Cryogenian Glacial Habitats as a Plant Terrestrialisation Cradle - The Origin of the Anydrophytes and Zygnematophyceae Split

. 2021 ; 12 () : 735020. [epub] 20220127

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35154170

For tens of millions of years (Ma), the terrestrial habitats of Snowball Earth during the Cryogenian period (between 720 and 635 Ma before present-Neoproterozoic Era) were possibly dominated by global snow and ice cover up to the equatorial sublimative desert. The most recent time-calibrated phylogenies calibrated not only on plants but on a comprehensive set of eukaryotes indicate that within the Streptophyta, multicellular charophytes (Phragmoplastophyta) evolved in the Mesoproterozoic to the early Neoproterozoic. At the same time, Cryogenian is the time of the likely origin of the common ancestor of Zygnematophyceae and Embryophyta and later, also of the Zygnematophyceae-Embryophyta split. This common ancestor is proposed to be called Anydrophyta; here, we use anydrophytes. Based on the combination of published phylogenomic studies and estimated diversification time comparisons, we deem it highly likely that anydrophytes evolved in response to Cryogenian cooling. Also, later in the Cryogenian, secondary simplification of multicellular anydrophytes and loss of flagella resulted in Zygnematophyceae diversification as an adaptation to the extended cold glacial environment. We propose that the Marinoan geochemically documented expansion of first terrestrial flora has been represented not only by Chlorophyta but also by Streptophyta, including the anydrophytes, and later by Zygnematophyceae, thriving on glacial surfaces until today. It is possible that multicellular early Embryophyta survived in less abundant (possibly relatively warmer) refugia, relying more on mineral substrates, allowing the retention of flagella-based sexuality. The loss of flagella and sexual reproduction by conjugation evolved in Zygnematophyceae and zygomycetous fungi during the Cryogenian in a remarkably convergent way. Thus, we support the concept that the important basal cellular adaptations to terrestrial environments were exapted in streptophyte algae for terrestrialization and propose that this was stimulated by the adaptation to glacial habitats dominating the Cryogenian Snowball Earth. Including the glacial lifestyle when considering the rise of land plants increases the parsimony of connecting different ecological, phylogenetic, and physiological puzzles of the journey from aquatic algae to terrestrial floras.

Zobrazit více v PubMed

Agić H., Moczydłowska M., Yin L. (2017). Diversity of organic-walled microfossils from the early Mesoproterozoic Ruyang Group, North China Craton - A window into the early eukaryote evolution. Precambrian Res. 297 101–130. 10.1016/j.precamres.2017.04.042 DOI

Anesio A. N., Laybourn-Parry J. (2012). Glaciers and ice sheets as a biome. Trends Ecol. Evol. 27 219–225. 10.1016/j.tree.2011.09.012 PubMed DOI

Bai H., Kuang H., Liu Y., Peng N., Chen X., Yuchong Wang Y. (2020). Marinoan-aged red beds at Shennongjia, South China: evidence against global-scale glaciation during the Cryogenian. Palaeogeogr. Palaeoclimatol. Palaeoecol. 559:109967. 10.1016/j.palaeo.2020.109967 DOI

Barkat R., Chakraborty P. P., Saha S., Das K. (2020). Alluvial architecture, paleohydrology and provenance tracking from the Neoproterozoic Banganapalle formation, Kurnool Group, India: an example of continental sedimentation before land plants. Precambrian Res. 350:105930. 10.1016/j.precamres.2020.105930 DOI

Becker B. (2013). Snow ball earth and the split of Streptophyta and Chlorophyta. Trends Plant Sci. 18 180–183. 10.1016/j.tplants.2012.09.010 PubMed DOI

Becker B., Feng X., Yin Y., Holzinger A. (2020). Desiccation tolerance in streptophyte algae and the algae to land plant transition: evolution of LEA and MIP protein families within the Viridiplantae. J. Exp. Bot. 71 3270–3278. 10.1093/jxb/eraa105 PubMed DOI PMC

Belkina O. A., Vilnet A. A. (2015). Some aspects of the moss population development on the Svalbard glaciers. Czech. Polar Rep. 5 160–175. 10.5817/CPR2015-2-14 DOI

Benn D. I., Evans D. J. A. (2010). Glaciers And Glaciation, Second Edn. London: Hodder Education.

Bianchetti R., De Luca B., de Haro L. A., Rosado D., Demarco D., Conte M., et al. (2020). Phytochrome-dependent temperature perception modulates isoprenoid metabolism. Plant Physiol. 183 869–882. 10.1104/pp.20.00019 PubMed DOI PMC

Bose P. K., Eriksson P. G., Sarkar S., Wright D. T., Samanta P., Mukhopadhyay S., et al. (2012). Sedimentation patterns during the Precambrian: a unique record? Mar. Pet. Geol. 33 34–68. 10.1016/j.marpetgeo.2010.11.002 DOI

Bowles A. M. C., Bechtold U., Paps J. (2020). The origin of land plants is rooted in two bursts of genomic novelty. Curr Biol. 30 530–536.e2. 10.1016/j.cub.2019.11.090 PubMed DOI

Buschmann H., Zachgo S. (2016). The evolution of cell division: from streptophyte algae to land plants. Trends Plant Sci. 21 872–883. 10.1016/j.tplants.2016.07.004 PubMed DOI

Caisová L. (2020). Draparnaldia: a chlorophyte model for comparative analyses of plant terrestrialisation. J. Exp. Bot. 71 3305–3313. 10.1093/jxb/eraa102 PubMed DOI

Catalá R., Medina J., Salinas J. (2011). Integration of low temperature and light signaling during cold acclimation response in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 27 16475–16480. 10.1073/pnas.1107161108 PubMed DOI PMC

Chang Y., Rochon D., Sekimoto S., Wang Y., Chovatia M., Sandor L., et al. (2021). Genome-scale phylogenetic analyses confirm Olpidium as the closest living zoosporic fungus to the non-flagellated, terrestrial fungi. Sci. Rep. 11:3217. 10.1038/s41598-021-82607-4 PubMed DOI PMC

Chen X., Ding Y., Yang Y., Song C., Wang B., Yang S., et al. (2021). Protein kinases in plant responses to drought, salt, and cold stress. J. Integr. Plant Biol. 63 53–78. 10.1111/jipb.13061 PubMed DOI

Chen R., Huangfu L., Lu Y., Fang H., Xu Y., Li P., et al. (2021). Adaptive innovation of green plants by horizontal gene transfer. Biotechnol Adv. 46:107671. 10.1016/j.biotechadv.2020.107671 PubMed DOI

Cheng S., Xian W., Fu Y., Marin B., Keller J., Wu T., et al. (2019). Genomes of subaerial Zygnematophyceae provide insights into land plant evolution. Cell 179 1057–1067.e14. 10.1016/j.cell.2019.10.019 PubMed DOI

Civáň P., Foster P. G., Embley M. T., Seneca A., Cox C. J. (2014). Analyses of Charophyte chloroplast genomes help characterise the ancestral chloroplast genome of land plants. Genome Biol. Evol. 6 897–911. 10.1093/gbe/evu061 PubMed DOI PMC

Clarke A., Morris G. J., Fonseca F., Murray B. J., Acton E., Price H. C. (2013). A low temperature limit for life on Earth. PLoS One 8:e66207. 10.1371/journal.pone.0066207 PubMed DOI PMC

Clarke J. T., Warnock R. C. M., Donoghue P. C. J. (2011). Establishing a time-scale for plant evolution. New Phytol. 192 266–301. 10.1111/j.1469-8137.2011.03794.x PubMed DOI

Cock J. M., Sterck L., Rouzé P., Scornet D., Allen A. E., Amoutzias G., et al. (2010). The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature 465 617–621. 10.1038/nature09016 PubMed DOI

Cole D. B., Mills D. B., Erwin D. H., Sperling E. A., Porter S. M., Reinhard C. T., et al. (2020). On the co-evolution of surface oxygen levels and animals. Geobiology 18 260–281. 10.1111/gbi.12382 PubMed DOI

Colina F., Amaral J., Carbó M., Pinto G., Soares A., Cañal M. J., et al. (2019). Genome-wide identification and characterisation of CKIN/SnRK gene family in Chlamydomonas reinhardtii. Sci. Rep. 9:350. 10.1038/s41598-018-35625-8 PubMed DOI PMC

Cox C. J., Li B., Foster P. G., Embley T. M., Civáò P. (2014). Conflicting phylogenies for early land plants are caused by composition biases among synonymous substitutions. Syst. Biol. 63 272–279. 10.1093/sysbio/syt109 PubMed DOI PMC

de Carpentier F., Lemaire S. D., Danon A. (2019). When unity is strength: the strategies used by Chlamydomonas to survive environmental stresses. Cells 11:1307. 10.3390/cells8111307 PubMed DOI PMC

de Clerck O., Kao S. M., Bogaert K. A., Blomme J., Foflonker F., Kwantes M., et al. (2018). Insights into the evolution of multicellularity from the sea lettuce genome. Curr. Biol. 28 2921–2933.e5. 10.1016/j.cub.2018.08.015 PubMed DOI

de Vries J., Archibald J. M. (2018). Plant evolution: landmarks on the path to terrestrial life. New Phytol. 217 1428–1434. 10.1111/nph.14975 PubMed DOI

de Vries J., Curtis B. A., Gould S. B., Archibald J. M. (2018). Embryophyte stress signaling evolved in the algal progenitors of land plants. Proc. Natl. Acad. Sci. U. S. A. 115 3471–3480. 10.1073/pnas.1719230115 PubMed DOI PMC

de Vries J., de Vries S., Slamovits C. H., Rose L. E., Archibald J. M. (2017). How embryophytic is the biosynthesis of phenylpropanoids and their derivatives in streptophyte Algae? Plant Cell Physiol. 58 934–945. 10.1093/pcp/pcx037 PubMed DOI

de Vries J., Stanton A., Archibald J. M., Gould S. B. (2016). Streptophyte terrestrialisation in light of plastid evolution. Trends Plant Sci. 21 467–476. 10.1016/j.tplants.2016.01.021 PubMed DOI

de Vries S., Stukenbrock E. H., Rose L. E. (2020). Rapid evolution in plant-microbe interactions - an evolutionary genomics perspective. New Phytol. 226 1256–1262. 10.1111/nph.16458 PubMed DOI

de Vries J., de Vries S., Curtis B. A., Zhou H., Penny S., Feussner K., et al. (2020). Heat stress response in the closest algal relatives of land plants reveals conserved stress signaling circuits. Plant J. 103 1025–1048. 10.1111/tpj.14782 PubMed DOI

Delwiche C. F., Karol K. G., Cimino M. T., Sytsma K. J. (2002). Phylogeny of the genus Coleochaete (Coleochaetales, Charophyta) and related taxa inferred by analysis of the chloroplast gene rbcL. J. Phycol. 38 394–403. 10.1046/j.1529-8817.2002.01174.x DOI

Ding Y., Jia Y., Shi Y., Zhang X., Song C., Gong Z., et al. (2018). OST1-mediated BTF3L phosphorylation positively regulates CBFs during plant cold responses. EMBO J. 37:e98228. 10.15252/embj.201798228 PubMed DOI PMC

Ding Y., Li H., Zhang X., Xie Q., Gong Z., Yang S. (2015). OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in Arabidopsis. Dev. Cell 32 278–289. 10.1016/j.devcel.2014.12.023 PubMed DOI

Edwards D., Morris J. L., Richardson J. B., Kenrick P. (2014). Cryptospores and cryptophytes reveal hidden diversity in early land floras. New Phytol. 202 50–78. 10.1111/nph.12645 PubMed DOI

Emiliani G., Fondi M., Fani R., Gribaldo S. (2009). A horizontal gene transfer at the origin of phenylpropanoid metabolism: a key adaptation of plants to land. Biol. Direct. 4:7. 10.1186/1745-6150-4-7 PubMed DOI PMC

Eyles N. (2008). Glacio-epochs and the supercontinent cycle after ∼3.0 Ga: tectonic boundary conditions for glaciation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 258 89–129. 10.1016/j.palaeo.2007.09.021 DOI

Fayek M., Harrison T. M., Grove M., Mckeegan K. D., Coath C. D., Boles J. R. (2001). In situ stable isotopic evidence for protracted and complex carbonate cementation in a petroleum reservoir, North Coles Levee, San Joaquin basin, California, U.S.A. J. Sediment. Res. 71 444–458. 10.1306/2DC40954-0E47-11D7-8643000102C1865D DOI

Fujii Y., Tanaka H., Konno N., Ogasawara Y., Hamashima N., Tamura S., et al. (2017). Phototropin perceives temperature based on the lifetime of its photoactivated state. Proc. Natl. Acad. Sci. U. S. A. 114 9206–9211. 10.1073/pnas.1704462114 PubMed DOI PMC

Fürst-Jansen J. M. R., de Vries S., de Vries J. (2020). Evo-physio: on stress responses and the earliest land plants. J. Exp. Bot. 71 3254–3269. 10.1093/jxb/eraa007 PubMed DOI PMC

Gong Z., Han G. Z. (2021). Flourishing in water: the early evolution and diversification of plant receptor-like kinases. Plant J. 106 174–184. 10.1111/tpj.15157 PubMed DOI

Gontcharov A. A., Melkonian M. (2004). Unusual position of the genus Spirotaenia (Zygnematophyceae) among streptophytes revealed by SSU rDNA and rbcL sequence comparisons. Phycologia 43 105–113. 10.2216/i0031-8884-43-1-105.1 DOI

Guiry M. D. (2013). Taxonomy and nomenclature of the Conjugatophyceae (= Zygnematophyceae). Algae 28 1–29. 10.4490/algae.2013.28.1.001 DOI

Han X., Chang X., Zhang Z., Chen H., He H., Zhong B., et al. (2019). Origin and evolution of core components responsible for monitoring light environment changes during plant terrestrialization. Mol. Plant 12 847–862. 10.1016/j.molp.2019.04.006 PubMed DOI

Harholt J., Moestrup Ø, Ulvskov P. (2016). Why plants were terrestrial from the beginning. Trends Plant Sci. 21 96–101. 10.1016/j.tplants.2015.11.010 PubMed DOI

Hedges S. B., Tao Q., Walker M., Kumar S. (2018). Accurate timetrees require accurate calibrations. Proc. Natl. Acad. Sci. U. S. A. 115 9510–9511. 10.1073/pnas.1812558115 PubMed DOI PMC

Heusser C. J. (1972). Polsters of the moss Drepanocladus berggrenii on gilkey glacier, alaska. Bull. Torrey Bot. Club 99 34–36. 10.2307/2484240 DOI

Hodson A., Anesio A. M., Tranter M., Fountain A., Osborn M., Priscu J., et al. (2008). Glacial ecosystems. Ecol. Monogr. 78 41–67. 10.1890/07-0187.1 DOI

Hoffman P. F. (2016). Cryoconite pans on Snowball Earth: supraglacial oases for Cryogenian eukaryotes? Geobiology 14 531–542. 10.1111/gbi.12191 PubMed DOI

Hoffman P. F., Abbot D. S., Ashkenazy Y., Benn D. I., Brocks J. J., Cohen P. A., et al. (2017). Snowball Earth climate dynamics and Cryogenian geology-geobiology. Sci. Adv. 3:e1600983. 10.1126/sciadv.1600983 PubMed DOI PMC

Hoffman P. F., Halverson G. P., Domack E. W., Maloof A. C., Swanson-Hysell N. L., Cox G. M. (2012). Cryogenian glaciations on the southern tropical paleomargin of Laurentia (NE Svalbard and East Greenland), and a primary origin for the upper Russøya (Islay) carbon isotope excursion. Precambrian Res. 206-207 137–158. 10.1016/j.precamres.2012.02.018 DOI

Hoffman P. F., Schrag D. P. (2002). The snowball Earth hypothesis: testing the limits of global change. Terra Nova. 14 129–155. 10.1046/j.1365-3121.2002.00408.x DOI

Holzinger A., Kaplan F., Blaas K., Zechmann B., Komsic-Buchmann K., Becker B. (2014). Transcriptomics of desiccation tolerance in the Streptophyte green alga Klebsormidium reveal a land plant-like defense reaction. PLoS One 9:e110630. 10.1371/journal.pone.0110630 PubMed DOI PMC

Hoshino Y., Poshibaeva A., Meredith W., Snape C., Poshibaev V., Versteegh G. J. M., et al. (2017). Cryogenian evolution of stigmasteroid biosynthesis. Sci. Adv. 3:e1700887. 10.1126/sciadv.1700887 PubMed DOI PMC

Hotaling S., Bartholomaus T. C., Gilbert S. L. (2020). Rolling stones gather moss: movement and longevity of moss balls on an Alaskan glacier. Polar Biol. 43 735–744. 10.1007/s00300-020-02675-6 DOI

Huntley J. W., Xiao S., Kowalewski M. (2006). “On the morphological history of proterozoic and cambrian acritarchs,” in Neoproterozoic Geobiology and Paleobiology. Topics in Geobiology, eds Xiao S., Kaufman A. J. (New York: Springer; ), 23–56. 10.1007/1-4020-5202-2_2 DOI

Jensen J. K., Busse-Wicher M., Poulsen C. P., Fangel J. U., Smith P. J., Yang J. Y., et al. (2018). Identification of an algal xylan synthase indicates that there is functional orthology between algal and plant cell wall biosynthesis. New Phytol. 218 1049–1060. 10.1111/nph.15050 PubMed DOI PMC

Jiao C., Sørensen I., Sun X., Sun H., Behar H., Alseekh S., et al. (2020). The Penium margaritaceum genome: hallmarks of the origins of land plants. Cell 181 1097–1111.e12. 10.1016/j.cell.2020.04.019 PubMed DOI

Karol K. G., McCourt R. M., Cimino M. T., Delwiche C. F. (2001). The closest living relatives of land plants. Science 294 2351–2353. 10.1126/science.1065156 PubMed DOI

Kilian J., Whitehead D., Horak J., Wanke D., Weinl S., Batistic O., et al. (2007). The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant J. 50 347–363. 10.1111/j.1365-313X.2007.03052.x PubMed DOI

Knauth L. P., Kennedy M. J. (2009). The late precambrian greening of the earth. Nature 460 728–732. 10.1038/nature08213 PubMed DOI

Komatsu K., Takezawa D., Sakata Y. (2020). Decoding ABA and osmostress signalling in plants from an evolutionary point of view. Plant Cell Environ. 43 2894–2911. 10.1111/pce.13869 PubMed DOI

Lamers J., van der Meer T., Testerink C. (2020). How plants sense and respond to stressful environments. Plant Physiol. 182 1624–1635. 10.1104/pp.19.01464 PubMed DOI PMC

Lauterborn R. (1894). Ueber die winterfauna einiger gewässer der oberrheinebene. mit beschreibungen neuer protozoën. Biol. Zentralblatt 14 390–398.

Leebens-Mack J. H., Barker M. S., Carpenter E. J., Deyholos M. K., Gitzendanner M. A., Graham S. W., et al. (2019). One thousand plant transcriptomes and the phylogenomics of green plants. Nature 574 679–685. 10.1038/s41586-019-1693-2 PubMed DOI PMC

Lemieux C., Otis C., Turmel M. (2007). A clade uniting the green algae Mesostigma viride and Chlorokybus atmophyticus represents the deepest branch of the Streptophyta in chloroplast genome-based phylogenies. BMC Biol. 5:2. 10.1186/1741-7007-5-2 PubMed DOI PMC

Li F. W., Rothfels C. J., Melkonian M., Villarreal J. C., Stevenson D. W., Graham S. W., et al. (2015). The origin and evolution of phototropins. Front. Plant Sci. 12:637. 10.3389/fpls.2015.00637 PubMed DOI PMC

Li L. Z., Wang S., Sahu S. K., Marin B., Li H. Y., Xu Y. (2020). The genome of Prasinoderma coloniale unveils the existence of a third phylum within green plants. Nat. Ecol. Evol. 4 1220–1231. 10.1038/s41559-020-1221-7 PubMed DOI PMC

Li Z.-X., Evans D. A., Halverson G. P. (2013). Neoproterozoic glaciations in a revised global palaeogeography from the breakup of Rodinia to the assembly of Gondwanaland. Sediment. Geol. 294 219–232. 10.1016/j.sedgeo.2013.05.016 DOI

Liu Y. J., Hodson M. C., Hall B. D. (2006). Loss of the flagellum happened only once in the fungal lineage: phylogenetic structure of Kingdom Fungi inferred from RNA polymerase II subunit genes. BMC Evol. Biol. 6:74. 10.1186/1471-2148-6-74 PubMed DOI PMC

Lutz S., McCutcheon J., McQuaid J. B., Benning L. G. (2018). The diversity of ice algal communities on the Greenland Ice Sheet as revealed by oligotyping. Microb. Genomics. 4:e000159. 10.1099/mgen.0.000159 PubMed DOI PMC

Lutzoni F., Nowak M. D., Alfaro M. E., Reeb V., Miadlikowska J., Krug M., et al. (2018). Contemporaneous radiations of fungi and plants linked to symbiosis. Nat. Commun. 9:5451. 10.1038/s41467-018-07849-9 PubMed DOI PMC

Moczydłowska M. (2008). The Ediacaran microbiota and the survival of Snowball Earth conditions. Precambrian Res. 167 1–15. 10.1016/j.precamres.2008.06.008 DOI

Moczydłowska M., Liu P. (2021). Ediacaran algal cysts from the Doushantuo formation, South China. Geol. Mag. 158, 1–21. 10.1017/S0016756820001405 DOI

Moczydłowska M., Schopf J. W., Willman S. (2010). Micro- and nano-scale ultrastructure of cell walls in Cryogenian microfossils: revealing their biological affinity. Lethaia 43 129–136. 10.1111/j.1502-3931.2009.00175.x DOI

Moody L. A. (2020). Three-dimensional growth: a developmental innovation that facilitated plant terrestrialisation. J. Plant Res. 133 283–290. 10.1007/s10265-020-01173-4 PubMed DOI PMC

Morris J. L., Puttick M. N., Clark J. W., Edwards D., Kenrick P., Pressel S., et al. (2018b). The timescale of early land plant evolution. Proc. Natl. Acad. Sci. U. S. A. 115 E2274–E2283. 10.1073/pnas.1719588115 PubMed DOI PMC

Morris J. L., Puttick M. N., Clark J. W., Edwards D., Kenrick P., Pressel S., et al. (2018a). Reply to Hedges et al.: accurate timetrees do indeed require accurate calibrations. Proc. Natl. Acad. Sci. U. S. A. 115 E9512–E9513. 10.1073/pnas.1812816115 PubMed DOI PMC

Mustilli A. C., Merlot S., Vavasseur A., Fenzi F., Giraudat J. (2002). Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell 14 3089–3099. 10.1105/tpc.007906 PubMed DOI PMC

Naranjo-Ortiz M. A., Gabaldón T. (2019b). Fungal evolution: major ecological adaptations and evolutionary transitions. Biol. Rev. Camb. Philos. Soc. 94 1443–1476. 10.1111/brv.12510 PubMed DOI PMC

Naranjo-Ortiz M. A., Gabaldón T. (2019a). Fungal evolution: diversity, taxonomy and phylogeny of the Fungi. Biol. Rev. 94 2101–2137. 10.1111/brv.12550 PubMed DOI PMC

Nick P. (2013). Microtubules, signalling and abiotic stress. Plant J. 75 309–323. 10.1111/tpj.12102 PubMed DOI

Nie Y., Foster C. S. P., Zhu T., Yao R., Duchêne D. A., Ho S. Y. W., et al. (2020). Accounting for uncertainty in the evolutionary timescale of green plants through clock-partitioning and fossil calibration strategies. Syst. Biol. 69 1–16. 10.1093/sysbio/syz032 PubMed DOI

Nishiyama T., Wolf P. G., Kugita M., Sinclair R. B., Sugita M., Sugiura C., et al. (2004). Chloroplast phylogeny indicates that bryophytes are monophyletic. Mol. Biol. Evol. 21 1813–1819. 10.1093/molbev/msh203 PubMed DOI

Permann C., Herburger K., Felhofer M., Gierlinger N., Lewis L. A., Holzinger A. (2021a). Induction of conjugation and cygospore cell wall characteristics in the Alpine Spirogyra mirabilis (Zygnematophyceae, Charophyta): advantage under climate change scenarios? Plants 10:1740. 10.3390/plants10081740 PubMed DOI PMC

Permann C., Herburger K., Niedermeier M., Felhofer M., Gierlinger N., Holzinger A. (2021b). Cell wall characteristics during sexual reproduction of Mougeotia sp. (Zygnematophyceae) revealed by electron microscopy, glycan microarrays and RAMAN spectroscopy. Protoplasma 258 1261–1275. 10.1007/s00709-021-01659-5 PubMed DOI PMC

Porter P. R., Evans A. J., Hodson A. J., Lowe A. T., Crabtree M. D. (2008). Sediment-moss interactions on a temperate glacier: falljökull, Iceland. Ann. Glaciol. 48 25–31. 10.3189/172756408784700734 DOI

Procházková L., Řezanka T., Nedbalová L., Remias D. (2021). Unicellular versus filamentous: the glacial alga Ancylonema alaskana comb. et stat. nov. and its ecophysiological relatedness to Ancylonema nordenskioeldii (Zygnematophyceae, Streptophyta). Microorganisms 9:1103. 10.3390/microorganisms9051103 PubMed DOI PMC

Pšenička J., Bek J., Frýda J., Žárský V., Uhlířová M., Štorch P. (2021). Dynamics of Silurian plants as response to climate changes. Life (Basel) 11:906. 10.3390/life11090906 PubMed DOI PMC

Puttick M. N., Morris J. L., Williams T. A., Cox C. J., Edwards D., Kenrick P., et al. (2018). The interrelationships of land plants and the nature of the ancestral Embryophyte. Curr. Biol. 28 210–213. 10.1016/j.cub.2018.01.063 PubMed DOI

Rabenhorst G. L. (1870). Kryptogamen-Flora von Sachsen, der Ober-Lausitz, Thüringen und Nordböhmen, mit Berücksichtigung der benachbarten Länder. Leipzig: E. Kummer, 10.24355/dbbs.084-200909111218-0 DOI

Rasmussen S., Barah P., Suarez-Rodriguez M. C., Bressendorff S., Friis P., Costantino P., et al. (2013). Transcriptome responses to combinations of stresses in Arabidopsis. Plant Physiol. 161 1783–1794. 10.1104/pp.112.210773 PubMed DOI PMC

Remias D., Schwaiger S., Aigner S., Leya T., Stuppner H., Lütz C. (2012). Characterisation of an UV- and VIS-absorbing, purpurogallin-derived secondary pigment new to algae and highly abundant in Mesotaenium berggrenii (Zygnematophyceae, Chlorophyta), an extremophyte living on glaciers. FEMS Microbiol. Ecol. 79 638–648. 10.1111/j.1574-6941.2011.01245.x PubMed DOI

Rensing S. A. (2020). How plants conquered land. Cell 181 964–966. 10.1016/j.cell.2020.05.011 PubMed DOI

Retallack G. J. (2011). Neoproterozoic loess and limits to snowball Earth. J. Geol. Soc. 168 289–308. 10.1144/0016-76492010-051 DOI

Retallack G. J. (2013). Ediacaran life on land. Nature 493 89–92. 10.1038/nature11777 PubMed DOI

Retallack G. J., Gose B. N., Osterhout J. T. (2015). Periglacial paleosols and Cryogenian paleoclimate near Adelaide, South Australia. Precambrian Res. 263 1–18. 10.1016/j.precamres.2015.03.002 DOI

Rubinstein C. V., Vajda V. (2019). Baltica cradle of early land plants? Oldest record of trilete spores and diverse cryptospore assemblages; evidence from Ordovician successions of Sweden. GFF 141 181–190. 10.1080/11035897.2019.1636860 DOI

Saigo T., Wang T., Watanabe M., Tohge T. (2020). Diversity of anthocyanin and proanthocyanin biosynthesis in land plants. Curr. Opin. Plant Biol. 55 93–99. 10.1016/j.pbi.2020.04.001 PubMed DOI

Salamon M. A., Gerrienne P., Steemans P., Gorzelak P., Filipiak P., Le Hérissé A., et al. (2018). Putative late ordovician land plants. New Phytol. 218 1305–1309. 10.1111/nph.15091 PubMed DOI

Sánchez-Baracaldo P., Raven J. A., Pisani D., Knoll A. H. (2017). Early photosynthetic eukaryotes inhabited low-salinity habitats. Proc. Natl. Acad. Sci. U. S. A. 114 E7737–E7745. 10.1073/pnas.1620089114 PubMed DOI PMC

Servais T., Cascales-Miñana B., Cleal C. J., Gerrienne P., Harper D. A. T., Neumann M. (2019). Revisiting the great Ordovician diversification of land plants: recent data and perspectives. Palaeogeogr. Palaeoclimatol. Palaeoecol. 534:109280. 10.1016/j.palaeo.2019.109280 DOI

Shi Y., Ding Y., Yang S. (2018). Molecular regulation of CBF signaling in cold acclimation. Trends Plant Sci. 23 623–637. 10.1016/j.tplants.2018.04.002 PubMed DOI

Shields-Zhou G. A., Porter S., Halverson G. P. (2015). A new rock-based definition for the Cryogenian Period (circa 720 - 635 Ma). Episodes 39 3–8. 10.18814/epiiugs/2016/v39i1/89231 DOI

Shinde S., Nurul Islam M., Ng C. K. (2012). Dehydration stress-induced oscillations in LEA protein transcripts involves abscisic acid in the moss, Physcomitrella patens. New Phytol. 195 321–328. 10.1111/j.1469-8137.2012.04193.x PubMed DOI

Shinohara N., Nishitani K. (2021). Cryogenian origin and subsequent diversification of the plant cell-wall enzyme XTH family. Plant Cell Physiol. 10.1093/pcp/pcab093 [Epub Online ahead of print]. PubMed DOI PMC

Shinozawa A., Otake R., Takezawa D., Umezawa T., Komatsu K., Tanaka K., et al. (2019). SnRK2 protein kinases represent an ancient system in plants for adaptation to a terrestrial environment. Commun. Biol. 2:30. 10.1038/s42003-019-0281-1 PubMed DOI PMC

Stebbins G. L., Hill G. J. C. (1980). Did multicellular plants invade the land? Am. Nat. 115 342–353. 10.1086/283565 DOI

Steemans P., Hérissé A. L., Melvin J., Miller M. A., Paris F., Verniers J., et al. (2009). Origin and radiation of the earliest vascular land plants. Science 324 353–353. 10.1126/science.1169659 PubMed DOI

Stewart K. D., Mattox K. R. (1975). Comparative cytology, evolution and classification of the green algae with some consideration of the origin of other organisms with chlorophylls A and B. Bot. Rev. 41 104–135. 10.1007/BF02860837 DOI

Stibal M., Šabacká M., Žárský J. (2012). Biological processes on glacier and ice sheet surfaces. Nat. Geosci. 5 771–774. 10.1038/ngeo1611 DOI

Strassert J. F. H., Irisarri I., Williams T. A., Burki F. (2021). A molecular timescale for eukaryote evolution with implications for the origin of red algal-derived plastids. Nat Commun. 12:1879. 10.1038/s41467-021-22044-z PubMed DOI PMC

Strother P. K., Battison L., Brasier M. D., Wellman C. H. (2011). Earth’s earliest non-marine eukaryotes. Nature 473 505–509. 10.1038/nature09943 PubMed DOI

Su D., Yang L., Shi X., Ma X., Zhou X., Hedges B. S., et al. (2021). Large-scale phylogenomic analyses reveal the monophyly of bryophytes and Neoproterozoic origin of land plants. Mol. Biol. Evol. 38 3332–3344. 10.1093/molbev/msab106 PubMed DOI PMC

Taylor J. W., Berbee M. L. (2006). Dating divergences in the fungal tree of life: review and new analyses. Mycologia 98 838–849. 10.1080/15572536.2006.11832614 PubMed DOI

Valledor L., Furuhashi T., Hanak A. M., Weckwerth W. (2013). Systemic cold stress adaptation of Chlamydomonas reinhardtii. Mol. Cell Proteomics 12 2032–2047. 10.1074/mcp.M112.026765 PubMed DOI PMC

Wallin M., Strömberg E. (1995). Cold-stable and cold-adapted microtubules. Int. Rev. Cytol. 157 1–31. 10.1016/S0074-7696(08)62155-5 PubMed DOI

Wang S., Li L., Li H., Sahu S. K., Wang H., Xu Y., et al. (2020). Genomes of early-diverging streptophyte algae shed light on plant terrestrialisation. Nat. Plants 6 95–106. 10.1038/s41477-019-0560-3 PubMed DOI PMC

Wang T.-G., Li M., Wang C., Wang G., Zhang W., Shi Q., et al. (2008). Organic molecular evidence in the late neoproterozoic tillites for a palaeo-oceanic environment during the snowball earth era in the yangtze region, southern China. Precambrian Res. 162 317–326. 10.1016/j.precamres.2007.09.009 DOI

Wickett N. J., Mirarab S., Nguyen N., Warnow T., Carpenter E., Matasci N., et al. (2014). Phylotranscriptomic analysis of the origin and early diversification of land plants. Proc. Natl. Acad. Sci. U. S. A. 111 E4859–E4868. 10.1073/pnas.1323926111 PubMed DOI PMC

Williams G. E., Gostin V. A., McKirdy D. M., Preiss W. V. (2008). The Elatina glaciation, late Cryogenian (Marinoan Epoch), South Australia: sedimentary facies and palaeoenvironments. Precambrian Res. 163 307–331. 10.1016/j.precamres.2007.12.001 DOI

Williamson C. J., Cameron K. A., Cook J. M., Zarsky J. D., Stibal M., Edwards A. (2019). Glacier algae: a dark past and a darker future. Front. Microbiol. 10:524. 10.3389/fmicb.2019.00524 PubMed DOI PMC

Wodniok S., Brinkmann H., Glöckner G., Heidel A. J., Philippe H., Melkonian M., et al. (2011). Origin of land plants: do conjugating green algae hold the key? BMC Evol. Biol. 11:104. 10.1186/1471-2148-11-104 PubMed DOI PMC

Yallop M. L., Anesio A. M., Perkins R. G., Cook J., Telling J., Fagan D., et al. (2012). Photophysiology and albedo-changing potential of the ice algal community on the surface of the Greenland ice sheet. ISME J. 6 2302–2313. 10.1038/ismej.2012.107 PubMed DOI PMC

Zawierucha K., Kolicka M., Takeuchi N., Kaczmarek ł. (2015). What animals can live in cryoconite holes? A faunal review: cryoconite holes fauna. J. Zool. 295 159–169. 10.1111/jzo.12195 DOI

Zawierucha K., Porazinska D. L., Ficetola G. F., Ambrosini R., Baccolo G., Buda J., et al. (2021). A hole in the nematosphere: tardigrades and rotifers dominate the cryoconite hole environment, whereas nematodes are missing. J. Zool. 313 18–36. 10.1111/jzo.12832 DOI

Zhang S., Su J., Ma S., Wang H., Wang X., He K., et al. (2021). Eukaryotic red and green algae populated the tropical ocean 1400 million years ago. Precambrian Res. 357:106166. 10.1016/j.precamres.2021.106166 DOI

Zhu J. K. (2016). Abiotic stress signaling and responses in plants. Cell 167 313–324. 10.1016/j.cell.2016.08.029 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...