Cryogenian Glacial Habitats as a Plant Terrestrialisation Cradle - The Origin of the Anydrophytes and Zygnematophyceae Split
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35154170
PubMed Central
PMC8829067
DOI
10.3389/fpls.2021.735020
Knihovny.cz E-zdroje
- Klíčová slova
- Anydrophyta, Charophyta, Cryogenian glaciation, Embryophyta, Snowball Earth, Streptophyta, Zygnematophyceae, plant evolution,
- Publikační typ
- časopisecké články MeSH
For tens of millions of years (Ma), the terrestrial habitats of Snowball Earth during the Cryogenian period (between 720 and 635 Ma before present-Neoproterozoic Era) were possibly dominated by global snow and ice cover up to the equatorial sublimative desert. The most recent time-calibrated phylogenies calibrated not only on plants but on a comprehensive set of eukaryotes indicate that within the Streptophyta, multicellular charophytes (Phragmoplastophyta) evolved in the Mesoproterozoic to the early Neoproterozoic. At the same time, Cryogenian is the time of the likely origin of the common ancestor of Zygnematophyceae and Embryophyta and later, also of the Zygnematophyceae-Embryophyta split. This common ancestor is proposed to be called Anydrophyta; here, we use anydrophytes. Based on the combination of published phylogenomic studies and estimated diversification time comparisons, we deem it highly likely that anydrophytes evolved in response to Cryogenian cooling. Also, later in the Cryogenian, secondary simplification of multicellular anydrophytes and loss of flagella resulted in Zygnematophyceae diversification as an adaptation to the extended cold glacial environment. We propose that the Marinoan geochemically documented expansion of first terrestrial flora has been represented not only by Chlorophyta but also by Streptophyta, including the anydrophytes, and later by Zygnematophyceae, thriving on glacial surfaces until today. It is possible that multicellular early Embryophyta survived in less abundant (possibly relatively warmer) refugia, relying more on mineral substrates, allowing the retention of flagella-based sexuality. The loss of flagella and sexual reproduction by conjugation evolved in Zygnematophyceae and zygomycetous fungi during the Cryogenian in a remarkably convergent way. Thus, we support the concept that the important basal cellular adaptations to terrestrial environments were exapted in streptophyte algae for terrestrialization and propose that this was stimulated by the adaptation to glacial habitats dominating the Cryogenian Snowball Earth. Including the glacial lifestyle when considering the rise of land plants increases the parsimony of connecting different ecological, phylogenetic, and physiological puzzles of the journey from aquatic algae to terrestrial floras.
CryoEco Research Group Department of Ecology Faculty of Science Charles University Prague Czechia
Department of Botany University of British Columbia Vancouver BC Canada
Department of Experimental Plant Biology Faculty of Science Charles University Prague Czechia
Department of Parasitology Faculty of Science Charles University BIOCEV Vestec Czechia
Polar Geo Lab Department of Geography Faculty of Science Masaryk University Brno Czechia
Zobrazit více v PubMed
Agić H., Moczydłowska M., Yin L. (2017). Diversity of organic-walled microfossils from the early Mesoproterozoic Ruyang Group, North China Craton - A window into the early eukaryote evolution. DOI
Anesio A. N., Laybourn-Parry J. (2012). Glaciers and ice sheets as a biome. PubMed DOI
Bai H., Kuang H., Liu Y., Peng N., Chen X., Yuchong Wang Y. (2020). Marinoan-aged red beds at Shennongjia, South China: evidence against global-scale glaciation during the Cryogenian. DOI
Barkat R., Chakraborty P. P., Saha S., Das K. (2020). Alluvial architecture, paleohydrology and provenance tracking from the Neoproterozoic Banganapalle formation, Kurnool Group, India: an example of continental sedimentation before land plants. DOI
Becker B. (2013). Snow ball earth and the split of Streptophyta and Chlorophyta. PubMed DOI
Becker B., Feng X., Yin Y., Holzinger A. (2020). Desiccation tolerance in streptophyte algae and the algae to land plant transition: evolution of LEA and MIP protein families within the Viridiplantae. PubMed DOI PMC
Belkina O. A., Vilnet A. A. (2015). Some aspects of the moss population development on the Svalbard glaciers. DOI
Benn D. I., Evans D. J. A. (2010).
Bianchetti R., De Luca B., de Haro L. A., Rosado D., Demarco D., Conte M., et al. (2020). Phytochrome-dependent temperature perception modulates isoprenoid metabolism. PubMed DOI PMC
Bose P. K., Eriksson P. G., Sarkar S., Wright D. T., Samanta P., Mukhopadhyay S., et al. (2012). Sedimentation patterns during the Precambrian: a unique record? DOI
Bowles A. M. C., Bechtold U., Paps J. (2020). The origin of land plants is rooted in two bursts of genomic novelty. PubMed DOI
Buschmann H., Zachgo S. (2016). The evolution of cell division: from streptophyte algae to land plants. PubMed DOI
Catalá R., Medina J., Salinas J. (2011). Integration of low temperature and light signaling during cold acclimation response in PubMed DOI PMC
Chang Y., Rochon D., Sekimoto S., Wang Y., Chovatia M., Sandor L., et al. (2021). Genome-scale phylogenetic analyses confirm PubMed DOI PMC
Chen X., Ding Y., Yang Y., Song C., Wang B., Yang S., et al. (2021). Protein kinases in plant responses to drought, salt, and cold stress. PubMed DOI
Chen R., Huangfu L., Lu Y., Fang H., Xu Y., Li P., et al. (2021). Adaptive innovation of green plants by horizontal gene transfer. PubMed DOI
Cheng S., Xian W., Fu Y., Marin B., Keller J., Wu T., et al. (2019). Genomes of subaerial Zygnematophyceae provide insights into land plant evolution. PubMed DOI
Civáň P., Foster P. G., Embley M. T., Seneca A., Cox C. J. (2014). Analyses of Charophyte chloroplast genomes help characterise the ancestral chloroplast genome of land plants. PubMed DOI PMC
Clarke A., Morris G. J., Fonseca F., Murray B. J., Acton E., Price H. C. (2013). A low temperature limit for life on Earth. PubMed DOI PMC
Clarke J. T., Warnock R. C. M., Donoghue P. C. J. (2011). Establishing a time-scale for plant evolution. PubMed DOI
Cock J. M., Sterck L., Rouzé P., Scornet D., Allen A. E., Amoutzias G., et al. (2010). The PubMed DOI
Cole D. B., Mills D. B., Erwin D. H., Sperling E. A., Porter S. M., Reinhard C. T., et al. (2020). On the co-evolution of surface oxygen levels and animals. PubMed DOI
Colina F., Amaral J., Carbó M., Pinto G., Soares A., Cañal M. J., et al. (2019). Genome-wide identification and characterisation of CKIN/SnRK gene family in PubMed DOI PMC
Cox C. J., Li B., Foster P. G., Embley T. M., Civáò P. (2014). Conflicting phylogenies for early land plants are caused by composition biases among synonymous substitutions. PubMed DOI PMC
de Carpentier F., Lemaire S. D., Danon A. (2019). When unity is strength: the strategies used by PubMed DOI PMC
de Clerck O., Kao S. M., Bogaert K. A., Blomme J., Foflonker F., Kwantes M., et al. (2018). Insights into the evolution of multicellularity from the sea lettuce genome. PubMed DOI
de Vries J., Archibald J. M. (2018). Plant evolution: landmarks on the path to terrestrial life. PubMed DOI
de Vries J., Curtis B. A., Gould S. B., Archibald J. M. (2018). Embryophyte stress signaling evolved in the algal progenitors of land plants. PubMed DOI PMC
de Vries J., de Vries S., Slamovits C. H., Rose L. E., Archibald J. M. (2017). How embryophytic is the biosynthesis of phenylpropanoids and their derivatives in streptophyte Algae? PubMed DOI
de Vries J., Stanton A., Archibald J. M., Gould S. B. (2016). Streptophyte terrestrialisation in light of plastid evolution. PubMed DOI
de Vries S., Stukenbrock E. H., Rose L. E. (2020). Rapid evolution in plant-microbe interactions - an evolutionary genomics perspective. PubMed DOI
de Vries J., de Vries S., Curtis B. A., Zhou H., Penny S., Feussner K., et al. (2020). Heat stress response in the closest algal relatives of land plants reveals conserved stress signaling circuits. PubMed DOI
Delwiche C. F., Karol K. G., Cimino M. T., Sytsma K. J. (2002). Phylogeny of the genus DOI
Ding Y., Jia Y., Shi Y., Zhang X., Song C., Gong Z., et al. (2018). OST1-mediated BTF3L phosphorylation positively regulates CBFs during plant cold responses. PubMed DOI PMC
Ding Y., Li H., Zhang X., Xie Q., Gong Z., Yang S. (2015). OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in PubMed DOI
Edwards D., Morris J. L., Richardson J. B., Kenrick P. (2014). Cryptospores and cryptophytes reveal hidden diversity in early land floras. PubMed DOI
Emiliani G., Fondi M., Fani R., Gribaldo S. (2009). A horizontal gene transfer at the origin of phenylpropanoid metabolism: a key adaptation of plants to land. PubMed DOI PMC
Eyles N. (2008). Glacio-epochs and the supercontinent cycle after ∼3.0 Ga: tectonic boundary conditions for glaciation. DOI
Fayek M., Harrison T. M., Grove M., Mckeegan K. D., Coath C. D., Boles J. R. (2001). DOI
Fujii Y., Tanaka H., Konno N., Ogasawara Y., Hamashima N., Tamura S., et al. (2017). Phototropin perceives temperature based on the lifetime of its photoactivated state. PubMed DOI PMC
Fürst-Jansen J. M. R., de Vries S., de Vries J. (2020). Evo-physio: on stress responses and the earliest land plants. PubMed DOI PMC
Gong Z., Han G. Z. (2021). Flourishing in water: the early evolution and diversification of plant receptor-like kinases. PubMed DOI
Gontcharov A. A., Melkonian M. (2004). Unusual position of the genus DOI
Guiry M. D. (2013). Taxonomy and nomenclature of the Conjugatophyceae (= Zygnematophyceae). DOI
Han X., Chang X., Zhang Z., Chen H., He H., Zhong B., et al. (2019). Origin and evolution of core components responsible for monitoring light environment changes during plant terrestrialization. PubMed DOI
Harholt J., Moestrup Ø, Ulvskov P. (2016). Why plants were terrestrial from the beginning. PubMed DOI
Hedges S. B., Tao Q., Walker M., Kumar S. (2018). Accurate timetrees require accurate calibrations. PubMed DOI PMC
Heusser C. J. (1972). Polsters of the moss DOI
Hodson A., Anesio A. M., Tranter M., Fountain A., Osborn M., Priscu J., et al. (2008). Glacial ecosystems. DOI
Hoffman P. F. (2016). Cryoconite pans on Snowball Earth: supraglacial oases for Cryogenian eukaryotes? PubMed DOI
Hoffman P. F., Abbot D. S., Ashkenazy Y., Benn D. I., Brocks J. J., Cohen P. A., et al. (2017). Snowball Earth climate dynamics and Cryogenian geology-geobiology. PubMed DOI PMC
Hoffman P. F., Halverson G. P., Domack E. W., Maloof A. C., Swanson-Hysell N. L., Cox G. M. (2012). Cryogenian glaciations on the southern tropical paleomargin of Laurentia (NE Svalbard and East Greenland), and a primary origin for the upper Russøya (Islay) carbon isotope excursion. DOI
Hoffman P. F., Schrag D. P. (2002). The snowball Earth hypothesis: testing the limits of global change. DOI
Holzinger A., Kaplan F., Blaas K., Zechmann B., Komsic-Buchmann K., Becker B. (2014). Transcriptomics of desiccation tolerance in the Streptophyte green alga PubMed DOI PMC
Hoshino Y., Poshibaeva A., Meredith W., Snape C., Poshibaev V., Versteegh G. J. M., et al. (2017). Cryogenian evolution of stigmasteroid biosynthesis. PubMed DOI PMC
Hotaling S., Bartholomaus T. C., Gilbert S. L. (2020). Rolling stones gather moss: movement and longevity of moss balls on an Alaskan glacier. DOI
Huntley J. W., Xiao S., Kowalewski M. (2006). “On the morphological history of proterozoic and cambrian acritarchs,” in DOI
Jensen J. K., Busse-Wicher M., Poulsen C. P., Fangel J. U., Smith P. J., Yang J. Y., et al. (2018). Identification of an algal xylan synthase indicates that there is functional orthology between algal and plant cell wall biosynthesis. PubMed DOI PMC
Jiao C., Sørensen I., Sun X., Sun H., Behar H., Alseekh S., et al. (2020). The PubMed DOI
Karol K. G., McCourt R. M., Cimino M. T., Delwiche C. F. (2001). The closest living relatives of land plants. PubMed DOI
Kilian J., Whitehead D., Horak J., Wanke D., Weinl S., Batistic O., et al. (2007). The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. PubMed DOI
Knauth L. P., Kennedy M. J. (2009). The late precambrian greening of the earth. PubMed DOI
Komatsu K., Takezawa D., Sakata Y. (2020). Decoding ABA and osmostress signalling in plants from an evolutionary point of view. PubMed DOI
Lamers J., van der Meer T., Testerink C. (2020). How plants sense and respond to stressful environments. PubMed DOI PMC
Lauterborn R. (1894). Ueber die winterfauna einiger gewässer der oberrheinebene. mit beschreibungen neuer protozoën.
Leebens-Mack J. H., Barker M. S., Carpenter E. J., Deyholos M. K., Gitzendanner M. A., Graham S. W., et al. (2019). One thousand plant transcriptomes and the phylogenomics of green plants. PubMed DOI PMC
Lemieux C., Otis C., Turmel M. (2007). A clade uniting the green algae PubMed DOI PMC
Li F. W., Rothfels C. J., Melkonian M., Villarreal J. C., Stevenson D. W., Graham S. W., et al. (2015). The origin and evolution of phototropins. PubMed DOI PMC
Li L. Z., Wang S., Sahu S. K., Marin B., Li H. Y., Xu Y. (2020). The genome of PubMed DOI PMC
Li Z.-X., Evans D. A., Halverson G. P. (2013). Neoproterozoic glaciations in a revised global palaeogeography from the breakup of Rodinia to the assembly of Gondwanaland. DOI
Liu Y. J., Hodson M. C., Hall B. D. (2006). Loss of the flagellum happened only once in the fungal lineage: phylogenetic structure of Kingdom Fungi inferred from RNA polymerase II subunit genes. PubMed DOI PMC
Lutz S., McCutcheon J., McQuaid J. B., Benning L. G. (2018). The diversity of ice algal communities on the Greenland Ice Sheet as revealed by oligotyping. PubMed DOI PMC
Lutzoni F., Nowak M. D., Alfaro M. E., Reeb V., Miadlikowska J., Krug M., et al. (2018). Contemporaneous radiations of fungi and plants linked to symbiosis. PubMed DOI PMC
Moczydłowska M. (2008). The Ediacaran microbiota and the survival of Snowball Earth conditions. DOI
Moczydłowska M., Liu P. (2021). Ediacaran algal cysts from the Doushantuo formation, South China. DOI
Moczydłowska M., Schopf J. W., Willman S. (2010). Micro- and nano-scale ultrastructure of cell walls in Cryogenian microfossils: revealing their biological affinity. DOI
Moody L. A. (2020). Three-dimensional growth: a developmental innovation that facilitated plant terrestrialisation. PubMed DOI PMC
Morris J. L., Puttick M. N., Clark J. W., Edwards D., Kenrick P., Pressel S., et al. (2018b). The timescale of early land plant evolution. PubMed DOI PMC
Morris J. L., Puttick M. N., Clark J. W., Edwards D., Kenrick P., Pressel S., et al. (2018a). Reply to Hedges et al.: accurate timetrees do indeed require accurate calibrations. PubMed DOI PMC
Mustilli A. C., Merlot S., Vavasseur A., Fenzi F., Giraudat J. (2002). PubMed DOI PMC
Naranjo-Ortiz M. A., Gabaldón T. (2019b). Fungal evolution: major ecological adaptations and evolutionary transitions. PubMed DOI PMC
Naranjo-Ortiz M. A., Gabaldón T. (2019a). Fungal evolution: diversity, taxonomy and phylogeny of the Fungi. PubMed DOI PMC
Nick P. (2013). Microtubules, signalling and abiotic stress. PubMed DOI
Nie Y., Foster C. S. P., Zhu T., Yao R., Duchêne D. A., Ho S. Y. W., et al. (2020). Accounting for uncertainty in the evolutionary timescale of green plants through clock-partitioning and fossil calibration strategies. PubMed DOI
Nishiyama T., Wolf P. G., Kugita M., Sinclair R. B., Sugita M., Sugiura C., et al. (2004). Chloroplast phylogeny indicates that bryophytes are monophyletic. PubMed DOI
Permann C., Herburger K., Felhofer M., Gierlinger N., Lewis L. A., Holzinger A. (2021a). Induction of conjugation and cygospore cell wall characteristics in the Alpine PubMed DOI PMC
Permann C., Herburger K., Niedermeier M., Felhofer M., Gierlinger N., Holzinger A. (2021b). Cell wall characteristics during sexual reproduction of PubMed DOI PMC
Porter P. R., Evans A. J., Hodson A. J., Lowe A. T., Crabtree M. D. (2008). Sediment-moss interactions on a temperate glacier: falljökull, Iceland. DOI
Procházková L., Řezanka T., Nedbalová L., Remias D. (2021). Unicellular versus filamentous: the glacial alga PubMed DOI PMC
Pšenička J., Bek J., Frýda J., Žárský V., Uhlířová M., Štorch P. (2021). Dynamics of Silurian plants as response to climate changes. PubMed DOI PMC
Puttick M. N., Morris J. L., Williams T. A., Cox C. J., Edwards D., Kenrick P., et al. (2018). The interrelationships of land plants and the nature of the ancestral Embryophyte. PubMed DOI
Rabenhorst G. L. (1870). DOI
Rasmussen S., Barah P., Suarez-Rodriguez M. C., Bressendorff S., Friis P., Costantino P., et al. (2013). Transcriptome responses to combinations of stresses in PubMed DOI PMC
Remias D., Schwaiger S., Aigner S., Leya T., Stuppner H., Lütz C. (2012). Characterisation of an UV- and VIS-absorbing, purpurogallin-derived secondary pigment new to algae and highly abundant in PubMed DOI
Rensing S. A. (2020). How plants conquered land. PubMed DOI
Retallack G. J. (2011). Neoproterozoic loess and limits to snowball Earth. DOI
Retallack G. J. (2013). Ediacaran life on land. PubMed DOI
Retallack G. J., Gose B. N., Osterhout J. T. (2015). Periglacial paleosols and Cryogenian paleoclimate near Adelaide, South Australia. DOI
Rubinstein C. V., Vajda V. (2019). Baltica cradle of early land plants? Oldest record of trilete spores and diverse cryptospore assemblages; evidence from Ordovician successions of Sweden. DOI
Saigo T., Wang T., Watanabe M., Tohge T. (2020). Diversity of anthocyanin and proanthocyanin biosynthesis in land plants. PubMed DOI
Salamon M. A., Gerrienne P., Steemans P., Gorzelak P., Filipiak P., Le Hérissé A., et al. (2018). Putative late ordovician land plants. PubMed DOI
Sánchez-Baracaldo P., Raven J. A., Pisani D., Knoll A. H. (2017). Early photosynthetic eukaryotes inhabited low-salinity habitats. PubMed DOI PMC
Servais T., Cascales-Miñana B., Cleal C. J., Gerrienne P., Harper D. A. T., Neumann M. (2019). Revisiting the great Ordovician diversification of land plants: recent data and perspectives. DOI
Shi Y., Ding Y., Yang S. (2018). Molecular regulation of CBF signaling in cold acclimation. PubMed DOI
Shields-Zhou G. A., Porter S., Halverson G. P. (2015). A new rock-based definition for the Cryogenian Period (circa 720 - 635 Ma). DOI
Shinde S., Nurul Islam M., Ng C. K. (2012). Dehydration stress-induced oscillations in LEA protein transcripts involves abscisic acid in the moss, PubMed DOI
Shinohara N., Nishitani K. (2021). Cryogenian origin and subsequent diversification of the plant cell-wall enzyme XTH family. PubMed DOI PMC
Shinozawa A., Otake R., Takezawa D., Umezawa T., Komatsu K., Tanaka K., et al. (2019). SnRK2 protein kinases represent an ancient system in plants for adaptation to a terrestrial environment. PubMed DOI PMC
Stebbins G. L., Hill G. J. C. (1980). Did multicellular plants invade the land? DOI
Steemans P., Hérissé A. L., Melvin J., Miller M. A., Paris F., Verniers J., et al. (2009). Origin and radiation of the earliest vascular land plants. PubMed DOI
Stewart K. D., Mattox K. R. (1975). Comparative cytology, evolution and classification of the green algae with some consideration of the origin of other organisms with chlorophylls A and B. DOI
Stibal M., Šabacká M., Žárský J. (2012). Biological processes on glacier and ice sheet surfaces. DOI
Strassert J. F. H., Irisarri I., Williams T. A., Burki F. (2021). A molecular timescale for eukaryote evolution with implications for the origin of red algal-derived plastids. PubMed DOI PMC
Strother P. K., Battison L., Brasier M. D., Wellman C. H. (2011). Earth’s earliest non-marine eukaryotes. PubMed DOI
Su D., Yang L., Shi X., Ma X., Zhou X., Hedges B. S., et al. (2021). Large-scale phylogenomic analyses reveal the monophyly of bryophytes and Neoproterozoic origin of land plants. PubMed DOI PMC
Taylor J. W., Berbee M. L. (2006). Dating divergences in the fungal tree of life: review and new analyses. PubMed DOI
Valledor L., Furuhashi T., Hanak A. M., Weckwerth W. (2013). Systemic cold stress adaptation of PubMed DOI PMC
Wallin M., Strömberg E. (1995). Cold-stable and cold-adapted microtubules. PubMed DOI
Wang S., Li L., Li H., Sahu S. K., Wang H., Xu Y., et al. (2020). Genomes of early-diverging streptophyte algae shed light on plant terrestrialisation. PubMed DOI PMC
Wang T.-G., Li M., Wang C., Wang G., Zhang W., Shi Q., et al. (2008). Organic molecular evidence in the late neoproterozoic tillites for a palaeo-oceanic environment during the snowball earth era in the yangtze region, southern China. DOI
Wickett N. J., Mirarab S., Nguyen N., Warnow T., Carpenter E., Matasci N., et al. (2014). Phylotranscriptomic analysis of the origin and early diversification of land plants. PubMed DOI PMC
Williams G. E., Gostin V. A., McKirdy D. M., Preiss W. V. (2008). The Elatina glaciation, late Cryogenian (Marinoan Epoch), South Australia: sedimentary facies and palaeoenvironments. DOI
Williamson C. J., Cameron K. A., Cook J. M., Zarsky J. D., Stibal M., Edwards A. (2019). Glacier algae: a dark past and a darker future. PubMed DOI PMC
Wodniok S., Brinkmann H., Glöckner G., Heidel A. J., Philippe H., Melkonian M., et al. (2011). Origin of land plants: do conjugating green algae hold the key? PubMed DOI PMC
Yallop M. L., Anesio A. M., Perkins R. G., Cook J., Telling J., Fagan D., et al. (2012). Photophysiology and albedo-changing potential of the ice algal community on the surface of the Greenland ice sheet. PubMed DOI PMC
Zawierucha K., Kolicka M., Takeuchi N., Kaczmarek ł. (2015). What animals can live in cryoconite holes? A faunal review: cryoconite holes fauna. DOI
Zawierucha K., Porazinska D. L., Ficetola G. F., Ambrosini R., Baccolo G., Buda J., et al. (2021). A hole in the nematosphere: tardigrades and rotifers dominate the cryoconite hole environment, whereas nematodes are missing. DOI
Zhang S., Su J., Ma S., Wang H., Wang X., He K., et al. (2021). Eukaryotic red and green algae populated the tropical ocean 1400 million years ago. DOI
Zhu J. K. (2016). Abiotic stress signaling and responses in plants. PubMed DOI PMC