Glacier Algae: A Dark Past and a Darker Future

. 2019 ; 10 () : 524. [epub] 20190404

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid31019491

"Glacier algae" grow on melting glacier and ice sheet surfaces across the cryosphere, causing the ice to absorb more solar energy and consequently melt faster, while also turning over carbon and nutrients. This makes glacier algal assemblages, which are typically dominated by just three main species, a potentially important yet under-researched component of the global biosphere, carbon, and water cycles. This review synthesizes current knowledge on glacier algae phylogenetics, physiology, and ecology. We discuss their significance for the evolution of early land plants and highlight their impacts on the physical and chemical supraglacial environment including their role as drivers of positive feedbacks to climate warming, thereby demonstrating their influence on Earth's past and future. Four complementary research priorities are identified, which will facilitate broad advances in glacier algae research, including establishment of reliable culture collections, sequencing of glacier algae genomes, development of diagnostic biosignatures for remote sensing, and improved predictive modeling of glacier algae biological-albedo effects.

Zobrazit více v PubMed

Anesio A. M., Lutz S., Chrismas N. A. M., Benning L. G. (2017). The microbiome of glaciers and ice sheets. npj Biofilms Microbiomes 3:10. 10.1038/s41522-017-0019-0, PMID: PubMed DOI PMC

Bamber J., Westaway R., Marzeion B., Wouters B. (2018). The land ice contribution to sea level during the satellite era. Environ. Res. Lett. 13:63008. 10.1088/1748-9326/aac2f0 DOI

Becker B. (2013). Snow ball earth and the split of Streptophyta and Chlorophyta. Trends Plant Sci. 18, 180–183. 10.1016/j.tplants.2012.09.010 PubMed DOI

Becker B., Marin B. (2009). Streptophyte algae and the origin of embryophytes. Ann. Bot. 103, 999–1004. 10.1093/aob/mcp044, PMID: PubMed DOI PMC

Benning L. G., Anesio A. M., Lutz S., Tranter M. (2014). Biological impact on Greenland’s albedo. Nat. Geosci. 7:691. 10.1038/ngeo2260 DOI

Boetius A., Anesio A. M., Deming J. W., Mikucki J. A., Rapp J. Z. (2015). Microbial ecology of the cryosphere: sea ice and glacial habitats. Nat. Rev. Microbiol. 13, 677–690. 10.1038/nrmicro3522, PMID: PubMed DOI

Box J. E., Fettweis X., Stroeve J. C., Tedesco M., Hall D. K., Steffen K. (2012). Greenland ice sheet albedo feedback: thermodynamics and atmospheric drivers. Cryosphere 6, 821–839. 10.5194/tc-6-821-2012 DOI

Box J. E., Sharp M. (2017). “Changes to Arctic land ice” in Snow, water, ice and permafrost in the arctic (SWIPA) 2017, (Oslo, Norway: Arctic Monitoring and Assessment Programme (AMAP)). 137–168.

Casanueva A., Tuffin M., Cary C., Cowan D. (2010). Molecular adaptations to psychrophily: the impact of “omic” technologies. Trends Microbiol. 18, 374–381. 10.1016/j.tim.2010.05.002, PMID: PubMed DOI

Chapman B., Roser D. J., Seppelt R. D. (1994). 13C NMR analysis of Antarctic cryptogam extracts. Antarct. Sci. 6, 295–305.

Cook J. M., Hodson A. J., Anesio A. M., Hanna E., Yallop M., Stibal M., et al. (2012). An improved estimate of microbially mediated carbon fluxes from the Greenland ice sheet. J. Glaciol. 58, 1098–1108. 10.3189/2012JoG12J001 DOI

Cook J. M., Hodson A. J., Gardner A. S., Flanner M., Tedstone A. J., Williamson C., et al. (2017). Quantifying bioalbedo: a new physically-based model and critique of empirical methods for characterizing biological influence on ice and snow albedo. Cryosphere 11, 2611–2632. 10.5194/tc-2017-73 DOI

Cook J. M., Hodson A. J., Irvine-Fynn T. D. L. (2016). Supraglacial weathering crust dynamics inferred from cryoconite hole hydrology. Hydrol. Process. 30, 433–446. 10.1002/hyp.10602 DOI

Dahl T. W., Hammarlund E. U., Anbar A. D., Bond D. P. G., Gill B. C., Gordon G. W., et al. (2010). Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish. Proc. Natl. Acad. Sci. 107, 17911–17915. 10.1073/pnas.1011287107 PubMed DOI PMC

De Vries J., Archibald J. M. (2018). Plant evolution: landmarks on the path to terrestrial life. New Phytol. 217, 1428–1434. 10.1111/nph.14975, PMID: PubMed DOI

De Vries J., Stanton A., Archibald J. M., Gould S. B. (2016). Streptophyte terrestrialization in light of plastid evolution. Trends Plant Sci. 21, 467–476. 10.1016/j.tplants.2016.01.021, PMID: PubMed DOI

Delwiche C. F., Cooper E. D. (2015). The evolutionary origin of a terrestrial flora. Curr. Biol. 25, R899–R910. 10.1016/j.cub.2015.08.029, PMID: PubMed DOI

Dial R. J., Ganey G. Q., Skiles S. M. (2018). What color should glacier algae be? FEMS Microbiol. Ecol. 94fiy007. 10.1093/femsec/fiy007 PubMed DOI

Ganey G. Q., Loso M. G., Burgess A. B., Dial R. J. (2017). The role of microbes in snowmelt and radiative forcing on an Alaskan icefield. Nat. Geosci. 10, 754–759. 10.1038/NGEO3027 DOI

Gontcharov A. A. (2008). Phylogeny and classification of Zygnematophyceae (Streptophyta): current state of affairs. Fottea 8, 87–104. 10.5507/fot.2008.004 DOI

Guiry M. D. (2013). Taxonomy and nomenclature of the Conjugatophyceae (=Zygnematophyceae). Algae 28, 1–29. 10.4490/algae.2013.28.1.001 DOI

Hall J. D., Karol K. G., McCourt R. M., Delwiche C. F. (2008). Phylogeny of the conjugating green algae based on chloroplast and mitochondrial nucleotide sequence data. J. Phycol. 44, 467–477. 10.1111/j.1529-8817.2008.00485.x, PMID: PubMed DOI

Hawkings J., Wadham J., Tranter M., Telling J., Bagshaw E. (2016). The Greenland ice sheet as a hot spot of phosphorous weathering and export in the Arctic. Global Biogeochem. Cycles 30, 191–210. 10.1002/2015GB005237 DOI

Hodson A., Anesio A., Tranter M., Fountain A., Osborn M., Priscu J., et al. (2008). Glacial ecosystems. Ecol. Monogr. 78, 41–67. 10.1890/07-0187.1 DOI

Hoham R., Duval B. (2001). “Microbial ecology of snow and freshwater ice with emphasis on snow algae” in Snow ecology: An interdisciplinary examinatino of snow-covered ecosystems. eds. Jones H. G., Pomeroy J. W., Walker D. A., Hoham R. (Cambridge: Cambridge University Press; ), 168–228.

Huovinen P., Ramirez J., Gomez I. (2018). Remote sensing of albedo reducing snow algae and impurities in the Maritime Antarctic. ISPRS J. Photogramm. Remote Sens. 146, 507–517. 10.1016/j.isprsjprs.2018.10.015 DOI

Kol E. (1968). “Kryobiologie. Biologie und Limnologie des Schnees und Eises. I. Kryovegetation” in Die Binnengewasser. (Stuttgart: E. Schweizerbart’sche Verlagsbuchhandlung; ).

Kol E., Taylor W. (1942). The snow and ice algae of Alaska. Smithson. Misc. Collect. 101, 1–36.

Kristiansen J. (1996). Dispersal of freshwater algae-a review. Hydrobiologia. Hydrobiologia. 336, 151–157.

Kump L. R. (2014). Hypothesized link between Neoproterozoic greening of the land surface and the establishment of an oxygen-rich atmosphere. Proc. Natl. Acad. Sci. 111, 14062–14065. 10.1073/pnas.1321496111, PMID: PubMed DOI PMC

Leliaert F., Smith D. R., Moreau H., Herron M. D., Verbruggen H., Delwiche C. F., et al. (2012). Phylogeny and molecular evolution of the green algae. CRC. Crit. Rev. Plant Sci. 31, 1–46. 10.1080/07352689.2011.615705 DOI

Lewis L. A., McCourt R. M. (2004). Green algae and the origin of land plants. Am. J. Bot. 91, 1535–1556. 10.3732/ajb.91.10.1535, PMID: PubMed DOI

Ling H. U., Seppelt R. D. (1993). Snow algae of the windmill islands continental Antarctica Chloromonas rubroleosa (Volvocales, Chlorophyta) an alga of red snow. Eur. J. Phycol. 28, 77–84. 10.1080/09670269300650131 DOI

Lutz S., Anesio A. M., Edwards A., Benning L. G. (2017). Linking microbial diversity and functionality of arctic glacial surface habitats. Environ. Microbiol. 19, 551–565. 10.1111/1462-2920.13494, PMID: PubMed DOI

Lyon B., Mock T. (2014). Polar microalgae: new approaches towards understanding adaptations to an extreme and changing environment. Biology 3, 56–80. 10.3390/biology3010056, PMID: PubMed DOI PMC

Morgan-Kiss R. M., Priscu J. C., Pocock T., Gudynaite-Savitch L., Huner N. P. A. (2006). Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbiol. Mol. Biol. Rev. 70, 222–252. 10.1128/MMBR.70.1.222-252.2006, PMID: PubMed DOI PMC

Morris J. L., Puttick M. N., Clark J. W., Edwards D., Kenrick P., Pressel S., et al. (2018). The timescale of early land plant evolution. Proc. Natl. Acad. Sci. 115, E2274–E2283. 10.1073/pnas.1719588115 PubMed DOI PMC

Muller F., Keeler C. (1969). Errors in short-term ablation measurements on melting ice surfaces. J. Glaciol. 8, 91–105. 10.1017/S0022143000020785 DOI

Musilova M., Tranter M., Wadham J., Telling J., Tedstone A., Anesio A. M. (2017). Microbially driven export of labile organic carbon from the Greenland ice sheet. Nat. Geosci. 10, 360–365. 10.1038/NGEO2920 DOI

Noël B., van de Berg W. J., van Wessem J. M., van Meijgaard E., van As D., Lenaerts J. T. M., et al. (2018). Modelling the climate and surface mass balance of polar ice sheets using RACMO2 – Part 1: Greenland (1958–2016). Cryosphere 12, 811–831. 10.5194/tc-12-811-2018 DOI

Nordenskiöld A. E. (1872). VI.—Account of an expedition to Greenland in the year 1870. Geol. Mag. 9, 516–524. 10.1017/S0016756800466033 DOI

Painter T. H., Duval B., Thomas W. H., Mendez M., Heintzelman S., Dozier J. (2001). Detection and quantification of snow algae with an airbourne imaging spectrometer. Appl. Environ. Microbiol. 67, 5267–5272. PubMed PMC

Remias D., Holzinger A., Aigner S., Lutz C. (2012a). Ecophysiology and ultrastructure of Ancylonema nordenskiöldii (Zygnematales, Streptophyta), causing brown ice on glaciers in Svalbard (high arctic). Polar Biol. 35, 899–908. 10.1007/s00300-011-1135-6 DOI

Remias D., Holzinger A., Lütz C. (2009). Physiology, ultrastructure and habitat of the ice alga Mesotaenium berggrenii (Zygnemaphyceae, Chlorophyta) from glaciers in the European Alps. Phycologia 48, 302–312. 10.2216/08-13.1 DOI

Remias D., Schwaiger S., Aigner S., Leya T., Stuppner H., Lütz C. (2012b). Characterization of an UV- and VIS-absorbing, purpurogallin-derived secondary pigment new to algae and highly abundant in Mesotaenium berggrenii (Zygnematophyceae, Chlorophyta), an extremophyte living on glaciers. FEMS Microbiol. Ecol. 79, 638–648. 10.1111/j.1574-6941.2011.01245.x PubMed DOI

Roser D. J., Melick D. R., Ling H. U., Seppelt R. D. (1992). Polyol and sugar content of terrestrial plants from continental Antarctica. Antarct. Sci. 4, 413–420. 10.1017/S0954102092000610 DOI

Ryan J. C., Hubbard A., Stibal M., Irvine-Fynn T. D., Cook J., Smith L. C., et al. . (2018). Dark zone of the Greenland ice sheet controlled by distributed biologically-active impurities. Nat. Commun. 9:1065. 10.1038/s41467-018-03353-2, PMID: PubMed DOI PMC

Selosse M. A., Strullu-Derrien C., Martin F. M., Kamoun S., Kenrick P. (2015). Plants, fungi and oomycetes: a 400-million year affair that shapes the biosphere. New Phytol. 206, 501–506. 10.1111/nph.13371, PMID: PubMed DOI

Smith H. J., Foster R. A., McKnight D. M., Lisle J. T., Littmann S., Kuypers M. M. M., et al. (2017). Microbial formation of labile organic carbon in Antarctic glacial environments. Nat. Geosci. 10, 356–359. 10.1038/ngeo2925 DOI

Stibal M., Box J. E., Cameron K. A., Langen P. L., Yallop M. L., Mottram R. H., et al. (2017). Algae drive enhanced darkening of bare ice on the Greenland ice sheet. Geophys. Res. Lett. 44, 11463–11471. 10.1002/2017GL075958 DOI

Stibal M., Šabacká M., Žárský J. (2012). Biological processes on glacier and ice sheet surfaces. Nat. Geosci. 5, 771–774. 10.1038/NGEO1611 DOI

Takeuchi N. (2001). The altitudinal distribution of snow algae on an Alaskan glacier (Gulkana Glacier in the Alaska Range). Hydrol. Process. 15, 3447–3459. 10.1002/hyp.1040 DOI

Takeuchi N. (2013). Seasonal and altitudinal variations in snow algal communities on an Alaskan glacier (Gulkana glacier in the Alaska range). Environ. Res. Lett. 8:035002. 10.1088/1748-9326/8/3/035002 DOI

Takeuchi N., Fujisawa Y., Kadota T., Tanaka S., Miyairi M., Shirakawa T., et al. (2015). The effect of impurities on the surface melt of a glacier in the Suntar-Khayata mountain range, Russian Siberia. Front. Earth Sci. 3, 1–11. 10.3389/feart.2015.00082 DOI

Takeuchi N., Fujita K., Nakazawa F., Matoba S., Nakawo M., Rana B. (2009). A snow algal community of the surface and in an ice core of Rikha-Samba Glacier in Western Nepali Himalayas. Bull. Glaciol. Res. 27, 25–35.

Takeuchi N., Kohshima S. (2004). A snow algal community on Tyndall Glacier in the Southern Patagonia Icefield, Chile. Arct. Antarct. Alp. Res. 36, 92–99. 10.1657/1523-0430(2004)036[0092:ASACOT]2.0.CO;2 DOI

Takeuchi N., Uetake J., Fujita K., Aizen V., Nikitin S. (2006). A snow algal community on Akkem Glacier in the Russian Altai Mountains. Ann. Glaciol. 43, 378–384. 10.3189/172756406781812113 DOI

Tanaka S., Takeuchi N., Miyairi M., Fujisawa Y., Kadota T., Shirakawa T., et al. (2016). Snow algal communities on glaciers in the Suntar-Khayata Mountain Range in eastern Siberia, Russia. Pol. Sci. 10, 227–238. 10.1016/j.polar.2016.03.004 DOI

Tedesco M., Doherty S., Fettweis X., Alexander P., Jeyaratnam J., Stroeve J. (2016). The darkening of the Greenland ice sheet: trends, drivers, and projections (1981–2100). Cryosphere 10, 477–496. 10.5194/tc-10-477-2016 DOI

Tedstone A. J., Bamber J. L., Cook J. M., Williamson C. J., Fettweis X., Hodson A. J., et al. (2017). Dark ice dynamics of the south-west Greenland Ice sheet. Cryosphere 11, 2491–2506. 10.5194/tc-11-2491-2017 DOI

Uetake J., Naganuma T., Hebsgaard M. B., Kanda H., Kohshima S. (2010). Communities of algae and cyanobacteria on glaciers in west Greenland. Pol. Sci. 4, 71–80. 10.1016/j.polar.2010.03.002 DOI

Wadham J. L., Hawkings J., Telling J., Chandler D., Alcock J., Lawson E., et al. (2016). Sources, cycling and export of nitrogen on the Greenland ice sheet. Biogeosciences 13, 6339–6352. 10.5194/bg-13-6339-2016 DOI

Waters E. R. (2003). Molecular adaptation and the origin of land plants. Mol. Phylogenet. Evol. 29, 456–463. 10.1016/j.ympev.2003.07.018, PMID: PubMed DOI

Welsh D. T. (2006). Ecological significance of compatible solute accumulation by micro-organisms: from single cells to global climate. FEMS Microbiol. Rev. 24, 263–290. 10.1111/j.1574-6976.2000.tb00542.x PubMed DOI

Wickett N. J., Mirarab S., Nguyen N., Warnow T., Carpenter E., Matasci N., et al. . (2014). Phylotranscriptomic analysis of the origin and early diversification of land plants. Proc. Natl. Acad. Sci. 111, E4859–E4868. 10.1073/pnas.1323926111, PMID: PubMed DOI PMC

Wientjes I. G. M., Oerlemans J. (2010). An explanation for the dark region in the western melt zone of the Greenland ice sheet. Cryosphere 4, 261–268. 10.5194/tc-4-261-2010 DOI

Williamson C. J., Anesio A. M., Cook J., Tedstone A., Poniecka E., Holland A., et al. (2018). Ice algal bloom development on the surface of the Greenland ice sheet. FEMS Microbiol. Ecol. 94fiy025. 10.1093/femsec/fiy025 PubMed DOI PMC

Wodniok S., Brinkmann H., Glöckner G., Heidel A. J., Philippe H., Melkonian M., et al. . (2011). Origin of land plants: do conjugating green algae hold the key? BMC Evol. Biol. 11:104. 10.1186/1471-2148-11-104, PMID: PubMed DOI PMC

Yallop M. L., Anesio A. M., Perkins R. G., Cook J., Telling J., Fagan D., et al. . (2012). Photophysiology and albedo-changing potential of the ice algal community on the surface of the Greenland ice sheet. ISME J. 6, 2302–2313. 10.1038/ismej.2012.107, PMID: PubMed DOI PMC

Yoshimura Y., Kohshima S., Ohtani S. (1997). A community of snow algae on a Himalayan glacier: change of algal biomass and community structure with altitude. Arct. Alp. Res. 29, 126–137. 10.2307/1551843 DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...