Two fungal flavonoid-specific glucosidases/rutinosidases for rutin hydrolysis and rutinoside synthesis under homogeneous and heterogeneous reaction conditions
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-00091S
grantová agentura české republiky
PubMed
34661772
PubMed Central
PMC8523606
DOI
10.1186/s13568-021-01298-2
PII: 10.1186/s13568-021-01298-2
Knihovny.cz E-zdroje
- Klíčová slova
- Dimethyl sulfoxide, Enzyme stability, Flavonoid glycoside, Process optimization, Solubility, Transglycosylation,
- Publikační typ
- časopisecké články MeSH
The glycosidases within GH5-23 cleave the glycosidic bond of β-glucosylated or rutinosylated flavonoids. Moreover, by virtue of their transglycosylation activity, glycoconjugates with glucosyl and rutinosyl moieties are accessible. Here we report the biochemical characterization and biotechnological assessment of two heterologously expressed members of GH5-23-McGlc from Mucor circinelloides and PcGlc from Penicillium chrysogenum. Both enzymes exhibited the highest hydrolytic activities with quercetin-3-β-O-glucopyranoside, whereas lower specificity constants were determined with the rutinosides narcissin, rutin and hesperidin. High stabilities against thermal, ethanol and dimethyl sulfoxide-induced inactivation, a very limited secondary hydrolysis of the formed transglycosylation products, and no detectable product inhibition were additional features appropriate for biotechnological applications. The enzymes were compared in their efficiencies to hydrolyze rutin and to synthesize 2-phenylethyl rutinoside under homogeneous and heterogeneous reaction conditions using high rutin concentrations of 100 and 300 mM. Highest transglycosylation efficiencies were achieved with fully dissolved rutin in reaction mixtures containing 25% dimethyl sulfoxide. Molecular docking and multiple sequence alignments suggest that the hydrophobic environment of aromatic residues within the + 1 subsite of GH5-23 glycosidases is very important for the binding of flavonoid glucosides and rutinosides.
Zobrazit více v PubMed
Baglioni M, Breccia JD, Mazzaferro LS. Peculiarities and systematics of microbial diglycosidases, and their applications in food technology. Appl Microbiol Biotechnol. 2021;105:2693–2700. doi: 10.1007/s00253-021-11219-9. PubMed DOI
Behr A, Neubert P. Applied Homogeneous Catalysis. Weinheim, Germany: Wiley-VCH Verlag; 2012.
Benkert P, Biasini M, Schwede T. Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics. 2011;27:343–350. doi: 10.1093/bioinformatics/btq662. PubMed DOI PMC
Bissaro B, Monsan P, Fauré R, O'Donohue MJ. Glycosynthesis in a waterworld: new insight into the molecular basis of transglycosylation in retaining glycoside hydrolases. Biochem J. 2015;467:17–35. doi: 10.1042/BJ20141412. PubMed DOI
Brodsky K, Kutý M, Pelantová H, Cvačka J, Rebroš M, Kotik M, Kutá Smatanová I, Křen V, Bojarová P. Dual substrate specificity of the rutinosidase from Aspergillus niger and the role of its substrate tunnel. Int J Mol Sci. 2020;21:5671. doi: 10.3390/ijms21165671. PubMed DOI PMC
Crawford LM, Holstegeb DM, Wang SC. High-throughput extraction method for phenolic compounds in olive fruit (Olea europaea) Food Compos Anal. 2018;66:136–144. doi: 10.1016/j.jfca.2017.12.013. DOI
Desmet T, Soetaert W, Bojarová P, Křen V, Dijkhuizen L, Eastwick-Field V, Schiller A. Enzymatic glycosylation of small molecules: challenging substrates require tailored catalysts. Chem Eur J. 2012;18:10786–10801. doi: 10.1002/chem.201103069. PubMed DOI
Fersht A. Enzyme structure and mechanism. 2. New York, USA: W. H. Freeman and Company; 1985.
Frutos MJ, Rincón-Frutos L, Valero-Cases E. Rutin. In: Nabavi SM, Silva AS, editors. Nonvitamin and Nonmineral Nutritional Supplements. Academic Press: Elsevier; 2019. pp. 111–117.
Gullon B, Lú-Chau TA, Moreira MT, Lema JM, Eibes G. Rutin: a review on extraction, identification and purification methods, biological activities and approaches to enhance its bioavailability. Trends Food Sci Technol. 2017;67:220–235. doi: 10.1016/j.tifs.2017.07.008. DOI
Guo Y, Yan Q, Yang Y, Yang S, Liu Y, Jiang Z. Expression and characterization of a novel β-glucosidase, with transglycosylation and exo-β-1,3-glucanase activities, from Rhizomucor miehei. Food Chem. 2015;175:431–438. doi: 10.1016/j.foodchem.2014.12.004. PubMed DOI
Kapešová J, Petrásková L, Markošová K, Rebroš M, Kotik M, Bojarová P, Křen V. Bioproduction of quercetin and rutinose catalyzed by rutinosidase: novel concept of “solid state biocatalysis”. Int J Mol Sci. 2019;20:1112. doi: 10.3390/ijms20051112. PubMed DOI PMC
Karnišová Potocká E, Mastihubová M, Mastihuba V. Transrutinosylation of tyrosol by flower buds of Sophora japonica. Food Chem. 2021;336:127674. doi: 10.1016/j.foodchem.2020.127674. PubMed DOI
Katayama S, Ohno F, Yamauchi Y, Kato M, Makabe H, Nakamura S. Enzymatic synthesis of novel phenol acid rutinosides using rutinase and their antiviral activity in vitro. J Agric Food Chem. 2013;61:6917–9622. doi: 10.1021/jf4021703. PubMed DOI
Kiso A, Oto N, Nakahara T, Yasuda T, Zhou YY, Shu E (2015) Japanese Patent Application No. JP5667774-B2
Koseki T, Ishikawa M, Kawasaki M, Shiono Y. β-Diglycosidases from microorganisms as industrial biocatalysts: biochemical characteristics and potential applications. Appl Microbiol Biotechnol. 2018;102:8717–8723. doi: 10.1007/s00253-018-9286-9. PubMed DOI
Kotik M, Brodsky K, Halada P, Javůrková H, Pelantová H, Konvalinková D, Bojarová P, Křen V. Access to both anomers of rutinosyl azide using wild-type rutinosidase and its catalytic nucleophile mutant. Catal Commun. 2021;149:106193. doi: 10.1016/j.catcom.2020.106193. DOI
Krieger E, Vriend G. YASARA view—molecular graphics for all devices—from smartphones to workstations. Bioinformatics. 2014;30:2981–2982. doi: 10.1093/bioinformatics/btu426. PubMed DOI PMC
Kudryashova EV, Artemova TM, Vinogradov AA, Gladilin AK, Mozhaev VV, Levashov AV. Stabilization and activation of α-chymotrypsin in water-organic solvent systems by complex formation with oligoamines. Protein Eng. 2003;16:303–309. doi: 10.1093/proeng/gzg039. PubMed DOI
Lucci N, Mazzafera P. Distribution of rutin in fava d’anta (Dimorphandra mollis) seedlings under stress. J Plant Interact. 2009;4:203–208. doi: 10.1080/17429140802707035. DOI
Makabe K, Hirota R, Shiono Y, Tanaka Y, Koseki T. Aspergillus oryzae rutinosidase: biochemical and structural investigation. Appl Environ Microbiol. 2021;87:e02438–e2520. doi: 10.1128/AEM.02438-20. PubMed DOI PMC
Manas NHA, Illias RM, Mahadi NM. Strategy in manipulating transglycosylation activity of glycosyl hydrolase for oligosaccharide production. Crit Rev Biotechnol. 2018;38:272–293. doi: 10.1080/07388551.2017.1339664. PubMed DOI
Mazzaferro LS, Weiz G, Braun L, Kotik M, Pelantová H, Křen V, Breccia JD. Enzyme-mediated transglycosylation of rutinose (6-O-α-l-rhamnosyl-d-glucose) to phenolic compounds by a diglycosidase from Acremonium sp. DSM 24697. Biotechnol Appl Biochem. 2019;66:53–59. doi: 10.1002/bab.1695. PubMed DOI
Müller C, Wagner AL, Rockinger U, Winter G, Bracher F. Development of a convenient method for the determination of dimethyl sulfoxide in lyophilised pharmaceuticals by static headspace gas chromatography-mass spectrometry. Anal Methods. 2019;16:2119–2122. doi: 10.1039/C8AY02574F. DOI
O'Shea N, Arendt EK, Gallagher E. Dietary fibre and phytochemical characteristics of fruit and vegetable by-products and their recent applications as novel ingredients in food products. Innov Food Sci Emerg Technol. 2012;16:1–10. doi: 10.1016/j.ifset.2012.06.002. DOI
Pachl P, Kapešová J, Brynda J, Biedermannová L, Pelantová H, Bojarová P, Křen V, Řezáčová P, Kotik M. Rutinosidase from Aspergillus niger: crystal structure and insight into the enzymatic activity. FEBS J. 2020;287:3315–3327. doi: 10.1111/febs.15208. PubMed DOI
Rather MY, Mishra S. β-Glycosidases: An alternative enzyme based method for synthesis of alkyl-glycosides. Sustain Chem Process. 2013;1:7. doi: 10.1186/2043-7129-1-7. DOI
Sheldon RA. Biocatalysis and green chemistry. In: Patel RN, editor. Green Biocatalysis. Hoboken, New Jersey: Wiley; 2016. pp. 1–15.
Šimčíková D, Kotik M, Weignerová L, Halada P, Pelantová H, Adamcová K, Křen V. α-l-Rhamnosyl-β-d-glucosidase (rutinosidase) from Aspergillus niger: characterization and synthetic potential of a novel diglycosidase. Adv Synth Catal. 2015;357:107–117. doi: 10.1002/adsc.201400566. DOI
Slámová K, Kapešová J, Valentová K. "Sweet flavonoids": glycosidase-catalyzed modifications. Int J Mol Sci. 2018;19:2126. doi: 10.3390/ijms19072126. PubMed DOI PMC
Testai L, Calderone V. Nutraceutical value of citrus flavanones and their implications in cardiovascular disease. Nutrients. 2017;9:502. doi: 10.3390/nu9050502. PubMed DOI PMC
Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673–4680. doi: 10.1093/nar/22.22.4673. PubMed DOI PMC
Trott O, Olson AJ. AutoDock VINA: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem. 2010;31:455–461. PubMed PMC
Van Rantwijk F, Woudenberg-van Oosterom M, Bhagwat SA, Dwyer JT, Gebhardt SE, Haytowitz DB, Sheldon RA. Glycosidase-catalyzed synthesis of alkyl glycosides. J Mol Catal b: Enzym. 1999;6:511–532. doi: 10.1016/S1381-1177(99)00042-9. DOI
Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer TF, de Beer TAP, Rempfer C, Bordoli L, Lepore R, Schwede T. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46:W296–W303. doi: 10.1093/nar/gky427. PubMed DOI PMC
Weignerová L, Marhol P, Gerstorferová D, Křen V. Preparatory production of quercetin-3-β-d-glucopyranoside using alkali-tolerant thermostable α-l-rhamnosidase from Aspergillus terreus. Bioresour Technol. 2012;115:222–227. doi: 10.1016/j.biortech.2011.08.029. PubMed DOI
Weiz G, Mazzaferro LS, Kotik M, Neher BD, Halada P, Křen V, Breccia JD. The flavonoid degrading fungus Acremonium sp. DSM 24697 produces two diglycosidases with different specificities. Appl Microbiol Biotechnol. 2019;103:9493–9504. doi: 10.1007/s00253-019-10180-y. PubMed DOI
Williamson G. The role of polyphenols in modern nutrition. Nutr Bull. 2017;42:226–235. doi: 10.1111/nbu.12278. PubMed DOI PMC
Zeuner B, Teze D, Muschiol J, Meyer AS. Synthesis of human milk oligosaccharides: protein engineering strategies for improved enzymatic transglycosylation. Molecules. 2019;24:2033. doi: 10.3390/molecules24112033. PubMed DOI PMC
Zhang D, Du M, Wei Y, Wang C, Shen L. A review on the structure–activity relationship of dietary flavonoids for protecting vascular endothelial function: current understanding and future issues. J Food Biochem. 2018;42:e12557. doi: 10.1111/jfbc.12557. DOI
Flavonoids as Aglycones in Retaining Glycosidase-Catalyzed Reactions: Prospects for Green Chemistry