Silurian Climatic Zonation of Cryptospore, Trilete Spore and Plant Megafossils, with Emphasis on the Přídolí Epoch

. 2024 Feb 16 ; 14 (2) : . [epub] 20240216

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38398767

This paper describes dispersed cryptospores and trilete spores from tropical, temperate and cool climate belts within Přídolí and compares them with the land plant megafossil record. The palynology of earlier intervals in the Silurian are also reviewed. A common feature of the cryptospore and trilete spore records is that their number is surprisingly lowest in the tropical climatic belt and much higher in the temperate and especially in the cool latitude, and the highest number of cryptospore taxa occurring only in one belt is found in the cool belt while the highest number of trilete spore taxa that occurred only in one belt is recorded in the temperate belt. In general, based on the dispersed spore record, we can estimate that the plant assemblages of the tropical belt were dominated by rhyniophytes; trimerophytes probably prevailed over rhyniophytes in the temperate belt, and rhyniophytes again dominated within the cool belt.

Zobrazit více v PubMed

Graham L.E. Origin of Land Plants. John Wiley and Sons; New York, NY, USA: 1993. p. 287.

Wellman C., Steemans P., Vecoli M. Paleophytogeography of Ordovician–Silurian land plants. Geol. Soc. Lond. Mem. 2013;38:461–476. doi: 10.1144/M38.29. DOI

Cox S.J., Li B., Foster P.G., Embley M., Civáň P. Conflicting Phylogenies for Early Land Plants are Caused by Composition Biases among Synonymous Substitutions. Syst. Biol. 2014;63:272–279. doi: 10.1093/sysbio/syt109. PubMed DOI PMC

Bower F.O. The Origin of a Land Flora: A Theory based on the Facts of Alternation. Macmillan; London, UK: 1908. p. 727.

Karol K.G., McCourt R.M., Climino M.T., Delwiche C.F. The closest living relatives of land plants. Science. 2001;294:2351–2353. doi: 10.1126/science.1065156. PubMed DOI

Qiu Y.-L., Li L., Bin W., Chen Z., Knoop V., Groth-Malonek M., Dombrovska O., Lee J., Kent L., Rest J., et al. The deepest divergences in land plants inferred from phylogenomic evidence. Proc. Natl. Acad. Sci. USA. 2006;103:15511–15516. doi: 10.1073/pnas.0603335103. PubMed DOI PMC

Gontcharov A.A. Phylogeny and classification of Zygnematophyceae (Streptophyta): Current state of affairs. Fottea. 2008;8:87–104. doi: 10.5507/fot.2008.004. DOI

Wodniok S., Brinkmann H., Glockner G., Heidel A.J., Philippe H., Melkonian M., Becker B. Origin of land plants: Do conjugating green algae hold the key? Evol. Biol. 2021;11:104. doi: 10.1186/1471-2148-11-104. PubMed DOI PMC

Cheng S., Xian W., Fu Y., Marin B., Keller J., Wu T., Sun W., Li X., Xu Y., Zhang Y., et al. Genomes of subaerial Zygnematophyceae provide insughs into land plant evolution. Cell. 2019;179:1057–1067. doi: 10.1016/j.cell.2019.10.019. PubMed DOI

Tena G. Lipid blue fruits. Nat. Plants. 2020;6:1072. doi: 10.1038/s41477-020-00772-2. PubMed DOI

Žárský J., Žárský V., Hanáček M., Žárský V. Cryogenian Glacial Habitats as a Plant Terrestrialisation Cradle—The Origin of the Anydrophytes and Zygnematophyceae. Split. Front. Plant Sci. 2022;12:735020. doi: 10.3389/fpls.2021.735020. PubMed DOI PMC

Libertín M., Kvaček J., Bek J., Žárský V., Štorch P. Sporophytes of polysporangiate land plants from the early Silurian period may have been photosynthetically autonomous. Nat. Plants. 2018;4:269–271. doi: 10.1038/s41477-018-0140-y. PubMed DOI

Libertín M., Kvaček J., Bek J., Žárský V., Štorch P. Plant diversity of the Mid Silurian (Lower Wenlock, Sheinwoodian) terrestrial vegetation preserved in marine sediments from the Barrandian area, the Czech Republic. Foss. Impr. 2018;74:327–333. doi: 10.2478/if-2018-0020. DOI

Kraft P., Pšenička J., Sakala J., Frýda J. Initial plant diversification and dispersal event in upper Silurian of the Prague Basin. Palaeogeog. Palaeoclimatol. Palaeoecol. 2018;514:144–155. doi: 10.1016/j.palaeo.2018.09.034. DOI

Bek J., Štorch P., Tonarová P., Libertín M. Early Silurian (mid-Sheinwoodian) palynomorphs from the Loděnice-Špičatý vrch, Prague Basin, Czech Republic. Bull. Geosci. 2022;97:385–396. doi: 10.3140/bull.geosci.1831. DOI

Strother P.K. A classification schema for the Cryptospores. Palynology. 1991;15:219–236. doi: 10.1080/01916122.1991.9989397. DOI

Edwards D., Morris J.L., Axe L., Duckett J.G., Pressel S., Kenrick P. Piecing together the eophytes—A new group of ancient plants containing cryptospores. New Phytol. 2022;233:1440–1455. doi: 10.1111/nph.17703. PubMed DOI

Wellman C., Ball A.C. Early land plant phytodebris. Geol. Soc. Lond. Spec. Publ. 2021;511:309–320. doi: 10.1144/SP511-2020-36. DOI

Strother P. Systematics and evolutionary significance of some new cryptospores from the Cambrian of eastern Tennessee, USA. Rev. Palaeobot. Palynol. 2016;227:28–41. doi: 10.1016/j.revpalbo.2015.10.006. DOI

Morris J.L., Puttick M.N., Clark J.W., Donoghue P.C.J. The timescale of early land plant evolution. Proc. Natl. Acad. Sci. USA. 2018;115:E2274–E2283. doi: 10.1073/pnas.1719588115. PubMed DOI PMC

Breuer P., Steemans P. Devonian spore assemblages from northwestern Gondwana: Taxonomy and biostratigraphy. Spec. Pap. Palaeontol. 2013;89:1–163.

Pšenička J., Bek J., Frýda J., Žárský V., Uhlířová M., Štorch P. Dynamics of Silurian Plants as Response to Climate Changes. Life. 2021;11:906. doi: 10.3390/life11090906. PubMed DOI PMC

Wellman C., Gray J. The microfossil record of early land plants. Phil. Trans. R Soc. Lond. 2000;355:717–732. doi: 10.1098/rstb.2000.0612. PubMed DOI PMC

Edwards D., Axe L., Honegger R. Contributions to the diversity of in cryptogamic covers in the mid-Palaeozoic; Nematothallus revisited. Bot. J. Linn. Soc. 2014;173:505–534. doi: 10.1111/boj.12119. DOI

Steemans P., Le Herisse A., Melvin J., Miller M.A., Paris F., Verniers J., Wellman C. Origin and radiation of the earliest vascular land plants. Science. 2009;324:353. doi: 10.1126/science.1169659. PubMed DOI

Wellman C.H., Osterloff P.L., Mohiuddin U. Fragments of the earliest land plants. Nature. 2003;425:282–284. doi: 10.1038/nature01884. PubMed DOI

Frýda J., Lehnert O., Frýdová B., Farkaš J., Kubajko M. Carbon and sulfur cycling during the mid-Ludfordian anomaly and the linkage with the late Silurian Lau/Kozlowskii Bioevent. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2021;564:110152. doi: 10.1016/j.palaeo.2020.110152. DOI

Frýda J., Lehnert O., Joachimski M.M., Männik P., Kubajko M., Mergl M., Farkaš J., Frýdová B. The Mid-Ludfordian (late Silurian) Glaciation: A link with global changes in ocean chemistry and ecosystem overturns. Earth-Sci. Rev. 2021;220:103652. doi: 10.1016/j.earscirev.2021.103652. DOI

Edwards D., Richardson J.B. Silurian and Lower Devonian plant assemblages from the Anglo-Welsh Basin: A palaeobotanical and palynological synthesis. Geol. J. 2004;39:375–402. doi: 10.1002/gj.997. DOI

Steemans P., Wellman C., Filatoff J. Palaeophytogeographical and palaeoecological implications of a miospore assemblage of earliest Devonian (Lochkovian) age from Saudi Arabia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2007;250:237–254. doi: 10.1016/j.palaeo.2007.03.009. DOI

Gray J. The microfossil record of early land plants; advances in understanding of early terrestrialization, 1970–1984. Phil. Trans. R. Soc. London B. 1985;309:167–195.

Mogensen G.S. The biological significance of morphological characters in bryophytes: The spore. Bryologist. 1981;84:187–207. doi: 10.2307/3242821. DOI

Berner R.A. Geological nitrogen cycle and atmospheric N2 over Phanerozoic time. Geology. 2006;34:413–415. doi: 10.1130/G22470.1. DOI

Vavrdová M. Further acritarchs and terrestrial plant remains from the Late Ordovician at Hlasna Treban (Czechoslovakia) Čas. Miner. Geol. 1998;33:1–10.

Gray J., Theron J.N., Boucot A.J. Age of the Cedarberg Formation, South Africa and early land plant evolution. Geol. Mag. 1986;123:445–454. doi: 10.1017/S0016756800033537. DOI

Hoffmeister W.S. Lower Silurian plant spores from Libya. Micropaleontol. 1959;5:331–334. doi: 10.2307/1484424. DOI

Richardson J.B., McGregor D.C. Silurian and Devonian spore zones of the Old Red Sandstone Continent and adjacent regions. Geol. Surv. Can. Bull. 1986;364:1–79.

Richardson J.B. Taxonomy and classification of some new Early Devonian cryptospores from England. Spec. Pap. Palaeontol. 1996;55:7–40.

Wellman C. Cryptospores from the type area for the Caradoc Series (Ordovician) in southern Britain. Palaeontol. 1996;55:103–136.

Steemans P. Miospore evolution from the Ordovician to the Silurian. Rev. Palaeobot. Palynol. 2000;113:189–196. doi: 10.1016/S0034-6667(00)00059-2. PubMed DOI

Steemans P. Ordovician cryptospores from the Oostduinkerke borehole, Brabant Massif,2. Belgium. Geobios. 2001;34:3–12. doi: 10.1016/S0016-6995(01)80038-3. DOI

Strother P.K. Cryptospores: The origin and early evolution of the terrestrial flora. In: Gastaldo R.A., DiMichele W.A., editors. Phanerozoic Terrestrial Ecosystems. The Paleontological Society; Boulder, CO, USA: 2000. pp. 3–20.

Allen K.C. A review of in situ Late Silurian and Devonian spores. Rev. Palaeobot. Palynol. 1980;29:253–270. doi: 10.1016/0034-6667(80)90062-7. DOI

Gensel P.G. Devonian in situ spores: A survey and discussion. Rev. Palaeobot. Palynol. 1980;30:101–132. doi: 10.1016/0034-6667(80)90009-3. DOI

Fanning U., Richardson J.B., Edwards D. A review of in situ spores in Silurian land plant. In: Blackmore S., Barnes S.H., editors. Systematics Association Special Volume. Pollen and Spores. Volume 44. Clarendon Press; Oxford, UK: 1991. pp. 25–47.

Balme B.E. Fossil in situ spores and pollen grains: An annotated catalogue. Rev. Palaeobot. Palynol. 1995;87:1–323. doi: 10.1016/0034-6667(95)93235-X. DOI

Gonez P., Gerrienne P. A new definition and a lectotypification of the genus Cooksonia Lang 1937. Int. J. Plant Sci. 2010;171:199–215. doi: 10.1086/648988. DOI

Lang W.H. On plant-remains from the Downtonian of England and Wales. Phil. Trans. R. Soc. London B. 1937;227:245–291.

Edwards D. Constraints on Silurian and Early Devonian phytogeographic analysis based on megafossils. In: McKerrow W.S., Scotese C.R., editors. Palaeozoic Palaeogeography and Biogeography, Memoir. Volume 12. The Geological Society; London, UK: 1990. pp. 233–242.

Raymond A., Gensel P.G., Stein W.E. Phytogeography of late Silurian macrofloras. Rev. Palaeobot. Palynol. 2006;142:165–192. doi: 10.1016/j.revpalbo.2006.02.005. DOI

Naugolnykh S.V. Plants of the first terrestrial ecosystems. Her. Russian Acad. Sci. 2019;89:502–511. doi: 10.1134/S101933161905006X. DOI

Naugolnykh S.V. Piterophyton gen. nov., a new genus of archaic land plants from the Upper Ordovician deposits of the European part of Russia. Wulfenia. Mitt. Kärn. Botanik. Klagenfurt. 2022;29:115–130.

Cohen K.M., Finney S.C., Gibbard P.L., Fan J.-X. The ICS International Chronostratigraphic Chart. Episodes. 2023;36:199–204. doi: 10.18814/epiiugs/2013/v36i3/002. PubMed DOI

Spiridonov A., Stankevič R., Gečas T., Brazaukas A., Kaminskas D., Musteikis P., Kaveckas T., Meidla T., Bičkauskas D., Ainsaar L., et al. Ultra-high resolution multivariate record and multiscale causal analysis of Pridoli (late Silurian): Implications for global stratigraphy, turnover events, and climate-biota interactions. Gond. Res. 2020;86:1–43. doi: 10.1016/j.gr.2020.05.015. DOI

Klug C., Kroger B., Kiessling W., Mullins G.L., Servais T., Frýda J., Korn D., Turner S. The Devonian nekton revolution. Lethaia. 2010;43:465–477. doi: 10.1111/j.1502-3931.2009.00206.x. DOI

Hayes J.M., Strauss H., Kaufman A.J. The abundance of 13C in marine organic matter and isotopic fractionation in the global biogeochemical cycle of carbon during the past 800 Ma. Chem. Geol. 1999;161:103–125. doi: 10.1016/S0009-2541(99)00083-2. DOI

Berner R.A. Phanerozoic atmospheric oxygen: New results using the GEOCARBSULF model. Am. J. Sci. 2009;309:603–606. doi: 10.2475/07.2009.03. DOI

Berner R.A., Beerling D.J., Dudley R., Robinson J.M., Wildman R.A. Phanerozoic atmospheric oxygen. Ann. Rev. Earth Planet. Sci. 2003;31:05–134. doi: 10.1146/annurev.earth.31.100901.141329. DOI

Schachat S.R., Labandeira C.C., Saltzman M.R., Cramer B.D., Payne J.L., Boyce C.K. Phanerozoic pO2 and the early evolution of terrestrial animals. Proc. R. Soc. 2018;285:20172631. PubMed PMC

Cramer B.D., Brett C.E., Melchin M.J., Männik P., Kleffner M.A., McLaughlin P.I., Lloydell D.K., Munnecke A., Jeppsson L., Corradini C., et al. Revised correlation of Silurian provincial Series of North America with global and regional chronostratigraphic and δ13Ccarb chemostratigraphy. Lethaia. 2011;44:185–202. doi: 10.1111/j.1502-3931.2010.00234.x. DOI

Saltzman M.R., Thomas E. Carbon isotope stratigraphy. In: Gradstein F., Ogg J., Schmitz M.D., Ogg G., editors. The Geologic Time Scale. Elsevier; Amsterdam, The Netherlands: 2012. pp. 207–232.

Trotter J.A., Williams I.S., Barnes C.R., Männik P., Simpson A. New conodont δ18O records of Silurian climate change: Implications for environmental and biological events. Palaeogeog. Palaeoclimatol. Palaeoecol. 2016;443:34–48. doi: 10.1016/j.palaeo.2015.11.011. DOI

Grossman E.L., Joachimski M.M. Geologic Time Scale. Elsevier; Amsterdam, The Netherlands: 2020. Oxygen Isotope Stratigraphy; pp. 279–307.

Lehnert O., Eriksson M.J., Calner M., Joachimski M., Buggisch W. Concurrent sedimentary and isotopic indications for global climatic cooling in the Late Silurian. Acta Palaeontol. Sin. 2007;46:249–255.

Joachimski M.M., Breisig S., Buggisch W., Talent J.A., Mawson R., Gereke M., Morrow J.M., Day J., Weddige K. Devonian climate and reef evolution: Insights from oxygen isotopes in apatite. Earth Planet. Sci. Lett. 2009;284:599–609. doi: 10.1016/j.epsl.2009.05.028. DOI

Elrick M., Berkyová S., Klapper G., Sharp Z., Joachimski M., Frýda J. Stratigraphic and oxygen isotope evidence for My-scale glaciation driving eustasy in the Early-Middle Devonian greenhouse world. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2009;276:170–181. doi: 10.1016/j.palaeo.2009.03.008. DOI

Žigaitė Ž., Joachimski M.M., Lehnert O., Brazauskas A. δ18O composition of conodont apatite indicates climatic cooling during the Middle Pridoli. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2010;294:242–247. doi: 10.1016/j.palaeo.2010.03.033. DOI

Lehnert O., Frýda J., Joachimski M., Meinhold G., Čáp P. A latest Silurian Supergreenhouse: The trigger for the Pridoli Transgrediens Extinction Event; Proceedings of the 34th International Geological Congress; Brisbane, Australia. 5–10 August 2012; p. 3255.

Lehnert O., Frýda J., Joachimski M., Meinhold G., Calner M., Čáp P. The ‘Přídolí hothouse’ a trigger of faunal overturns across the latest Silurian Transgrediens Bioevent. In: Lindskog A., Mehlqvist K., editors. Proceedings of the 3rd IGCP 591, Annual Meeting; Lund, Sweden. 9–19 June 2013; Lund, Sweden: Lund University; 2013. pp. 175–176.

Manda Š., Frýda J. Silurian-Devonian boundary events and their influence on cephalopod evolution: Evolutionary significance of cephalopod egg size during mass extinctions. Bull. Geosci. 2010;85:513–540. doi: 10.3140/bull.geosci.1174. DOI

Beck J.H., Strother P.K. Silurian spores and cryptospores from the Arisaig Group, Nova Scotia, Canada. Palynol. 2001;25:127–177. doi: 10.2113/0250127. DOI

Beck J.H., Strother P.K. Miospores and cryptospores from the Silurian section at Allenport, Pennsylvania, USA. J. Paleontol. 2008;82:857–883. doi: 10.1666/08-009R.1. DOI

Wellman C. A land plant microfossil assemblage of Mid Silurian age from the Stonehaven Group, Scotland. J. Micropalaeontol. 1993;12:47–66. doi: 10.1144/jm.12.1.47. DOI

Smelror M. Llandovery and Wenlock miospores and spore-like microfossils from the Ringerike district, Norway. Norsk Geol. Tids. 1987;67:143–150.

Smelror M. Palynomorphs from the Cyrtograptys centrifugus graptolite zone (Early Wenlock, Silurian), Bornholm. Bull. Geol. Soc. Den. 1990;39:83–89.

Steemans P., Le Hérissé A., Bozdogan N. Ordovician and Silurian cryptospores and miospores from Southeastern Turkey. Rev. Palaeobot. Palynol. 1996;93:35–76. doi: 10.1016/0034-6667(95)00119-0. DOI

Wellman C.H., Richardson J.B. Terrestrial plant microfossils from Silurian inliers of the Midland Valley of Scotland. Palaeontol. 1993;36:155–193.

Hagström J. Land-derived palynomorphs from the Silurian of Gotland, Sweden. Geol. Fören. Stockh. Förh. 1997;119:301–316. doi: 10.1080/11035899709546492. DOI

Maziane-Serraj N., Bruck P.M., Higgs K.T., Vanguestaine M. Ordovician and Silurian acritarch assemblages from the west Leinster and Slievenamon areas of southeast Ireland. Rev. Palaeobot. Palynol. 2000;113:57–71. doi: 10.1016/S0034-6667(00)00052-X. PubMed DOI

Smith D.G. Wenlock plant spores and tetrads from County Mayo Ireland. Geol. Mag. 1975;112:411–414. doi: 10.1017/S001675680004680X. DOI

Burgess N.D., Richardson J.B. Silurian cryptospores and miospores from the type Wenlock area, Shropshire, England. Palaeontol. 1991;34:601–628.

Burgess N.D., Richardson J.B. Late Wenlock to early Pridoli cryptospores and miospores from south and southwest Wales, Great Britain. Palaeontogr. Abt. B. 1995;236:1–44.

Al-Ameri T.K., Omer S.F., Khalaf F.H. Lower Silurian palynomorphs from Western Iraqi Desert and the paleoclimate. J. Sci. Nat. 1991;1:57–65.

Marshall J.E.A. Vegetational history of Devonian spores. In: Jansonius J., McGregor D.C., editors. Palynology: Principles and Applications. American Association Stratigraphic Palynologists Foundation; Salt Lake City, UT, USA: 1996. pp. 1133–1141.

Steemans P., Higgs K.T., Wellman C.H. Cryptospores and trilete spores from the Llandovery, Nuayyim-2 Borehole, Saudi Arabia. In: Al-Hajri S., Owens B., editors. Stratigraphic Palynology of the Palaeozoic of Saudi Arabia. Volume 1. GeoArabia Special Publication; Bahrain, Manama: 2000. pp. 92–115.

Rodríguez R.M. Palinologia de las Formaciones del Silúrico superior—Devonico inferior de la Cordillera Cantabrica. Volume 6. Servicio de Publicaciones, Universidad de Leon; Leon, Spain: 1993. pp. 1–231.

Rubinstein C.V., Steemans P. New palynological data from the Devonian Villavicencio Formation, Precordillera of Mendoza, Argentina. Ameghiniana. 2002;44:3–9.

Spina A., Vecoli M. Palynostratigraphy and vegetational changes in the Siluro- Devonian of the Ghadamis Basin, North Africa. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2009;282:1–18. doi: 10.1016/j.palaeo.2009.08.001. DOI

Cramer F.H. Palynology of Silurian and Devonian rocks in Northwest Spain. Bol. Inst. Geol. Miner. Esp. 1967;77:225–286.

Richardson J.B., Rodríguez R.M., Sutherland S.J.E. Palynological zonation of Mid- Palaeozoic sequences from the Cantabrian Mountains, NW Spain: Implications for inter-regional and interfacies correlation of the Ludford/Prídolí and Silurian/Devonian boundaries, and plant dispersal patterns. Bull. Nat. Hist. Mus. Geol. Ser. 2001;57:115–162.

Kermandji A.M.H. Silurian-Devonian miospores from the western and central Algeria. Rev. Micropaléontol. 2007;50:109–128. doi: 10.1016/j.revmic.2007.01.003. DOI

Barron H.F. Mid-Wenlock acritarchs from the inlier in the Cheviot Hills, NE England. Scot. J. Geol. 1989;25:81–89. doi: 10.1144/sjg25010081. DOI

Aristova K.E., Arkhangelskaya A.D. Microfossils from stratotype sections of Upper Silurian horizons of Estonia. In: Byvsheva T.V., editor. Results of Palynological Research on Precambrian, Paleozoic and Mesozoic of the USSR. Volume 192. Trudy Vsesoiuznogo Nauchno-Issledovatel’skogo Geologorazvedochnogo Neftianogo Instituta, Kama Branch; Perm, Russia; 1976. pp. 28–38.

Aldridge R.J., Dorning K.J., Hill P.J., Richardson J.B., Siveter D.J. Microfossil distribution in the Silurian of Britain and Ireland. Geol. Soc. Lond. Spec. Publ. 1979;8:433–438. doi: 10.1144/GSL.SP.1979.008.01.50. DOI

Johnson T.R., Taylor W.A. Single grain analysis of the Late Silurian spore Cymbosporites echinatus from the Welsh Borderland. Rev. Palaeobot. Palynol. 2005;137:163–172. doi: 10.1016/j.revpalbo.2005.08.003. DOI

Richardson J.B., Lister T.R. Upper Silurian and Lower Devonian spore assemblages from the Welsh Borderland and South Wales. Palaeontol. 1969;12:201–252.

Richardson J.B., Rasul S.M., Al-Ameri T. Acritarchs, miospores and correlation of the Ludlovian-Downtonian and Silurian-Devonian boundaries. Rev. Palaeobot. Palynol. 1981;34:209–224. doi: 10.1016/0034-6667(81)90039-7. DOI

Wetherall P.M., Dorning K.J., Wellman C. Palynology biostratigraphy, and depositional environments around the Ludlow Pridoli boundary at Woodbury Quarry, Hereforshire, England. Boll. Soc. Paleontol. Ital. 1999;38:397–404.

Vanguestaine M., Steemans P., Streel M. Microfossiles végétaux. Le Groupe de Liévin. Pridoli-Lochkovien de l’Artois (N. France) In: Racheboeuf P.R., editor. Biostratigraphie u Paléozoïque. Volume 3. Pascal and Francis; Lawrence, KS, USA: 1986. pp. 47–55.

Deunff J., Chateauneuf J.J. Sur la présence d’un riche microplancton siluro- dévonien à acritarches, chitinozoaires, au sommet des Schistes et Quartzites de Plougastel (Rade de Brest); son intérêt stratigraphique. Geobios. 1976;9:337–343. doi: 10.1016/S0016-6995(76)80038-1. DOI

Moreau-Benoit A., Dubreuil M. Confirmation et découverte du Dévonien inférieur par la palynoplanctonologie dans les schistes et grès de la terminaison orientale du bassin d’Ancenis (sud-est du Massif armoricain) Géol. France. 1987;1:37–54.

Rauscher R., Robardet M. Les microfossiles (acritarches, chitinozoaires et spores) des couches de passage du Silurien au Dévonien dans le Cotentin (Normandie) Ann. Soc. Géol. Nord. 1975;95:81–92.

Cramer F.H., Rodríguez R.M. Robledo and Arroyacas Formation (Arroyo de las Arroyacas, Province of Palencia, Spain) palynologically dated as late Silurian. Brev. Geol. Astur. 1977;21:2–4.

Cramer F.H., Díez M.D. Ovnia, genero nuevo de Acritarcos del Gedinniense de Arabia Saudita. Rev. Esp. Micropaleontol. 1977;9:85–88.

Rodríguez R.M. Nuevas mioesporas de la Formación San Pedro en Geras de Gordon Cordillera Cantabrica (Provincia de León, Noroeste de España) Brev. Geol. Astur. 1978;22:9–16.

Rodríguez R.M. Miospores de la Formation San Pedro (Silurien-Devonien) à Corniero (Province de León, Espagne) Rev. Micropaléontol. 1978;20:216–221.

Rodríguez R.M. Mioesporas de la Formación San Pedro/Furada (Silúrico Superior-Devónico Inferior), Cordillera Cantabrica, NO de España. Palinol. Núm. Extraord. 1978;1:407–433.

Buret M.B., Moreau-Benoit A. Données nouvelles apportées par la palynoplanctologie sur la formation des alternances argilo-gréseuses (Silurien supérieur de Libye, bassin de Rhadamès) Comp. R. Acad. Sci. Paris. 1986;302:1009–1025.

Tekbali A.O., Wood G.D. Silurian spores, acritarchs and chitinozoans from the Baní Walíd Borehole of the Ghadámis Basin, Northwest Libya. Geol. Libya. 1991;4:1243–1273.

Steemans P., Rubinstein C., Melo J.H.G. Siluro-Devonian miospore biostratigraphy of the Urubu River area, western Amazon Basin, northern Brazil. Geobios. 2008;41:263–282. doi: 10.1016/j.geobios.2007.06.003. DOI

Rubinstein C. Palinologia des Silurico superior (Formacion Los Espejos) de La Quebrada de las Aguaditas, Precordillera de San Juan, Argentina. Ameghiniana. 1992;29:231–248.

Rubinstein C. Palynological investigation in the Lower Paleozoic of Argentina. Zeit. Geol. Paläontol. 1994;1:271-230.

Rubinstein C. Acritarchs from the upper Silurian of Argentina: Their relationship with Gondwana. J. S. Amer. Earth Sci. 1995;8:103–115. doi: 10.1016/0895-9811(94)00045-4. DOI

McGregor D.C. Late Silurian and Devonian spores from Bolivia. Acad. Nac. Cienc. Cordoba. 1994;69:1–57.

Wang Y., Li J. Late Silurian trilete spores from northern Jiangsu, China. Rev. Palaeobot. Palynol. 2011;111:111–125. doi: 10.1016/S0034-6667(00)00021-X. PubMed DOI

Wang Y., Zhu H.C., Li J. Late Silurian plant microfossil assemblage from Guangyuan, Sichuan, China. Rev. Palaeobot. Palynol. 2005;133:153–168.

McGregor D.C., Camfield M. Upper Silurian? to Middle Devonian spores of the Moose River Basin, Ontario. Geol. Surv. Can. Bull. 1976;263:1–63.

Scotese C.R. Atlas of Earth History, 1, Paleogeography. PALEOMAP Project; Arlington, TX, USA: 2001. pp. 1–52.

Wellman C., Berry C.M., Davies N.S., Lindemann F.J., Marshall J.E.A., Wyatt A. Low tropical diversity during the adaptive radiation of early land plants. Nat. Plants. 2022;8:104–109. doi: 10.1038/s41477-021-01067-w. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...