effects were found for enzyme production. The significant interaction of the factors site and incubation temperature for soil microbial activities indicated differences in microbial communities and their responses to temperature among sites. CLPP revealed site-specific effects. Microbial community structure was influenced by altitudinal, seasonal and/or site-specific effects. Correlations demonstrated that altitude, and not season, was the main factor determining the changes in abiotic and biotic characteristics at the sites investigated.
- MeSH
- Bacteria classification genetics isolation & purification MeSH
- Biodiversity * MeSH
- Phylogeny MeSH
- Climate Change MeSH
- Forests MeSH
- Altitude MeSH
- Soil chemistry MeSH
- Soil Microbiology * MeSH
- Seasons MeSH
- Temperature MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Italy MeSH
Forests are recognised as spatially heterogeneous ecosystems. However, knowledge of the small-scale spatial variation in microbial abundance, community composition and activity is limited. Here, we aimed to describe the heterogeneity of environmental properties, namely vegetation, soil chemical composition, fungal and bacterial abundance and community composition, and enzymatic activity, in the topsoil in a small area (36 m(2)) of a highly heterogeneous regenerating temperate natural forest, and to explore the relationships among these variables. The results demonstrated a high level of spatial heterogeneity in all properties and revealed differences between litter and soil. Fungal communities had substantially higher beta-diversity than bacterial communities, which were more uniform and less spatially autocorrelated. In litter, fungal communities were affected by vegetation and appeared to be more involved in decomposition. In the soil, chemical composition affected both microbial abundance and the rates of decomposition, whereas the effect of vegetation was small. Importantly, decomposition appeared to be concentrated in hotspots with increased activity of multiple enzymes. Overall, forest topsoil should be considered a spatially heterogeneous environment in which the mean estimates of ecosystem-level processes and microbial community composition may confound the existence of highly specific microenvironments.
The increasing use of silver nanoparticles (AgNPs) due to their well-known antimicrobial activity, has led to their accumulation in soil ecosystems. However, the impact of environmental realistic concentrations of AgNPs on the soil microbial community has been scarcely studied. In this work, we have assessed the impact of AgNPs, that mimic real concentrations in nature, on tropical soils cultivated with Coffea arabica under conventional and organic management systems. We evaluated the biomass, extracellular enzyme activities, and diversity of the soil microbial community, in a microcosm experiment as a function of time. After seven days of incubation, we found an increase in microbial biomass in an AgNPs-concentration-independent manner. In contrast, after 60-day-incubation, there was a decrease in Gram+ and actinobacterial biomass, in both soils and all AgNPs concentrations. Soil physico-chemical properties and enzyme activities were not affected overall by AgNPs. Regarding the microbial community composition, only some differences in the relative abundance at phylum and genus level in the fungal community were observed. Our results suggest that environmental concentrations of AgNPs affected microbial biomass but had little impact on microbial diversity and may have little effects on the soil biogeochemical cycles mediated by extracellular enzyme activities.
- MeSH
- Bacteria classification drug effects enzymology genetics MeSH
- Genes, Bacterial MeSH
- beta-Glucosidase chemistry MeSH
- Biomass MeSH
- Metal Nanoparticles toxicity MeSH
- Acid Phosphatase chemistry MeSH
- Soil Pollutants toxicity MeSH
- Microbiota drug effects MeSH
- Soil Microbiology MeSH
- RNA, Ribosomal, 16S MeSH
- Silver toxicity MeSH
- Urease chemistry MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The methodical developments in the fields of molecular biology and analytical chemistry significantly increased the level of detail that we achieve when exploring soils and their microbial inhabitants. High-resolution description of microbial communities, detection of taxa with minor abundances, screening of gene expression or the detailed characterization of metabolomes are nowadays technically feasible. Despite all of this, our understanding of soil is limited in many ways. The imperfect tools to describe microbial communities and limited possibilities to assign traits to community members make it difficult to link microbes to functions. Also the analysis of processes exemplified by enzyme activity measurements is still imperfect. In the future, it is important to look at soil at a finer detail to obtain a better picture on the properties of individual microbes, their in situ interactions, metabolic rates and activity at a scale relevant to individual microbes. Scaling up is needed as well to get answers at ecosystem or biome levels and to enable global modelling. The recent development of novel tools including metabolomics, identification of genomes in metagenomics sequencing datasets or collection of trait data have the potential to bring soil ecology further. It will, however, always remain a highly demanding scientific discipline.
- MeSH
- Bacteria classification enzymology genetics MeSH
- Ecology MeSH
- Ecosystem MeSH
- Fungi classification enzymology genetics MeSH
- Metabolomics MeSH
- Metagenomics MeSH
- Microbiota genetics MeSH
- Soil chemistry MeSH
- Soil Microbiology * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
Combining a minimum food web model with Arctic microbial community dynamics, we have suggested that top-down control by copepods can affect the food web down to bacterial consumption of organic carbon. Pursuing this hypothesis further, we used the minimum model to design and analyse a mesocosm experiment, studying the effect of high (+Z) and low (-Z) copepod density on resource allocation, along an organic-C addition gradient. In the Arctic, both effects are plausible due to changes in advection patterns (affecting copepods) and meltwater inputs (affecting carbon). The model predicts a trophic cascade from copepods via ciliates to flagellates, which was confirmed experimentally. Auto- and heterotrophic flagellates affect bacterial growth rate and abundance via competition for mineral nutrients and predation, respectively. In +Z, the model predicts low bacterial abundance and activity, and little response to glucose; as opposed to clear glucose consumption effects in -Z. We observed a more resilient bacterial response to high copepods and demonstrate this was due to changes in bacterial community equitability. Species able to use glucose to improve their competitive and/or defensive properties, became predominant. The observed shift from a SAR11-to a Psychromonodaceae - dominated community suggests the latter was pivotal in this modification of ecosystem function. We argue that this group used glucose to improve its defensive or its competitive abilities (or both). Adding such flexibility in bacterial traits to the model, we show how it creates the observed resilience to top-down manipulations observed in our experiment.
- MeSH
- Autotrophic Processes MeSH
- Bacteria growth & development isolation & purification metabolism MeSH
- Ciliophora physiology MeSH
- Copepoda physiology MeSH
- Bacterial Physiological Phenomena * MeSH
- Glucose metabolism MeSH
- Heterotrophic Processes MeSH
- Microbiota MeSH
- Food Chain * MeSH
- Carbon metabolism MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Arctic Regions MeSH
Peatland vegetation is composed mostly of mosses, graminoids and ericoid shrubs, and these have a distinct impact on peat biogeochemistry. We studied variation in soil microbial communities related to natural peatland microhabitats dominated by Sphagnum, cotton-grass and blueberry. We hypothesized that such microhabitats will be occupied by structurally and functionally different microbial communities, which will vary further during the vegetation season due to changes in temperature and photosynthetic activity of plant dominants. This was addressed using amplicon-based sequencing of prokaryotic and fungal rDNA and qPCR with respect to methane-cycling communities. Fungal communities were highly microhabitat-specific, while prokaryotic communities were additionally directed by soil pH and total N content. Seasonal alternations in microbial community composition were less important; however, they influenced the abundance of methane-cycling communities. Cotton-grass and blueberry bacterial communities contained relatively more α-Proteobacteria but less Chloroflexi, Fibrobacteres, Firmicutes, NC10, OD1 and Spirochaetes than in Sphagnum. Methanogens, syntrophic and anaerobic bacteria (i.e. Clostridiales, Bacteroidales, Opitutae, Chloroflexi and Syntrophorhabdaceae) were suppressed in blueberry indicating greater aeration that enhanced abundance of fungi (mainly Archaeorhizomycetes) and resulted in the highest fungi-to-bacteria ratio. Thus, microhabitats dominated by different vascular plants are inhabited by unique microbial communities, contributing greatly to spatial functional diversity within peatlands.
- MeSH
- Bacteria classification genetics isolation & purification metabolism MeSH
- Blueberry Plants growth & development microbiology MeSH
- Fungi classification genetics isolation & purification metabolism MeSH
- Poaceae growth & development microbiology MeSH
- Methane metabolism MeSH
- Microbiota MeSH
- Soil chemistry MeSH
- Soil Microbiology * MeSH
- Sphagnopsida growth & development microbiology MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
Bacteria from wastewater discharged to the sewerage near three hospitals of Islamabad, Rawalpindi, and Faisalabad were examined for resistance to the most commonly prescribed antibiotics in Pakistan. From the selected sites, a total of 109 isolates from 40 different species were identified based on 16S rRNA gene sequence and phylogeny. The isolates were tested for their resistance to ciprofloxacin, levofloxacin, ofloxacin, amoxicillin, and ampicillin. The results indicated that the isolates were resistant with the highest percentage to ampicillin and the lowest percentage to ciprofloxacin. Among the resistant isolates, 91.7% were found resistant to ampicillin, 83.5% to amoxicillin, 67.0% to ofloxacin, whereas only 27.5% to ciprofloxacin and 21.1% to levofloxacin. Among three sampled locations, the most of resistance was observed in Escherichia and Acinetobacter species. More than 30% isolated microorganisms were found resistant to more than three antibiotics. These findings concluded the presence of predominant microbial population resistant to antibiotics in wastewater channels near hospitals and its surroundings, which requires further investigation regarding their existence and spread in other environmental media having potential community health implications.
Due to its aggressive nature and low survival rate, esophageal cancer is one of the deadliest cancer. While the intestinal microbiome significantly influences human health and disease. This research aimed to investigate and characterize the relative abundance of intestinal bacterial composition in esophageal cancer patients. The fecal samples were collected from esophageal cancer patients (n = 15) and healthy volunteers (n = 10). The PCR-DGGE was carried out by focusing on the V3 region of the 16S rRNA gene, and qPCR was performed for Bacteroides vulgatus, Escherichia coli, Bifidobacterium, Clostridium leptum and Lactobacillus. High-throughput sequencing of the 16S rRNA gene targeting the V3+V4 region was performed on 20 randomly selected samples. PCR-DGGE and High-throughput diversity results showed a significant alteration of gut bacterial composition between the experimental and control groups, which indicates the gut microbial dysbiosis in esophageal cancer patients. At the phylum level, there was significant enrichment of Bacteroidetes, while a non-significant decrease of Firmicutes in the experimental group. At family statistics, a significantly higher level of Bacteroidaceae and Enterobacteriaceae, while a significantly lower abundance of Prevotellaceae and Veillonellaceae were observed. There was a significantly high prevalence of genera Bacteroides, Escherichia-Shigella, while a significantly lower abundance of Prevotella_9 and Dialister in the experimental group as compared to the control group. Furthermore, the species analysis also showed significantly raised level of Bacteroides vulgatus and Escherichia coli in the experimental group. These findings revealed a significant gut microbial dysbiosis in esophageal cancer patients. So, the current study can be used for the understanding of esophageal cancer treatment, disease pathway, mechanism, and probiotic development.
- MeSH
- Adult MeSH
- Gastrointestinal Neoplasms * microbiology MeSH
- Gastrointestinal Tract microbiology MeSH
- Clinical Studies as Topic MeSH
- Middle Aged MeSH
- Humans MeSH
- Gastrointestinal Microbiome * MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Research Support, Non-U.S. Gov't MeSH
Shared bicycle is an emerging form of public transportation in China and around the world. However, the bacterial community and drug-resistant microbiome on these bicycles have not been reported. Samples from 10 shared bicycles were observed by scanning electron microscopy (SEM). Nine samples collected from 90 shared bicycles in three different kinds of location (hospital, metro station, shopping mall) were used for full-length 16S rDNA gene analysis to figure out the bacterial composition of the shared bicycle. Samples from 32 shared bicycles were used to investigate culturable drug-resistant bacteria of the shared bicycle bacterial community. It was found that in the shared bicycle bacterial community, Bacillus was the most abundant bacteria, as determined by both SEM observation and full-length 16S rDNA gene analysis. For the analysis of drug-resistant bacteria, Bacillus showed the strongest drug resist ability. Moreover, the resistances to bacitracin and sulfamethoxazole were the most common among all types of bacteria. Our study provides an important reference for the prevention of the potential spread of drug-resistant bacteria through shared bicycles.
- MeSH
- Anti-Bacterial Agents pharmacology MeSH
- Bacteria classification drug effects genetics isolation & purification MeSH
- Drug Resistance, Bacterial * drug effects MeSH
- Bicycling * MeSH
- Transportation MeSH
- Microbial Sensitivity Tests MeSH
- Microbiota * drug effects genetics MeSH
- RNA, Ribosomal, 16S genetics MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- China MeSH