Glacier Algae: A Dark Past and a Darker Future
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
31019491
PubMed Central
PMC6458304
DOI
10.3389/fmicb.2019.00524
Knihovny.cz E-zdroje
- Klíčová slova
- Streptophytes, albedo, glacier algae, ice, terrestrialization,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
"Glacier algae" grow on melting glacier and ice sheet surfaces across the cryosphere, causing the ice to absorb more solar energy and consequently melt faster, while also turning over carbon and nutrients. This makes glacier algal assemblages, which are typically dominated by just three main species, a potentially important yet under-researched component of the global biosphere, carbon, and water cycles. This review synthesizes current knowledge on glacier algae phylogenetics, physiology, and ecology. We discuss their significance for the evolution of early land plants and highlight their impacts on the physical and chemical supraglacial environment including their role as drivers of positive feedbacks to climate warming, thereby demonstrating their influence on Earth's past and future. Four complementary research priorities are identified, which will facilitate broad advances in glacier algae research, including establishment of reliable culture collections, sequencing of glacier algae genomes, development of diagnostic biosignatures for remote sensing, and improved predictive modeling of glacier algae biological-albedo effects.
Department of Ecology Faculty of Science Charles University Prague Czechia
Department of Geography The University of Sheffield Sheffield United Kingdom
Zobrazit více v PubMed
Anesio A. M., Lutz S., Chrismas N. A. M., Benning L. G. (2017). The microbiome of glaciers and ice sheets. npj Biofilms Microbiomes 3:10. 10.1038/s41522-017-0019-0, PMID: PubMed DOI PMC
Bamber J., Westaway R., Marzeion B., Wouters B. (2018). The land ice contribution to sea level during the satellite era. Environ. Res. Lett. 13:63008. 10.1088/1748-9326/aac2f0 DOI
Becker B. (2013). Snow ball earth and the split of Streptophyta and Chlorophyta. Trends Plant Sci. 18, 180–183. 10.1016/j.tplants.2012.09.010 PubMed DOI
Becker B., Marin B. (2009). Streptophyte algae and the origin of embryophytes. Ann. Bot. 103, 999–1004. 10.1093/aob/mcp044, PMID: PubMed DOI PMC
Benning L. G., Anesio A. M., Lutz S., Tranter M. (2014). Biological impact on Greenland’s albedo. Nat. Geosci. 7:691. 10.1038/ngeo2260 DOI
Boetius A., Anesio A. M., Deming J. W., Mikucki J. A., Rapp J. Z. (2015). Microbial ecology of the cryosphere: sea ice and glacial habitats. Nat. Rev. Microbiol. 13, 677–690. 10.1038/nrmicro3522, PMID: PubMed DOI
Box J. E., Fettweis X., Stroeve J. C., Tedesco M., Hall D. K., Steffen K. (2012). Greenland ice sheet albedo feedback: thermodynamics and atmospheric drivers. Cryosphere 6, 821–839. 10.5194/tc-6-821-2012 DOI
Box J. E., Sharp M. (2017). “Changes to Arctic land ice” in Snow, water, ice and permafrost in the arctic (SWIPA) 2017, (Oslo, Norway: Arctic Monitoring and Assessment Programme (AMAP)). 137–168.
Casanueva A., Tuffin M., Cary C., Cowan D. (2010). Molecular adaptations to psychrophily: the impact of “omic” technologies. Trends Microbiol. 18, 374–381. 10.1016/j.tim.2010.05.002, PMID: PubMed DOI
Chapman B., Roser D. J., Seppelt R. D. (1994). 13C NMR analysis of Antarctic cryptogam extracts. Antarct. Sci. 6, 295–305.
Cook J. M., Hodson A. J., Anesio A. M., Hanna E., Yallop M., Stibal M., et al. (2012). An improved estimate of microbially mediated carbon fluxes from the Greenland ice sheet. J. Glaciol. 58, 1098–1108. 10.3189/2012JoG12J001 DOI
Cook J. M., Hodson A. J., Gardner A. S., Flanner M., Tedstone A. J., Williamson C., et al. (2017). Quantifying bioalbedo: a new physically-based model and critique of empirical methods for characterizing biological influence on ice and snow albedo. Cryosphere 11, 2611–2632. 10.5194/tc-2017-73 DOI
Cook J. M., Hodson A. J., Irvine-Fynn T. D. L. (2016). Supraglacial weathering crust dynamics inferred from cryoconite hole hydrology. Hydrol. Process. 30, 433–446. 10.1002/hyp.10602 DOI
Dahl T. W., Hammarlund E. U., Anbar A. D., Bond D. P. G., Gill B. C., Gordon G. W., et al. (2010). Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish. Proc. Natl. Acad. Sci. 107, 17911–17915. 10.1073/pnas.1011287107 PubMed DOI PMC
De Vries J., Archibald J. M. (2018). Plant evolution: landmarks on the path to terrestrial life. New Phytol. 217, 1428–1434. 10.1111/nph.14975, PMID: PubMed DOI
De Vries J., Stanton A., Archibald J. M., Gould S. B. (2016). Streptophyte terrestrialization in light of plastid evolution. Trends Plant Sci. 21, 467–476. 10.1016/j.tplants.2016.01.021, PMID: PubMed DOI
Delwiche C. F., Cooper E. D. (2015). The evolutionary origin of a terrestrial flora. Curr. Biol. 25, R899–R910. 10.1016/j.cub.2015.08.029, PMID: PubMed DOI
Dial R. J., Ganey G. Q., Skiles S. M. (2018). What color should glacier algae be? FEMS Microbiol. Ecol. 94fiy007. 10.1093/femsec/fiy007 PubMed DOI
Ganey G. Q., Loso M. G., Burgess A. B., Dial R. J. (2017). The role of microbes in snowmelt and radiative forcing on an Alaskan icefield. Nat. Geosci. 10, 754–759. 10.1038/NGEO3027 DOI
Gontcharov A. A. (2008). Phylogeny and classification of Zygnematophyceae (Streptophyta): current state of affairs. Fottea 8, 87–104. 10.5507/fot.2008.004 DOI
Guiry M. D. (2013). Taxonomy and nomenclature of the Conjugatophyceae (=Zygnematophyceae). Algae 28, 1–29. 10.4490/algae.2013.28.1.001 DOI
Hall J. D., Karol K. G., McCourt R. M., Delwiche C. F. (2008). Phylogeny of the conjugating green algae based on chloroplast and mitochondrial nucleotide sequence data. J. Phycol. 44, 467–477. 10.1111/j.1529-8817.2008.00485.x, PMID: PubMed DOI
Hawkings J., Wadham J., Tranter M., Telling J., Bagshaw E. (2016). The Greenland ice sheet as a hot spot of phosphorous weathering and export in the Arctic. Global Biogeochem. Cycles 30, 191–210. 10.1002/2015GB005237 DOI
Hodson A., Anesio A., Tranter M., Fountain A., Osborn M., Priscu J., et al. (2008). Glacial ecosystems. Ecol. Monogr. 78, 41–67. 10.1890/07-0187.1 DOI
Hoham R., Duval B. (2001). “Microbial ecology of snow and freshwater ice with emphasis on snow algae” in Snow ecology: An interdisciplinary examinatino of snow-covered ecosystems. eds. Jones H. G., Pomeroy J. W., Walker D. A., Hoham R. (Cambridge: Cambridge University Press; ), 168–228.
Huovinen P., Ramirez J., Gomez I. (2018). Remote sensing of albedo reducing snow algae and impurities in the Maritime Antarctic. ISPRS J. Photogramm. Remote Sens. 146, 507–517. 10.1016/j.isprsjprs.2018.10.015 DOI
Kol E. (1968). “Kryobiologie. Biologie und Limnologie des Schnees und Eises. I. Kryovegetation” in Die Binnengewasser. (Stuttgart: E. Schweizerbart’sche Verlagsbuchhandlung; ).
Kol E., Taylor W. (1942). The snow and ice algae of Alaska. Smithson. Misc. Collect. 101, 1–36.
Kristiansen J. (1996). Dispersal of freshwater algae-a review. Hydrobiologia. Hydrobiologia. 336, 151–157.
Kump L. R. (2014). Hypothesized link between Neoproterozoic greening of the land surface and the establishment of an oxygen-rich atmosphere. Proc. Natl. Acad. Sci. 111, 14062–14065. 10.1073/pnas.1321496111, PMID: PubMed DOI PMC
Leliaert F., Smith D. R., Moreau H., Herron M. D., Verbruggen H., Delwiche C. F., et al. (2012). Phylogeny and molecular evolution of the green algae. CRC. Crit. Rev. Plant Sci. 31, 1–46. 10.1080/07352689.2011.615705 DOI
Lewis L. A., McCourt R. M. (2004). Green algae and the origin of land plants. Am. J. Bot. 91, 1535–1556. 10.3732/ajb.91.10.1535, PMID: PubMed DOI
Ling H. U., Seppelt R. D. (1993). Snow algae of the windmill islands continental Antarctica Chloromonas rubroleosa (Volvocales, Chlorophyta) an alga of red snow. Eur. J. Phycol. 28, 77–84. 10.1080/09670269300650131 DOI
Lutz S., Anesio A. M., Edwards A., Benning L. G. (2017). Linking microbial diversity and functionality of arctic glacial surface habitats. Environ. Microbiol. 19, 551–565. 10.1111/1462-2920.13494, PMID: PubMed DOI
Lyon B., Mock T. (2014). Polar microalgae: new approaches towards understanding adaptations to an extreme and changing environment. Biology 3, 56–80. 10.3390/biology3010056, PMID: PubMed DOI PMC
Morgan-Kiss R. M., Priscu J. C., Pocock T., Gudynaite-Savitch L., Huner N. P. A. (2006). Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbiol. Mol. Biol. Rev. 70, 222–252. 10.1128/MMBR.70.1.222-252.2006, PMID: PubMed DOI PMC
Morris J. L., Puttick M. N., Clark J. W., Edwards D., Kenrick P., Pressel S., et al. (2018). The timescale of early land plant evolution. Proc. Natl. Acad. Sci. 115, E2274–E2283. 10.1073/pnas.1719588115 PubMed DOI PMC
Muller F., Keeler C. (1969). Errors in short-term ablation measurements on melting ice surfaces. J. Glaciol. 8, 91–105. 10.1017/S0022143000020785 DOI
Musilova M., Tranter M., Wadham J., Telling J., Tedstone A., Anesio A. M. (2017). Microbially driven export of labile organic carbon from the Greenland ice sheet. Nat. Geosci. 10, 360–365. 10.1038/NGEO2920 DOI
Noël B., van de Berg W. J., van Wessem J. M., van Meijgaard E., van As D., Lenaerts J. T. M., et al. (2018). Modelling the climate and surface mass balance of polar ice sheets using RACMO2 – Part 1: Greenland (1958–2016). Cryosphere 12, 811–831. 10.5194/tc-12-811-2018 DOI
Nordenskiöld A. E. (1872). VI.—Account of an expedition to Greenland in the year 1870. Geol. Mag. 9, 516–524. 10.1017/S0016756800466033 DOI
Painter T. H., Duval B., Thomas W. H., Mendez M., Heintzelman S., Dozier J. (2001). Detection and quantification of snow algae with an airbourne imaging spectrometer. Appl. Environ. Microbiol. 67, 5267–5272. PubMed PMC
Remias D., Holzinger A., Aigner S., Lutz C. (2012a). Ecophysiology and ultrastructure of Ancylonema nordenskiöldii (Zygnematales, Streptophyta), causing brown ice on glaciers in Svalbard (high arctic). Polar Biol. 35, 899–908. 10.1007/s00300-011-1135-6 DOI
Remias D., Holzinger A., Lütz C. (2009). Physiology, ultrastructure and habitat of the ice alga Mesotaenium berggrenii (Zygnemaphyceae, Chlorophyta) from glaciers in the European Alps. Phycologia 48, 302–312. 10.2216/08-13.1 DOI
Remias D., Schwaiger S., Aigner S., Leya T., Stuppner H., Lütz C. (2012b). Characterization of an UV- and VIS-absorbing, purpurogallin-derived secondary pigment new to algae and highly abundant in Mesotaenium berggrenii (Zygnematophyceae, Chlorophyta), an extremophyte living on glaciers. FEMS Microbiol. Ecol. 79, 638–648. 10.1111/j.1574-6941.2011.01245.x PubMed DOI
Roser D. J., Melick D. R., Ling H. U., Seppelt R. D. (1992). Polyol and sugar content of terrestrial plants from continental Antarctica. Antarct. Sci. 4, 413–420. 10.1017/S0954102092000610 DOI
Ryan J. C., Hubbard A., Stibal M., Irvine-Fynn T. D., Cook J., Smith L. C., et al. . (2018). Dark zone of the Greenland ice sheet controlled by distributed biologically-active impurities. Nat. Commun. 9:1065. 10.1038/s41467-018-03353-2, PMID: PubMed DOI PMC
Selosse M. A., Strullu-Derrien C., Martin F. M., Kamoun S., Kenrick P. (2015). Plants, fungi and oomycetes: a 400-million year affair that shapes the biosphere. New Phytol. 206, 501–506. 10.1111/nph.13371, PMID: PubMed DOI
Smith H. J., Foster R. A., McKnight D. M., Lisle J. T., Littmann S., Kuypers M. M. M., et al. (2017). Microbial formation of labile organic carbon in Antarctic glacial environments. Nat. Geosci. 10, 356–359. 10.1038/ngeo2925 DOI
Stibal M., Box J. E., Cameron K. A., Langen P. L., Yallop M. L., Mottram R. H., et al. (2017). Algae drive enhanced darkening of bare ice on the Greenland ice sheet. Geophys. Res. Lett. 44, 11463–11471. 10.1002/2017GL075958 DOI
Stibal M., Šabacká M., Žárský J. (2012). Biological processes on glacier and ice sheet surfaces. Nat. Geosci. 5, 771–774. 10.1038/NGEO1611 DOI
Takeuchi N. (2001). The altitudinal distribution of snow algae on an Alaskan glacier (Gulkana Glacier in the Alaska Range). Hydrol. Process. 15, 3447–3459. 10.1002/hyp.1040 DOI
Takeuchi N. (2013). Seasonal and altitudinal variations in snow algal communities on an Alaskan glacier (Gulkana glacier in the Alaska range). Environ. Res. Lett. 8:035002. 10.1088/1748-9326/8/3/035002 DOI
Takeuchi N., Fujisawa Y., Kadota T., Tanaka S., Miyairi M., Shirakawa T., et al. (2015). The effect of impurities on the surface melt of a glacier in the Suntar-Khayata mountain range, Russian Siberia. Front. Earth Sci. 3, 1–11. 10.3389/feart.2015.00082 DOI
Takeuchi N., Fujita K., Nakazawa F., Matoba S., Nakawo M., Rana B. (2009). A snow algal community of the surface and in an ice core of Rikha-Samba Glacier in Western Nepali Himalayas. Bull. Glaciol. Res. 27, 25–35.
Takeuchi N., Kohshima S. (2004). A snow algal community on Tyndall Glacier in the Southern Patagonia Icefield, Chile. Arct. Antarct. Alp. Res. 36, 92–99. 10.1657/1523-0430(2004)036[0092:ASACOT]2.0.CO;2 DOI
Takeuchi N., Uetake J., Fujita K., Aizen V., Nikitin S. (2006). A snow algal community on Akkem Glacier in the Russian Altai Mountains. Ann. Glaciol. 43, 378–384. 10.3189/172756406781812113 DOI
Tanaka S., Takeuchi N., Miyairi M., Fujisawa Y., Kadota T., Shirakawa T., et al. (2016). Snow algal communities on glaciers in the Suntar-Khayata Mountain Range in eastern Siberia, Russia. Pol. Sci. 10, 227–238. 10.1016/j.polar.2016.03.004 DOI
Tedesco M., Doherty S., Fettweis X., Alexander P., Jeyaratnam J., Stroeve J. (2016). The darkening of the Greenland ice sheet: trends, drivers, and projections (1981–2100). Cryosphere 10, 477–496. 10.5194/tc-10-477-2016 DOI
Tedstone A. J., Bamber J. L., Cook J. M., Williamson C. J., Fettweis X., Hodson A. J., et al. (2017). Dark ice dynamics of the south-west Greenland Ice sheet. Cryosphere 11, 2491–2506. 10.5194/tc-11-2491-2017 DOI
Uetake J., Naganuma T., Hebsgaard M. B., Kanda H., Kohshima S. (2010). Communities of algae and cyanobacteria on glaciers in west Greenland. Pol. Sci. 4, 71–80. 10.1016/j.polar.2010.03.002 DOI
Wadham J. L., Hawkings J., Telling J., Chandler D., Alcock J., Lawson E., et al. (2016). Sources, cycling and export of nitrogen on the Greenland ice sheet. Biogeosciences 13, 6339–6352. 10.5194/bg-13-6339-2016 DOI
Waters E. R. (2003). Molecular adaptation and the origin of land plants. Mol. Phylogenet. Evol. 29, 456–463. 10.1016/j.ympev.2003.07.018, PMID: PubMed DOI
Welsh D. T. (2006). Ecological significance of compatible solute accumulation by micro-organisms: from single cells to global climate. FEMS Microbiol. Rev. 24, 263–290. 10.1111/j.1574-6976.2000.tb00542.x PubMed DOI
Wickett N. J., Mirarab S., Nguyen N., Warnow T., Carpenter E., Matasci N., et al. . (2014). Phylotranscriptomic analysis of the origin and early diversification of land plants. Proc. Natl. Acad. Sci. 111, E4859–E4868. 10.1073/pnas.1323926111, PMID: PubMed DOI PMC
Wientjes I. G. M., Oerlemans J. (2010). An explanation for the dark region in the western melt zone of the Greenland ice sheet. Cryosphere 4, 261–268. 10.5194/tc-4-261-2010 DOI
Williamson C. J., Anesio A. M., Cook J., Tedstone A., Poniecka E., Holland A., et al. (2018). Ice algal bloom development on the surface of the Greenland ice sheet. FEMS Microbiol. Ecol. 94fiy025. 10.1093/femsec/fiy025 PubMed DOI PMC
Wodniok S., Brinkmann H., Glöckner G., Heidel A. J., Philippe H., Melkonian M., et al. . (2011). Origin of land plants: do conjugating green algae hold the key? BMC Evol. Biol. 11:104. 10.1186/1471-2148-11-104, PMID: PubMed DOI PMC
Yallop M. L., Anesio A. M., Perkins R. G., Cook J., Telling J., Fagan D., et al. . (2012). Photophysiology and albedo-changing potential of the ice algal community on the surface of the Greenland ice sheet. ISME J. 6, 2302–2313. 10.1038/ismej.2012.107, PMID: PubMed DOI PMC
Yoshimura Y., Kohshima S., Ohtani S. (1997). A community of snow algae on a Himalayan glacier: change of algal biomass and community structure with altitude. Arct. Alp. Res. 29, 126–137. 10.2307/1551843 DOI
Morphological and environmental analysis of the glacier ice alga Ancylonema alaskanum