Silurian Climatic Zonation of Cryptospore, Trilete Spore and Plant Megafossils, with Emphasis on the Přídolí Epoch
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
38398767
PubMed Central
PMC10890225
DOI
10.3390/life14020258
PII: life14020258
Knihovny.cz E-zdroje
- Klíčová slova
- Přídolí, Silurian, cryptospores, early land plants, trilete spores,
- Publikační typ
- časopisecké články MeSH
This paper describes dispersed cryptospores and trilete spores from tropical, temperate and cool climate belts within Přídolí and compares them with the land plant megafossil record. The palynology of earlier intervals in the Silurian are also reviewed. A common feature of the cryptospore and trilete spore records is that their number is surprisingly lowest in the tropical climatic belt and much higher in the temperate and especially in the cool latitude, and the highest number of cryptospore taxa occurring only in one belt is found in the cool belt while the highest number of trilete spore taxa that occurred only in one belt is recorded in the temperate belt. In general, based on the dispersed spore record, we can estimate that the plant assemblages of the tropical belt were dominated by rhyniophytes; trimerophytes probably prevailed over rhyniophytes in the temperate belt, and rhyniophytes again dominated within the cool belt.
Czech Geological Survey 118 21 Prague 1 Czech Republic
Eddy Lab Palaeopalynology Department of Geology University of Liège 4000 Liège Belgium
Faculty of Science Charles University 128 43 Prague 2 Czech Republic
Zobrazit více v PubMed
Graham L.E. Origin of Land Plants. John Wiley and Sons; New York, NY, USA: 1993. p. 287.
Wellman C., Steemans P., Vecoli M. Paleophytogeography of Ordovician–Silurian land plants. Geol. Soc. Lond. Mem. 2013;38:461–476. doi: 10.1144/M38.29. DOI
Cox S.J., Li B., Foster P.G., Embley M., Civáň P. Conflicting Phylogenies for Early Land Plants are Caused by Composition Biases among Synonymous Substitutions. Syst. Biol. 2014;63:272–279. doi: 10.1093/sysbio/syt109. PubMed DOI PMC
Bower F.O. The Origin of a Land Flora: A Theory based on the Facts of Alternation. Macmillan; London, UK: 1908. p. 727.
Karol K.G., McCourt R.M., Climino M.T., Delwiche C.F. The closest living relatives of land plants. Science. 2001;294:2351–2353. doi: 10.1126/science.1065156. PubMed DOI
Qiu Y.-L., Li L., Bin W., Chen Z., Knoop V., Groth-Malonek M., Dombrovska O., Lee J., Kent L., Rest J., et al. The deepest divergences in land plants inferred from phylogenomic evidence. Proc. Natl. Acad. Sci. USA. 2006;103:15511–15516. doi: 10.1073/pnas.0603335103. PubMed DOI PMC
Gontcharov A.A. Phylogeny and classification of Zygnematophyceae (Streptophyta): Current state of affairs. Fottea. 2008;8:87–104. doi: 10.5507/fot.2008.004. DOI
Wodniok S., Brinkmann H., Glockner G., Heidel A.J., Philippe H., Melkonian M., Becker B. Origin of land plants: Do conjugating green algae hold the key? Evol. Biol. 2021;11:104. doi: 10.1186/1471-2148-11-104. PubMed DOI PMC
Cheng S., Xian W., Fu Y., Marin B., Keller J., Wu T., Sun W., Li X., Xu Y., Zhang Y., et al. Genomes of subaerial Zygnematophyceae provide insughs into land plant evolution. Cell. 2019;179:1057–1067. doi: 10.1016/j.cell.2019.10.019. PubMed DOI
Tena G. Lipid blue fruits. Nat. Plants. 2020;6:1072. doi: 10.1038/s41477-020-00772-2. PubMed DOI
Žárský J., Žárský V., Hanáček M., Žárský V. Cryogenian Glacial Habitats as a Plant Terrestrialisation Cradle—The Origin of the Anydrophytes and Zygnematophyceae. Split. Front. Plant Sci. 2022;12:735020. doi: 10.3389/fpls.2021.735020. PubMed DOI PMC
Libertín M., Kvaček J., Bek J., Žárský V., Štorch P. Sporophytes of polysporangiate land plants from the early Silurian period may have been photosynthetically autonomous. Nat. Plants. 2018;4:269–271. doi: 10.1038/s41477-018-0140-y. PubMed DOI
Libertín M., Kvaček J., Bek J., Žárský V., Štorch P. Plant diversity of the Mid Silurian (Lower Wenlock, Sheinwoodian) terrestrial vegetation preserved in marine sediments from the Barrandian area, the Czech Republic. Foss. Impr. 2018;74:327–333. doi: 10.2478/if-2018-0020. DOI
Kraft P., Pšenička J., Sakala J., Frýda J. Initial plant diversification and dispersal event in upper Silurian of the Prague Basin. Palaeogeog. Palaeoclimatol. Palaeoecol. 2018;514:144–155. doi: 10.1016/j.palaeo.2018.09.034. DOI
Bek J., Štorch P., Tonarová P., Libertín M. Early Silurian (mid-Sheinwoodian) palynomorphs from the Loděnice-Špičatý vrch, Prague Basin, Czech Republic. Bull. Geosci. 2022;97:385–396. doi: 10.3140/bull.geosci.1831. DOI
Strother P.K. A classification schema for the Cryptospores. Palynology. 1991;15:219–236. doi: 10.1080/01916122.1991.9989397. DOI
Edwards D., Morris J.L., Axe L., Duckett J.G., Pressel S., Kenrick P. Piecing together the eophytes—A new group of ancient plants containing cryptospores. New Phytol. 2022;233:1440–1455. doi: 10.1111/nph.17703. PubMed DOI
Wellman C., Ball A.C. Early land plant phytodebris. Geol. Soc. Lond. Spec. Publ. 2021;511:309–320. doi: 10.1144/SP511-2020-36. DOI
Strother P. Systematics and evolutionary significance of some new cryptospores from the Cambrian of eastern Tennessee, USA. Rev. Palaeobot. Palynol. 2016;227:28–41. doi: 10.1016/j.revpalbo.2015.10.006. DOI
Morris J.L., Puttick M.N., Clark J.W., Donoghue P.C.J. The timescale of early land plant evolution. Proc. Natl. Acad. Sci. USA. 2018;115:E2274–E2283. doi: 10.1073/pnas.1719588115. PubMed DOI PMC
Breuer P., Steemans P. Devonian spore assemblages from northwestern Gondwana: Taxonomy and biostratigraphy. Spec. Pap. Palaeontol. 2013;89:1–163.
Pšenička J., Bek J., Frýda J., Žárský V., Uhlířová M., Štorch P. Dynamics of Silurian Plants as Response to Climate Changes. Life. 2021;11:906. doi: 10.3390/life11090906. PubMed DOI PMC
Wellman C., Gray J. The microfossil record of early land plants. Phil. Trans. R Soc. Lond. 2000;355:717–732. doi: 10.1098/rstb.2000.0612. PubMed DOI PMC
Edwards D., Axe L., Honegger R. Contributions to the diversity of in cryptogamic covers in the mid-Palaeozoic; Nematothallus revisited. Bot. J. Linn. Soc. 2014;173:505–534. doi: 10.1111/boj.12119. DOI
Steemans P., Le Herisse A., Melvin J., Miller M.A., Paris F., Verniers J., Wellman C. Origin and radiation of the earliest vascular land plants. Science. 2009;324:353. doi: 10.1126/science.1169659. PubMed DOI
Wellman C.H., Osterloff P.L., Mohiuddin U. Fragments of the earliest land plants. Nature. 2003;425:282–284. doi: 10.1038/nature01884. PubMed DOI
Frýda J., Lehnert O., Frýdová B., Farkaš J., Kubajko M. Carbon and sulfur cycling during the mid-Ludfordian anomaly and the linkage with the late Silurian Lau/Kozlowskii Bioevent. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2021;564:110152. doi: 10.1016/j.palaeo.2020.110152. DOI
Frýda J., Lehnert O., Joachimski M.M., Männik P., Kubajko M., Mergl M., Farkaš J., Frýdová B. The Mid-Ludfordian (late Silurian) Glaciation: A link with global changes in ocean chemistry and ecosystem overturns. Earth-Sci. Rev. 2021;220:103652. doi: 10.1016/j.earscirev.2021.103652. DOI
Edwards D., Richardson J.B. Silurian and Lower Devonian plant assemblages from the Anglo-Welsh Basin: A palaeobotanical and palynological synthesis. Geol. J. 2004;39:375–402. doi: 10.1002/gj.997. DOI
Steemans P., Wellman C., Filatoff J. Palaeophytogeographical and palaeoecological implications of a miospore assemblage of earliest Devonian (Lochkovian) age from Saudi Arabia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2007;250:237–254. doi: 10.1016/j.palaeo.2007.03.009. DOI
Gray J. The microfossil record of early land plants; advances in understanding of early terrestrialization, 1970–1984. Phil. Trans. R. Soc. London B. 1985;309:167–195.
Mogensen G.S. The biological significance of morphological characters in bryophytes: The spore. Bryologist. 1981;84:187–207. doi: 10.2307/3242821. DOI
Berner R.A. Geological nitrogen cycle and atmospheric N2 over Phanerozoic time. Geology. 2006;34:413–415. doi: 10.1130/G22470.1. DOI
Vavrdová M. Further acritarchs and terrestrial plant remains from the Late Ordovician at Hlasna Treban (Czechoslovakia) Čas. Miner. Geol. 1998;33:1–10.
Gray J., Theron J.N., Boucot A.J. Age of the Cedarberg Formation, South Africa and early land plant evolution. Geol. Mag. 1986;123:445–454. doi: 10.1017/S0016756800033537. DOI
Hoffmeister W.S. Lower Silurian plant spores from Libya. Micropaleontol. 1959;5:331–334. doi: 10.2307/1484424. DOI
Richardson J.B., McGregor D.C. Silurian and Devonian spore zones of the Old Red Sandstone Continent and adjacent regions. Geol. Surv. Can. Bull. 1986;364:1–79.
Richardson J.B. Taxonomy and classification of some new Early Devonian cryptospores from England. Spec. Pap. Palaeontol. 1996;55:7–40.
Wellman C. Cryptospores from the type area for the Caradoc Series (Ordovician) in southern Britain. Palaeontol. 1996;55:103–136.
Steemans P. Miospore evolution from the Ordovician to the Silurian. Rev. Palaeobot. Palynol. 2000;113:189–196. doi: 10.1016/S0034-6667(00)00059-2. PubMed DOI
Steemans P. Ordovician cryptospores from the Oostduinkerke borehole, Brabant Massif,2. Belgium. Geobios. 2001;34:3–12. doi: 10.1016/S0016-6995(01)80038-3. DOI
Strother P.K. Cryptospores: The origin and early evolution of the terrestrial flora. In: Gastaldo R.A., DiMichele W.A., editors. Phanerozoic Terrestrial Ecosystems. The Paleontological Society; Boulder, CO, USA: 2000. pp. 3–20.
Allen K.C. A review of in situ Late Silurian and Devonian spores. Rev. Palaeobot. Palynol. 1980;29:253–270. doi: 10.1016/0034-6667(80)90062-7. DOI
Gensel P.G. Devonian in situ spores: A survey and discussion. Rev. Palaeobot. Palynol. 1980;30:101–132. doi: 10.1016/0034-6667(80)90009-3. DOI
Fanning U., Richardson J.B., Edwards D. A review of in situ spores in Silurian land plant. In: Blackmore S., Barnes S.H., editors. Systematics Association Special Volume. Pollen and Spores. Volume 44. Clarendon Press; Oxford, UK: 1991. pp. 25–47.
Balme B.E. Fossil in situ spores and pollen grains: An annotated catalogue. Rev. Palaeobot. Palynol. 1995;87:1–323. doi: 10.1016/0034-6667(95)93235-X. DOI
Gonez P., Gerrienne P. A new definition and a lectotypification of the genus Cooksonia Lang 1937. Int. J. Plant Sci. 2010;171:199–215. doi: 10.1086/648988. DOI
Lang W.H. On plant-remains from the Downtonian of England and Wales. Phil. Trans. R. Soc. London B. 1937;227:245–291.
Edwards D. Constraints on Silurian and Early Devonian phytogeographic analysis based on megafossils. In: McKerrow W.S., Scotese C.R., editors. Palaeozoic Palaeogeography and Biogeography, Memoir. Volume 12. The Geological Society; London, UK: 1990. pp. 233–242.
Raymond A., Gensel P.G., Stein W.E. Phytogeography of late Silurian macrofloras. Rev. Palaeobot. Palynol. 2006;142:165–192. doi: 10.1016/j.revpalbo.2006.02.005. DOI
Naugolnykh S.V. Plants of the first terrestrial ecosystems. Her. Russian Acad. Sci. 2019;89:502–511. doi: 10.1134/S101933161905006X. DOI
Naugolnykh S.V. Piterophyton gen. nov., a new genus of archaic land plants from the Upper Ordovician deposits of the European part of Russia. Wulfenia. Mitt. Kärn. Botanik. Klagenfurt. 2022;29:115–130.
Cohen K.M., Finney S.C., Gibbard P.L., Fan J.-X. The ICS International Chronostratigraphic Chart. Episodes. 2023;36:199–204. doi: 10.18814/epiiugs/2013/v36i3/002. PubMed DOI
Spiridonov A., Stankevič R., Gečas T., Brazaukas A., Kaminskas D., Musteikis P., Kaveckas T., Meidla T., Bičkauskas D., Ainsaar L., et al. Ultra-high resolution multivariate record and multiscale causal analysis of Pridoli (late Silurian): Implications for global stratigraphy, turnover events, and climate-biota interactions. Gond. Res. 2020;86:1–43. doi: 10.1016/j.gr.2020.05.015. DOI
Klug C., Kroger B., Kiessling W., Mullins G.L., Servais T., Frýda J., Korn D., Turner S. The Devonian nekton revolution. Lethaia. 2010;43:465–477. doi: 10.1111/j.1502-3931.2009.00206.x. DOI
Hayes J.M., Strauss H., Kaufman A.J. The abundance of 13C in marine organic matter and isotopic fractionation in the global biogeochemical cycle of carbon during the past 800 Ma. Chem. Geol. 1999;161:103–125. doi: 10.1016/S0009-2541(99)00083-2. DOI
Berner R.A. Phanerozoic atmospheric oxygen: New results using the GEOCARBSULF model. Am. J. Sci. 2009;309:603–606. doi: 10.2475/07.2009.03. DOI
Berner R.A., Beerling D.J., Dudley R., Robinson J.M., Wildman R.A. Phanerozoic atmospheric oxygen. Ann. Rev. Earth Planet. Sci. 2003;31:05–134. doi: 10.1146/annurev.earth.31.100901.141329. DOI
Schachat S.R., Labandeira C.C., Saltzman M.R., Cramer B.D., Payne J.L., Boyce C.K. Phanerozoic pO2 and the early evolution of terrestrial animals. Proc. R. Soc. 2018;285:20172631. PubMed PMC
Cramer B.D., Brett C.E., Melchin M.J., Männik P., Kleffner M.A., McLaughlin P.I., Lloydell D.K., Munnecke A., Jeppsson L., Corradini C., et al. Revised correlation of Silurian provincial Series of North America with global and regional chronostratigraphic and δ13Ccarb chemostratigraphy. Lethaia. 2011;44:185–202. doi: 10.1111/j.1502-3931.2010.00234.x. DOI
Saltzman M.R., Thomas E. Carbon isotope stratigraphy. In: Gradstein F., Ogg J., Schmitz M.D., Ogg G., editors. The Geologic Time Scale. Elsevier; Amsterdam, The Netherlands: 2012. pp. 207–232.
Trotter J.A., Williams I.S., Barnes C.R., Männik P., Simpson A. New conodont δ18O records of Silurian climate change: Implications for environmental and biological events. Palaeogeog. Palaeoclimatol. Palaeoecol. 2016;443:34–48. doi: 10.1016/j.palaeo.2015.11.011. DOI
Grossman E.L., Joachimski M.M. Geologic Time Scale. Elsevier; Amsterdam, The Netherlands: 2020. Oxygen Isotope Stratigraphy; pp. 279–307.
Lehnert O., Eriksson M.J., Calner M., Joachimski M., Buggisch W. Concurrent sedimentary and isotopic indications for global climatic cooling in the Late Silurian. Acta Palaeontol. Sin. 2007;46:249–255.
Joachimski M.M., Breisig S., Buggisch W., Talent J.A., Mawson R., Gereke M., Morrow J.M., Day J., Weddige K. Devonian climate and reef evolution: Insights from oxygen isotopes in apatite. Earth Planet. Sci. Lett. 2009;284:599–609. doi: 10.1016/j.epsl.2009.05.028. DOI
Elrick M., Berkyová S., Klapper G., Sharp Z., Joachimski M., Frýda J. Stratigraphic and oxygen isotope evidence for My-scale glaciation driving eustasy in the Early-Middle Devonian greenhouse world. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2009;276:170–181. doi: 10.1016/j.palaeo.2009.03.008. DOI
Žigaitė Ž., Joachimski M.M., Lehnert O., Brazauskas A. δ18O composition of conodont apatite indicates climatic cooling during the Middle Pridoli. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2010;294:242–247. doi: 10.1016/j.palaeo.2010.03.033. DOI
Lehnert O., Frýda J., Joachimski M., Meinhold G., Čáp P. A latest Silurian Supergreenhouse: The trigger for the Pridoli Transgrediens Extinction Event; Proceedings of the 34th International Geological Congress; Brisbane, Australia. 5–10 August 2012; p. 3255.
Lehnert O., Frýda J., Joachimski M., Meinhold G., Calner M., Čáp P. The ‘Přídolí hothouse’ a trigger of faunal overturns across the latest Silurian Transgrediens Bioevent. In: Lindskog A., Mehlqvist K., editors. Proceedings of the 3rd IGCP 591, Annual Meeting; Lund, Sweden. 9–19 June 2013; Lund, Sweden: Lund University; 2013. pp. 175–176.
Manda Š., Frýda J. Silurian-Devonian boundary events and their influence on cephalopod evolution: Evolutionary significance of cephalopod egg size during mass extinctions. Bull. Geosci. 2010;85:513–540. doi: 10.3140/bull.geosci.1174. DOI
Beck J.H., Strother P.K. Silurian spores and cryptospores from the Arisaig Group, Nova Scotia, Canada. Palynol. 2001;25:127–177. doi: 10.2113/0250127. DOI
Beck J.H., Strother P.K. Miospores and cryptospores from the Silurian section at Allenport, Pennsylvania, USA. J. Paleontol. 2008;82:857–883. doi: 10.1666/08-009R.1. DOI
Wellman C. A land plant microfossil assemblage of Mid Silurian age from the Stonehaven Group, Scotland. J. Micropalaeontol. 1993;12:47–66. doi: 10.1144/jm.12.1.47. DOI
Smelror M. Llandovery and Wenlock miospores and spore-like microfossils from the Ringerike district, Norway. Norsk Geol. Tids. 1987;67:143–150.
Smelror M. Palynomorphs from the Cyrtograptys centrifugus graptolite zone (Early Wenlock, Silurian), Bornholm. Bull. Geol. Soc. Den. 1990;39:83–89.
Steemans P., Le Hérissé A., Bozdogan N. Ordovician and Silurian cryptospores and miospores from Southeastern Turkey. Rev. Palaeobot. Palynol. 1996;93:35–76. doi: 10.1016/0034-6667(95)00119-0. DOI
Wellman C.H., Richardson J.B. Terrestrial plant microfossils from Silurian inliers of the Midland Valley of Scotland. Palaeontol. 1993;36:155–193.
Hagström J. Land-derived palynomorphs from the Silurian of Gotland, Sweden. Geol. Fören. Stockh. Förh. 1997;119:301–316. doi: 10.1080/11035899709546492. DOI
Maziane-Serraj N., Bruck P.M., Higgs K.T., Vanguestaine M. Ordovician and Silurian acritarch assemblages from the west Leinster and Slievenamon areas of southeast Ireland. Rev. Palaeobot. Palynol. 2000;113:57–71. doi: 10.1016/S0034-6667(00)00052-X. PubMed DOI
Smith D.G. Wenlock plant spores and tetrads from County Mayo Ireland. Geol. Mag. 1975;112:411–414. doi: 10.1017/S001675680004680X. DOI
Burgess N.D., Richardson J.B. Silurian cryptospores and miospores from the type Wenlock area, Shropshire, England. Palaeontol. 1991;34:601–628.
Burgess N.D., Richardson J.B. Late Wenlock to early Pridoli cryptospores and miospores from south and southwest Wales, Great Britain. Palaeontogr. Abt. B. 1995;236:1–44.
Al-Ameri T.K., Omer S.F., Khalaf F.H. Lower Silurian palynomorphs from Western Iraqi Desert and the paleoclimate. J. Sci. Nat. 1991;1:57–65.
Marshall J.E.A. Vegetational history of Devonian spores. In: Jansonius J., McGregor D.C., editors. Palynology: Principles and Applications. American Association Stratigraphic Palynologists Foundation; Salt Lake City, UT, USA: 1996. pp. 1133–1141.
Steemans P., Higgs K.T., Wellman C.H. Cryptospores and trilete spores from the Llandovery, Nuayyim-2 Borehole, Saudi Arabia. In: Al-Hajri S., Owens B., editors. Stratigraphic Palynology of the Palaeozoic of Saudi Arabia. Volume 1. GeoArabia Special Publication; Bahrain, Manama: 2000. pp. 92–115.
Rodríguez R.M. Palinologia de las Formaciones del Silúrico superior—Devonico inferior de la Cordillera Cantabrica. Volume 6. Servicio de Publicaciones, Universidad de Leon; Leon, Spain: 1993. pp. 1–231.
Rubinstein C.V., Steemans P. New palynological data from the Devonian Villavicencio Formation, Precordillera of Mendoza, Argentina. Ameghiniana. 2002;44:3–9.
Spina A., Vecoli M. Palynostratigraphy and vegetational changes in the Siluro- Devonian of the Ghadamis Basin, North Africa. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2009;282:1–18. doi: 10.1016/j.palaeo.2009.08.001. DOI
Cramer F.H. Palynology of Silurian and Devonian rocks in Northwest Spain. Bol. Inst. Geol. Miner. Esp. 1967;77:225–286.
Richardson J.B., Rodríguez R.M., Sutherland S.J.E. Palynological zonation of Mid- Palaeozoic sequences from the Cantabrian Mountains, NW Spain: Implications for inter-regional and interfacies correlation of the Ludford/Prídolí and Silurian/Devonian boundaries, and plant dispersal patterns. Bull. Nat. Hist. Mus. Geol. Ser. 2001;57:115–162.
Kermandji A.M.H. Silurian-Devonian miospores from the western and central Algeria. Rev. Micropaléontol. 2007;50:109–128. doi: 10.1016/j.revmic.2007.01.003. DOI
Barron H.F. Mid-Wenlock acritarchs from the inlier in the Cheviot Hills, NE England. Scot. J. Geol. 1989;25:81–89. doi: 10.1144/sjg25010081. DOI
Aristova K.E., Arkhangelskaya A.D. Microfossils from stratotype sections of Upper Silurian horizons of Estonia. In: Byvsheva T.V., editor. Results of Palynological Research on Precambrian, Paleozoic and Mesozoic of the USSR. Volume 192. Trudy Vsesoiuznogo Nauchno-Issledovatel’skogo Geologorazvedochnogo Neftianogo Instituta, Kama Branch; Perm, Russia; 1976. pp. 28–38.
Aldridge R.J., Dorning K.J., Hill P.J., Richardson J.B., Siveter D.J. Microfossil distribution in the Silurian of Britain and Ireland. Geol. Soc. Lond. Spec. Publ. 1979;8:433–438. doi: 10.1144/GSL.SP.1979.008.01.50. DOI
Johnson T.R., Taylor W.A. Single grain analysis of the Late Silurian spore Cymbosporites echinatus from the Welsh Borderland. Rev. Palaeobot. Palynol. 2005;137:163–172. doi: 10.1016/j.revpalbo.2005.08.003. DOI
Richardson J.B., Lister T.R. Upper Silurian and Lower Devonian spore assemblages from the Welsh Borderland and South Wales. Palaeontol. 1969;12:201–252.
Richardson J.B., Rasul S.M., Al-Ameri T. Acritarchs, miospores and correlation of the Ludlovian-Downtonian and Silurian-Devonian boundaries. Rev. Palaeobot. Palynol. 1981;34:209–224. doi: 10.1016/0034-6667(81)90039-7. DOI
Wetherall P.M., Dorning K.J., Wellman C. Palynology biostratigraphy, and depositional environments around the Ludlow Pridoli boundary at Woodbury Quarry, Hereforshire, England. Boll. Soc. Paleontol. Ital. 1999;38:397–404.
Vanguestaine M., Steemans P., Streel M. Microfossiles végétaux. Le Groupe de Liévin. Pridoli-Lochkovien de l’Artois (N. France) In: Racheboeuf P.R., editor. Biostratigraphie u Paléozoïque. Volume 3. Pascal and Francis; Lawrence, KS, USA: 1986. pp. 47–55.
Deunff J., Chateauneuf J.J. Sur la présence d’un riche microplancton siluro- dévonien à acritarches, chitinozoaires, au sommet des Schistes et Quartzites de Plougastel (Rade de Brest); son intérêt stratigraphique. Geobios. 1976;9:337–343. doi: 10.1016/S0016-6995(76)80038-1. DOI
Moreau-Benoit A., Dubreuil M. Confirmation et découverte du Dévonien inférieur par la palynoplanctonologie dans les schistes et grès de la terminaison orientale du bassin d’Ancenis (sud-est du Massif armoricain) Géol. France. 1987;1:37–54.
Rauscher R., Robardet M. Les microfossiles (acritarches, chitinozoaires et spores) des couches de passage du Silurien au Dévonien dans le Cotentin (Normandie) Ann. Soc. Géol. Nord. 1975;95:81–92.
Cramer F.H., Rodríguez R.M. Robledo and Arroyacas Formation (Arroyo de las Arroyacas, Province of Palencia, Spain) palynologically dated as late Silurian. Brev. Geol. Astur. 1977;21:2–4.
Cramer F.H., Díez M.D. Ovnia, genero nuevo de Acritarcos del Gedinniense de Arabia Saudita. Rev. Esp. Micropaleontol. 1977;9:85–88.
Rodríguez R.M. Nuevas mioesporas de la Formación San Pedro en Geras de Gordon Cordillera Cantabrica (Provincia de León, Noroeste de España) Brev. Geol. Astur. 1978;22:9–16.
Rodríguez R.M. Miospores de la Formation San Pedro (Silurien-Devonien) à Corniero (Province de León, Espagne) Rev. Micropaléontol. 1978;20:216–221.
Rodríguez R.M. Mioesporas de la Formación San Pedro/Furada (Silúrico Superior-Devónico Inferior), Cordillera Cantabrica, NO de España. Palinol. Núm. Extraord. 1978;1:407–433.
Buret M.B., Moreau-Benoit A. Données nouvelles apportées par la palynoplanctologie sur la formation des alternances argilo-gréseuses (Silurien supérieur de Libye, bassin de Rhadamès) Comp. R. Acad. Sci. Paris. 1986;302:1009–1025.
Tekbali A.O., Wood G.D. Silurian spores, acritarchs and chitinozoans from the Baní Walíd Borehole of the Ghadámis Basin, Northwest Libya. Geol. Libya. 1991;4:1243–1273.
Steemans P., Rubinstein C., Melo J.H.G. Siluro-Devonian miospore biostratigraphy of the Urubu River area, western Amazon Basin, northern Brazil. Geobios. 2008;41:263–282. doi: 10.1016/j.geobios.2007.06.003. DOI
Rubinstein C. Palinologia des Silurico superior (Formacion Los Espejos) de La Quebrada de las Aguaditas, Precordillera de San Juan, Argentina. Ameghiniana. 1992;29:231–248.
Rubinstein C. Palynological investigation in the Lower Paleozoic of Argentina. Zeit. Geol. Paläontol. 1994;1:271-230.
Rubinstein C. Acritarchs from the upper Silurian of Argentina: Their relationship with Gondwana. J. S. Amer. Earth Sci. 1995;8:103–115. doi: 10.1016/0895-9811(94)00045-4. DOI
McGregor D.C. Late Silurian and Devonian spores from Bolivia. Acad. Nac. Cienc. Cordoba. 1994;69:1–57.
Wang Y., Li J. Late Silurian trilete spores from northern Jiangsu, China. Rev. Palaeobot. Palynol. 2011;111:111–125. doi: 10.1016/S0034-6667(00)00021-X. PubMed DOI
Wang Y., Zhu H.C., Li J. Late Silurian plant microfossil assemblage from Guangyuan, Sichuan, China. Rev. Palaeobot. Palynol. 2005;133:153–168.
McGregor D.C., Camfield M. Upper Silurian? to Middle Devonian spores of the Moose River Basin, Ontario. Geol. Surv. Can. Bull. 1976;263:1–63.
Scotese C.R. Atlas of Earth History, 1, Paleogeography. PALEOMAP Project; Arlington, TX, USA: 2001. pp. 1–52.
Wellman C., Berry C.M., Davies N.S., Lindemann F.J., Marshall J.E.A., Wyatt A. Low tropical diversity during the adaptive radiation of early land plants. Nat. Plants. 2022;8:104–109. doi: 10.1038/s41477-021-01067-w. PubMed DOI