We analyzed gene expression in THP-1 cells exposed to metal-based nanomaterials (NMs) [TiO2 (NM-100), ZnO (NM-110), SiO2 (NM-200), Ag (NM-300 K)]. A functional enrichment analysis of the significant differentially expressed genes (DEGs) identified the key modulated biological processes and pathways. DEGs were used to construct protein-protein interaction networks. NM-110 and NM-300 K induced changes in the expression of genes involved in oxidative and genotoxic stress, immune response, alterations of cell cycle, detoxification of metal ions and regulation of redox-sensitive pathways. Both NMs shared a number of highly connected protein nodes (hubs) including CXCL8, ATF3, HMOX1, and IL1B. NM-200 induced limited transcriptional changes, mostly related to the immune response; however, several hubs (CXCL8, ATF3) were identical with NM-110 and NM-300 K. No effects of NM-100 were observed. Overall, soluble nanomaterials NM-110 and NM-300 K exerted a wide variety of toxic effects, while insoluble NM-200 induced immunotoxicity; NM-100 caused no detectable changes on the gene expression level.
- MeSH
- hemoxygenasa-1 MeSH
- interleukin-8 metabolismus genetika MeSH
- kovové nanočástice toxicita MeSH
- lidé MeSH
- mapy interakcí proteinů * účinky léků MeSH
- nanostruktury toxicita MeSH
- oxid křemičitý toxicita MeSH
- oxid zinečnatý toxicita chemie MeSH
- stříbro * toxicita MeSH
- THP-1 buňky MeSH
- titan * toxicita MeSH
- transkripční faktor ATF3 genetika metabolismus MeSH
- transkriptom účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Nanoparticles (NPs) have a wide use in various field of industry and in medicine, where they represent a promise for their antimicrobial effects. Simultaneous application of NPs and therapeutic stem cells can speed up tissue regeneration and improve healing process but there is a danger of negative impacts of NPs on stem cells. Therefore, we tested effects of four types of metal antimicrobial NPs on characteristics and function properties of mouse mesenchymal stem cells (MSCs) in vitro. All types of tested NPs, i.e. zinc oxide, silver, copper oxide and titanium dioxide, exerted negative effects on the expression of phenotypic markers, metabolic activity, differentiation potential, expression of genes for immunoregulatory molecules and on production of cytokines and growth factors by MSCs. However, there were apparent differences in the impact of individual types of NPs on tested characteristics and function properties of MSCs. The results showed that individual types of NPs influence the activity of MSCs, and thus the use of metal NPs during tissue regeneration and in combination with stem cell therapy should be well considered.
- MeSH
- antiinfekční látky * MeSH
- buněčná diferenciace MeSH
- hojení ran MeSH
- kovové nanočástice * toxicita MeSH
- mezenchymální kmenové buňky * MeSH
- myši MeSH
- nanočástice * MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Nanomaterials or nanoparticles are commonly used in the cosmetics, medicine, and food industries. Many researchers studied the possible side effects of several nanoparticles including aluminum oxide (Al2O3-nps) and zinc oxide nanoparticles (ZnO-nps). Although, there is limited information available on their direct or side effects, especially on the brain, heart, and lung functions. This study aimed to investigate the neurotoxicity, cardiotoxicity, and lung toxicity induced by Al2O3-nps and ZnO-nps or in combination via studying changes in gene expression, alteration in cytokine production, tumor suppressor protein p53, neurotransmitters, oxidative stress, and the histological and morphological changes. Obtained results showed that Al2O3-nps, ZnO-nps and their combination cause an increase in 8-hydroxy-2 ́-deoxyguanosine (8-OHdG), cytokines, p53, oxidative stress, creatine kinase, norepinephrine, acetylcholine (ACh), and lipid profile. Moreover, significant changes in the gene expression of mitochondrial transcription factor-A (mtTFA) and peroxisome proliferator activator receptor-gamma-coactivator-1alpha (PGC-1alpha) were also noted. On the other hand, a significant decrease in the levels of antioxidant enzymes, total antioxidant capacity (TAC), reduced glutathione (GSH), paraoxonase 1 (PON1), neurotransmitters (dopamine - DA, and serotonin - SER), and the activity of acetylcholine esterase (AChE) in the brain, heart, and lung were found. Additionally, these results were confirmed by histological examinations. The present study revealed that the toxic effects were more when these nanoparticle doses are used in combination. Thus, Al2O3-nps and ZnO-nps may behave as neurotoxic, cardiotoxic, and lung toxic, especially upon exposure to rats in combination.
- MeSH
- acetylcholin farmakologie MeSH
- antioxidancia farmakologie MeSH
- kovové nanočástice * toxicita MeSH
- krysa rodu rattus MeSH
- mozek metabolismus MeSH
- nanočástice * toxicita MeSH
- oxid hlinitý toxicita MeSH
- oxid zinečnatý * toxicita MeSH
- oxidační stres MeSH
- plíce metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The massive production and use of silver nanoparticles (Ag NPs) have led to their increasing release into the environment. Even though the antimicrobial and cytotoxic effects of native nanoparticles have been well studied, the environmental impacts of transformation products such as silver sulfide nanoparticles (Ag2S NPs) have not been elucidated. In the present study, we assessed the toxicity of Ag2S NPs and silver nitrate (AgNO3), as a source of Ag, to the earthworm Eisenia andrei using a nominal concentration of 5 mg Ag kg-1 soil. We used the OECD guidelines to assess effects on weight loss and mortality for 14 days. After exposure, we also extracted the immune effector cells (coelomocytes) and conducted a battery of biomarker tests. To ensure the quality of the toxicological results, the structural changes of NPs during the experiment and the uptake of silver by the earthworms were monitored. During the experiment, mortality effects were not detected, but a weight loss was observed in the earthworms exposed to Ag2S NPs. Altough Ag2S NPs were engulfed by E. andrei cells, neither phenoloxidase activity nor lipid peroxidation differed from the untreated control group. Cells from earthworms treated with Ag2S NPs exerted very broad value range of nitric oxide (NO) generation, suggesting an imbalance in the NO metabolism. Overall, this study suggests minimal risks associated with Ag2S NPs exposure to earthworms. However, further studies are needed to assure no immunotoxicological or chronic effects on a wider range of terrestrial organisms.
- MeSH
- dusičnan stříbrný toxicita MeSH
- hmotnostní úbytek MeSH
- kovové nanočástice * chemie toxicita MeSH
- látky znečišťující půdu * toxicita MeSH
- Oligochaeta * MeSH
- půda chemie MeSH
- sloučeniny stříbra MeSH
- stříbro metabolismus toxicita MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Nanotechnology is gaining significant attention, with numerous biomedical applications. Silver in wound dressings, copper oxide and silver in antibacterial preparations, and zinc oxide nanoparticles as a food and cosmetic ingredient are common examples. However, adverse effects of nanoparticles in humans and the environment from extended exposure at varied concentrations have yet to be established. One of the drawbacks of employing nanoparticles is their tendency to cause oxidative stress, a significant public health concern with life-threatening consequences. Cardiovascular, renal, and respiratory problems and diabetes are among the oxidative stress-related disorders. In this context, phytoantioxidant functionalized nanoparticles could be a novel and effective alternative. In addition to performing their intended function, they can protect against oxidative damage. This review was designed by searching through various websites, books, and articles found in PubMed, Science Direct, and Google Scholar. To begin with, oxidative stress, its related diseases, and the mechanistic basis of oxidative damage caused by nanoparticles are discussed. One of the main mechanisms of action of nanoparticles was unearthed to be oxidative stress, which limits their use in humans. Secondly, the role of phytoantioxidant functionalized nanoparticles in oxidative damage prevention is critically discussed. The parameters for the characterization of nanoparticles were also discussed. The majority of silver, gold, iron, zinc oxide, and copper nanoparticles produced utilizing various plant extracts were active free radical scavengers. This potential is linked to several surface fabricated phytoconstituents, such as flavonoids and phenols. These phytoantioxidant functionalized nanoparticles could be a better alternative to nanoparticles prepared by other existing approaches.
- MeSH
- antioxidancia chemie farmakologie MeSH
- fytonutrienty chemie farmakologie MeSH
- kovové nanočástice aplikace a dávkování chemie toxicita MeSH
- lidé MeSH
- oxidační stres účinky léků MeSH
- rostlinné extrakty farmakologie MeSH
- scavengery volných radikálů farmakologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
We report that the immunogenicity of colloidal gold nanoparticles coated with polyvinylpyrrolidone (PVP-AuNPs) in a model organism, the sea urchin Paracentrotus lividus, can function as a proxy for humans for in vitro immunological studies. To profile the immune recognition and interaction from exposure to PVP-AuNPs (1 and 10 μg mL-1), we applied an extensive nano-scale approach, including particle physicochemical characterisation involving immunology, cellular biology, and metabolomics. The interaction between PVP-AuNPs and soluble proteins of the sea urchin physiological coelomic fluid (blood equivalent) results in the formation of a protein "corona" surrounding the NPs from three major proteins that influence the hydrodynamic size and colloidal stability of the particle. At the lower concentration of PVP-AuNPs, the P. lividus phagocytes show a broad metabolic plasticity based on the biosynthesis of metabolites mediating inflammation and phagocytosis. At the higher concentration of PVP-AuNPs, phagocytes activate an immunological response involving Toll-like receptor 4 (TLR4) signalling pathway at 24 hours of exposure. These results emphasise that exposure to PVP-AuNPs drives inflammatory signalling by the phagocytes and the resolution at both the low and high concentrations of the PVP-AuNPs and provides more details regarding the immunogenicity of these NPs.
Nanoparticles (NPs) have many toxic effects on fertility and can prevent successful implantation by affecting the maternal uterine tissue. Herein, by deploying 30 female NMRI mice, the effect of silver NPs on the endometrium and implantation has been investigated. Using spherical silver NPs of a diameter of 18-30 nm at doses of 2 and 4 mg/kg, mice in two groups were treated. Then, female mice mated with male mice. Endometrial tissue was extracted 4.5 days later. On the fourth day of pregnancy, the mice were anesthetized and blood samples were taken from the heart; furthermore, endometrial tissue was isolated and used for molecular tests, inductively coupled plasma, and examination of pinopods. The results revealed that the levels of interleukin 6 (IL-6) and IL-1β and the accumulation of NPs in endometrial tissue in the group receiving NPs at a dose of 4 mg/kg had a major increase relative to the other two groups (p < 0.05); the group receiving a dose of 4 mg/kg exhibited a decrease in pinopods and microvillus compared with the other two groups. According to the results, NPs can reach the endometrium, suggesting that caution should be exercised due to serious exposure to NPs throughout pregnancy.
- MeSH
- endometrium účinky léků metabolismus MeSH
- implantace embrya účinky léků MeSH
- interleukin-1beta metabolismus MeSH
- interleukin-6 metabolismus MeSH
- kovové nanočástice toxicita MeSH
- myši MeSH
- stříbro toxicita MeSH
- těhotenství MeSH
- velikost částic MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
We systematically investigated how the combinations of size, shape and the natural organic matter (NOM)-ecocorona of gold (Au) engineered nanoparticles (ENPs) influence the attachment of the particles to algae and physical toxicity to the cells. Spherical (10, 60 and 100 nm), urchin-shaped (60 nm), rod-shaped (10 × 45, 40 × 60 and 50 × 100 nm), and wire-shaped (75 × 500, 75 × 3000 and 75 × 6000 nm) citrate-coated and NOM-coated Au-ENPs were used. Among the spherical particles only the spherical 10 nm Au-ENPs caused membrane damage to algae. Only the rod-shaped 10 × 45 nm induced membrane damage among the rod-shaped Au-ENPs. Wire-shaped Au-ENPs caused no membrane damage to the algae. NOM ecocorona decreased the membrane damage effects of spherical 10 nm and rod-shaped 10 × 45 nm ENPs. The spherical Au-ENPs were mostly loosely attached to the cells compared to other shapes, whereas the wire-shaped Au-ENPs were mostly strongly attached compared to particles with other shapes. NOM ecocorona determined the strength of Au-ENPs attachment to the cell wall, leading to the formation of loose rather than strong attachment of Au-ENPs to the cells. After removal of the loosely and strongly attached Au-ENPs, some particles remained anchored to the surface of the algae. The highest concentration was detected for spherical 10 nm Au-ENPs followed by rod-shaped 10 × 45 nm Au-ENPs, while the lowest concentration was observed for the wire-shaped Au-ENPs. The combined effect of shape, size, and ecocorona controls the Au-ENPs attachment and physical toxicity to cells.
- MeSH
- buněčná membrána účinky léků ultrastruktura MeSH
- ekotoxikologie MeSH
- huminové látky analýza MeSH
- konfokální mikroskopie MeSH
- kovové nanočástice * chemie toxicita MeSH
- mikrořasy účinky léků růst a vývoj MeSH
- povrchové vlastnosti MeSH
- velikost částic MeSH
- zlato * chemie toxicita MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The inhalation of metal (including lead) nanoparticles poses a real health issue to people and animals living in polluted and/or industrial areas. In this study, we exposed mice to lead(II) nitrate nanoparticles [Pb(NO3)2 NPs], which represent a highly soluble form of lead, by inhalation. We aimed to uncover the effects of their exposure on individual target organs and to reveal potential variability in the lead clearance. We examined (i) lead biodistribution in target organs using laser ablation and inductively coupled plasma mass spectrometry (LA-ICP-MS) and atomic absorption spectrometry (AAS), (ii) lead effect on histopathological changes and immune cells response in secondary target organs and (iii) the clearance ability of target organs. In the lungs and liver, Pb(NO3)2 NP inhalation induced serious structural changes and their damage was present even after a 5-week clearance period despite the lead having been almost completely eliminated from the tissues. The numbers of macrophages significantly decreased after 11-week Pb(NO3)2 NP inhalation; conversely, abundance of alpha-smooth muscle actin (α-SMA)-positive cells, which are responsible for augmented collagen production, increased in both tissues. Moreover, the expression of nuclear factor κB (NF-κB) and selected cytokines, such as tumor necrosis factor alpha (TNFα), transforming growth factor beta 1 (TGFβ1), interleukin 6(IL-6), IL-1α and IL-1β , displayed a tissue-specific response to lead exposure. In summary, diminished inflammatory response in tissues after Pb(NO3)2 NPs inhalation was associated with prolonged negative effect of lead on tissues, as demonstrated by sustained pathological changes in target organs, even after long clearance period.
- MeSH
- aktiny agonisté genetika imunologie MeSH
- alveolární makrofágy účinky léků imunologie patologie MeSH
- aplikace inhalační MeSH
- biologická dostupnost MeSH
- dusičnany farmakokinetika toxicita MeSH
- exprese genu MeSH
- inhalační expozice analýza MeSH
- interleukin-1alfa agonisté genetika imunologie MeSH
- interleukin-1beta agonisté genetika imunologie MeSH
- interleukin-6 agonisté genetika imunologie MeSH
- játra účinky léků imunologie patologie MeSH
- kovové nanočástice aplikace a dávkování toxicita MeSH
- látky znečišťující vzduch farmakokinetika toxicita MeSH
- myši inbrední ICR MeSH
- myši MeSH
- NF-kappa B agonisté genetika imunologie MeSH
- olovo farmakokinetika toxicita MeSH
- plíce účinky léků imunologie patologie MeSH
- poločas MeSH
- spektrofotometrie atomová MeSH
- tkáňová distribuce MeSH
- TNF-alfa agonisté genetika imunologie MeSH
- transformující růstový faktor beta1 agonisté genetika imunologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Due to the growing number of applications of cadmium oxide nanoparticles (CdO NPs), there is a concern about their potential deleterious effects. The objective of our study was to investigate the effect of CdO NPs on the immune response, renal and intestine oxidative stress, blood antioxidant defence, renal fibrotic response, bone density and mineral content. Six-week-old female ICR mice were exposed to CdO NPs for 6 weeks by inhalation (particle size: 9.82 nm, mass concentration: 31.7 μg CdO/m3, total deposited dose: 0.195 μg CdO/g body weight). CdO NPs increased percentage of thymus CD3e+CD8a+ cells and moderately enhanced splenocyte proliferation and production of cytokines and chemokines. CdO NPs elevated pro-fibrotic factors (TGF-β2, α-SMA and collagen I) in the kidney, and concentrations of AGEs in the intestine. The ratio of GSH and GSSG in blood was slightly reduced. Exposure to CdO NPs resulted in 10-fold higher Cd concentration in tibia bones. No differences were found in bone mass density, mineral content, bone area values, bone concentrations of Ca, P, Mg and Ca/P ratio. Our findings indicate stimulation of immune/inflammatory response, oxidative stress in the intestine, starting fibrotic response in kidneys and accumulation of CdO NPs in bones of mice.
- MeSH
- aplikace inhalační MeSH
- buněčná imunita účinky léků MeSH
- cytokiny metabolismus MeSH
- fibróza chemicky indukované MeSH
- kovové nanočástice aplikace a dávkování toxicita MeSH
- ledviny účinky léků patologie MeSH
- lymfatické uzliny účinky léků MeSH
- myši inbrední ICR MeSH
- oxidační stres účinky léků MeSH
- oxidy aplikace a dávkování toxicita MeSH
- slezina účinky léků MeSH
- sloučeniny kadmia aplikace a dávkování toxicita MeSH
- střeva účinky léků MeSH
- thymus účinky léků MeSH
- tibie účinky léků MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH