Flavonoids as Aglycones in Retaining Glycosidase-Catalyzed Reactions: Prospects for Green Chemistry
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
37800688
PubMed Central
PMC10591481
DOI
10.1021/acs.jafc.3c04389
Knihovny.cz E-zdroje
- Klíčová slova
- Glucosidase, Glycoside hydrolase, Glycosyl donor, Glycosynthase, Hydrolysis, Rutinosidase, Transglycosylation,
- MeSH
- flavonoidy * chemie MeSH
- glykosidhydrolasy * metabolismus MeSH
- glykosidy chemie MeSH
- glykosylace MeSH
- katalýza MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- flavonoidy * MeSH
- glykosidhydrolasy * MeSH
- glykosidy MeSH
Flavonoids and their glycosides are abundant in many plant-based foods. The (de)glycosylation of flavonoids by retaining glycoside hydrolases has recently attracted much interest in basic and applied research, including the possibility of altering the glycosylation pattern of flavonoids. Research in this area is driven by significant differences in physicochemical, organoleptic, and bioactive properties between flavonoid aglycones and their glycosylated counterparts. While many flavonoid glycosides are present in nature at low levels, some occur in substantial quantities, making them readily available low-cost glycosyl donors for transglycosylations. Retaining glycosidases can be used to synthesize natural and novel glycosides, which serve as standards for bioactivity experiments and analyses, using flavonoid glycosides as glycosyl donors. Engineered glycosidases also prove valuable for the synthesis of flavonoid glycosides using chemically synthesized activated glycosyl donors. This review outlines the bioactivities of flavonoids and their glycosides and highlights the applications of retaining glycosidases in the context of flavonoid glycosides, acting as substrates, products, or glycosyl donors in deglycosylation or transglycosylation reactions.
Zobrazit více v PubMed
dos Santos C. N.; Menezes R.; Carregosa D.; Valentova K.; Foito A.; McDougall G.; Stewart D.. Flavonols and flavones. In Dietary Polyphenols; Tomás-Barberán F. A., González-Sarrías A., García-Villalba R., Eds.; John Wiley & Sons: 2020; pp 163–198.10.1002/9781119563754.ch5 DOI
Kazlauskas R. J.; Kim B.-G.. Biotechnology tools for green synthesis: Enzymes, metabolic pathways, and their improvement by engineering. In Biocatalysis for Green Chemistry and Chemical Process Development; Tao J. A., Kazlauskas R., Eds.; John Wiley & Sons: 2011; pp 1–22.10.1002/9781118028308.ch1 DOI
Sheldon R. A.; Woodley J. M. Role of biocatalysis in sustainable chemistry. Chem. Rev. 2018, 118 (2), 801–838. 10.1021/acs.chemrev.7b00203. PubMed DOI
Tian Y.; Xu W.; Guang C.; Zhang W.; Mu W. Glycosylation of flavonoids by sucrose- and starch-utilizing glycoside hydrolases: A practical approach to enhance glycodiversification. Crit. Rev. Food Sci. Nutr. 2023, 1–18. 10.1080/10408398.2023.2185201. PubMed DOI
Mohanta T. K. Fungi contain genes associated with flavonoid biosynthesis pathway. J. Funct. Food. 2020, 68, 103910.10.1016/j.jff.2020.103910. DOI
Galeotti F.; Barile E.; Curir P.; Dolci M.; Lanzotti V. Flavonoids from carnation (Dianthus caryophyllus) and their antifungal activity. Phytochem. Lett. 2008, 1, 44–48. 10.1016/j.phytol.2007.10.001. DOI
Ghitti E.; Rolli E.; Crotti E.; Borin S. Flavonoids are intra- and inter-kingdom modulator signals. Microorganisms 2022, 10 (12), 2479.10.3390/microorganisms10122479. PubMed DOI PMC
Ramaroson M.-L.; Koutouan C.; Helesbeux J.-J.; Le Clerc V.; Hamama L.; Geoffriau E.; Briard M. Role of phenylpropanoids and flavonoids in plant resistance to pests and diseases. Molecules 2022, 27 (23), 8371.10.3390/molecules27238371. PubMed DOI PMC
Yao Q.; Peng Z.; Tong H.; Yang F.; Xing G.; Wang L.; Zheng J.; Zhang Y.; Su Q. Tomato plant flavonoids increase whitefly resistance and reduce spread of tomato yellow leaf curl virus. J. Econ. Entomol. 2019, 112, 2790–2796. 10.1093/jee/toz199. PubMed DOI
Yang F.; Zhang X.; Shen H.; Xue H.; Tian T.; Zhang Q.; Hu J.; Tong H.; Zhang Y.; Su Q. Flavonoid-producing tomato plants have a direct negative effect on the zoophytophagous biological control agent Orius sauteri. Insect Sci. 2023, 30 (1), 173–184. 10.1111/1744-7917.13085. PubMed DOI
Ardila H. D.; Martínez S. T.; Higuera B. L. Levels of constitutive flavonoid biosynthetic enzymes in carnation (Dianthus caryophyllus L.) cultivars with differential response to Fusarium oxysporum f. sp. dianthi. Acta Physiol. Plant. 2013, 35 (4), 1233–1245. 10.1007/s11738-012-1162-0. DOI
Koutouan C.; Clerc V. L.; Baltenweck R.; Claudel P.; Halter D.; Hugueney P.; Hamama L.; Suel A.; Huet S.; Merlet M.-H. B.; Briard M. Link between carrot leaf secondary metabolites and resistance to Alternaria dauci. Sci. Rep. 2018, 8, 13746.10.1038/s41598-018-31700-2. PubMed DOI PMC
Suzuki H.; Takahashi S.; Watanabe R.; Fukushima Y.; Fujita N.; Noguchi A.; Yokoyama R.; Nishitani K.; Nishino T.; Nakayama T. An isoflavone conjugate-hydrolyzing β-glucosidase from the roots of soybean (Glycine max) seedlings: purification, gene cloning, phylogenetics, and cellular localization. J. Biol. Chem. 2006, 281 (40), 30251–30259. 10.1074/jbc.M605726200. PubMed DOI
Xiao J.; Muzashvili T. S.; Georgiev M. I. Advances in the biotechnological glycosylation of valuable flavonoids. Biotechnol. Adv. 2014, 32 (6), 1145–1156. 10.1016/j.biotechadv.2014.04.006. PubMed DOI
Ji Y.; Li B.; Qiao M.; Li J.; Xu H.; Zhang L.; Zhang X. Advances on the in vivo and in vitro glycosylations of flavonoids. Appl. Microbiol. Biotechnol. 2020, 104 (15), 6587–6600. 10.1007/s00253-020-10667-z. PubMed DOI
Xie L.; Deng Z.; Zhang J.; Dong H.; Wang W.; Xing B.; Liu X. Comparison of flavonoid O-glycoside, C-glycoside and their aglycones on antioxidant capacity and metabolism during in vitro digestion and in vivo. Foods (Basel, Switzerland) 2022, 11 (6), 882.10.3390/foods11060882. PubMed DOI PMC
Zhang Y.-Q.; Zhang M.; Wang Z.-L.; Qiao X.; Ye M. Advances in plant-derived C-glycosides: Phytochemistry, bioactivities, and biotechnological production. Biotechnol. Adv. 2022, 60, 108030.10.1016/j.biotechadv.2022.108030. PubMed DOI
Schnarr L.; Segatto M. L.; Olsson O.; Zuin V. G.; Kümmerer K. Flavonoids as biopesticides - Systematic assessment of sources, structures, activities and environmental fate. Sci. Total Environ. 2022, 824, 153781.10.1016/j.scitotenv.2022.153781. PubMed DOI
Kim D. H.; Jung H. A.; Sohn H. S.; Kim J. W.; Choi J. S. Potential of icariin metabolites from Epimedium koreanum Nakai as antidiabetic therapeutic agents. Molecules 2017, 22 (6), 986.10.3390/molecules22060986. PubMed DOI PMC
Plaza M.; Pozzo T.; Liu J.; Gulshan Ara K. Z.; Turner C.; Nordberg Karlsson E. Substituent effects on in vitro antioxidizing properties, stability, and solubility in flavonoids. J. Agr. Food Chem. 2014, 62 (15), 3321–3333. 10.1021/jf405570u. PubMed DOI
Oteiza P. I.; Fraga C. G.; Mills D. A.; Taft D. H. Flavonoids and the gastrointestinal tract: Local and systemic effects. Mol. Aspects Med. 2018, 61, 41–49. 10.1016/j.mam.2018.01.001. PubMed DOI
He J.; Feng Y.; Ouyang H.-z.; Yu B.; Chang Y.-x.; Pan G.-x.; Dong G.-y.; Wang T.; Gao X.-m. A sensitive LC-MS/MS method for simultaneous determination of six flavonoids in rat plasma: Application to a pharmacokinetic study of total flavonoids from mulberry leaves. J. Pharm. Biomed. Anal. 2013, 84, 189–195. 10.1016/j.jpba.2013.06.019. PubMed DOI
Hu B.; Sun Y.; Wang M.; He Z.; Chen S.; Qi D.; Ge Z.; Fan L.; Chen J.; Wei Y. Simultaneous determination of ginkgolide A, B, C, bilobalide and rutin in rat plasma by LC-MS/MS and its application to a pharmacokinetic study. Acta Chromatogr. 2022, 34 (4), 386–393. 10.1556/1326.2021.00962. DOI
Valentová K.; Vrba J.; Bancířová M.; Ulrichová J.; Křen V. Isoquercitrin: Pharmacology, toxicology, and metabolism. Food Chem. Toxicol. 2014, 68, 267–282. 10.1016/j.fct.2014.03.018. PubMed DOI
Zhang X.; Zhang Z.-q.; Zhang L.-c.; Wang K.-x.; Zhang L.-t.; Li D.-q. The development and validation of a sensitive HPLC-MS/MS method for the quantitative and pharmacokinetic study of the seven components of Buddleja lindleyana Fort. RSC Adv. 2021, 11 (42), 26016–26028. 10.1039/D1RA04154A. PubMed DOI PMC
Almeida A. F.; Borge G. I. A.; Piskula M.; Tudose A.; Tudoreanu L.; Valentová K.; Williamson G.; Santos C. N. Bioavailability of quercetin in humans with a focus on interindividual variation. Comp Rev. Food Sci. Food Saf 2018, 17 (3), 714–731. 10.1111/1541-4337.12342. PubMed DOI
Lesjak M.; Beara I.; Simin N.; Pintać D.; Majkić T.; Bekvalac K.; Orčić D.; Mimica-Dukić N. Antioxidant and anti-inflammatory activities of quercetin and its derivatives. J. Funct. Food. 2018, 40, 68–75. 10.1016/j.jff.2017.10.047. DOI
Xiong H.-H.; Lin S.-Y.; Chen L.-L.; Ouyang K.-H.; Wang W.-J. The interaction between flavonoids and intestinal microbes: A review. Foods (Basel, Switzerland) 2023, 12 (2), 320.10.3390/foods12020320. PubMed DOI PMC
De Bruyne T.; Steenput B.; Roth L.; De Meyer G. R. Y.; Santos C. N. D.; Valentová K.; Dambrova M.; Hermans N. Dietary polyphenols targeting arterial stiffness: Interplay of contributing mechanisms and gut microbiome-related metabolism. Nutrients 2019, 11 (3), 578.10.3390/nu11030578. PubMed DOI PMC
Chen Y.; Peng F.; Xing Z.; Chen J.; Peng C.; Li D. Beneficial effects of natural flavonoids on neuroinflammation. Front. Immunol. 2022, 13, 1006434.10.3389/fimmu.2022.1006434. PubMed DOI PMC
Rakha A.; Umar N.; Rabail R.; Butt M. S.; Kieliszek M.; Hassoun A.; Aadil R. M. Anti-inflammatory and anti-allergic potential of dietary flavonoids: A review. Biomed. Pharmacother. 2022, 156, 113945.10.1016/j.biopha.2022.113945. PubMed DOI
Umeno A.; Horie M.; Murotomi K.; Nakajima Y.; Yoshida Y. Antioxidative and antidiabetic effects of natural polyphenols and isoflavones. Molecules 2016, 21 (6), 708.10.3390/molecules21060708. PubMed DOI PMC
Bae E.-A.; Han M. J.; Lee M.; Kim D.-H. In vitro inhibitory effect of some flavonoids on rotavirus infectivity. Biol. Pharm. Bull. 2000, 23 (9), 1122–1124. 10.1248/bpb.23.1122. PubMed DOI
Hassan S. T. S.; Šudomová M. Molecular mechanisms of flavonoids against tumor gamma-herpesviruses and their correlated cancers - A focus on EBV and KSHV life cycles and carcinogenesis. Int. J. Mol. Sci. 2023, 24 (1), 247.10.3390/ijms24010247. PubMed DOI PMC
Qiu X.; Kroeker A.; He S.; Kozak R.; Audet J.; Mbikay M.; Chrétien M. Prophylactic efficacy of quercetin 3-β-O-D-glucoside against Ebola virus infection. Antimicrob. Agents Ch. 2016, 60 (9), 5182–5188. 10.1128/AAC.00307-16. PubMed DOI PMC
Kampa R. P.; Sȩk A.; Bednarczyk P.; Szewczyk A.; Calderone V.; Testai L. Flavonoids as new regulators of mitochondrial potassium channels: contribution to cardioprotection. J. Pharm. Pharmacol. 2023, 75 (4), 466–481. 10.1093/jpp/rgac093. PubMed DOI
Treml J.; Šmejkal K. Flavonoids as potent scavengers of hydroxyl radicals. Comp Rev. Food Sci. Food Saf 2016, 15 (4), 720–738. 10.1111/1541-4337.12204. PubMed DOI
González-Paramás A. M.; Ayuda-Durán B.; Martínez S.; González-Manzano S.; Santos-Buelga C. The mechanisms behind the biological activity of flavonoids. Curr. Med. Chem. 2019, 26 (39), 6976–6990. 10.2174/0929867325666180706104829. PubMed DOI
Proença C.; Ribeiro D.; Freitas M.; Fernandes E. Flavonoids as potential agents in the management of type 2 diabetes through the modulation of α-amylase and α-glucosidase activity: a review. Crit. Rev. Food Sci. Nutr. 2022, 62, 3137.10.1080/10408398.2020.1862755. PubMed DOI
Purewal S. S.; Sandhu K. S. Debittering of citrus juice by different processing methods: A novel approach for food industry and agro-industrial sector. Sci. Hort. 2021, 276, 109750.10.1016/j.scienta.2020.109750. DOI
Wang C.; Chen P.-X.; Xiao Q.; Chen J.; Chen F.-Q.; Yang Q.-M.; Weng H.-F.; Fang B.-S.; Zhang Y.-H.; Xiao A.-F. Artificial naringinase system for cooperative enzymatic synthesis of naringenin. Biochem. Eng. J. 2022, 178, 108277.10.1016/j.bej.2021.108277. DOI
Carceller J. M.; Martínez Galán J. P.; Monti R.; Bassan J. C.; Filice M.; Iborra S.; Yu J.; Corma A. Selective synthesis of citrus flavonoids prunin and naringenin using heterogeneized biocatalyst on graphene oxide. Green Chem. 2019, 21 (4), 839–849. 10.1039/C8GC03661F. DOI
Karami F.; Ghorbani M.; Sadeghi Mahoonak A.; Shackebaei D.; Khodarahmi R. Green technology for production of potent antioxidants and alkyl glucosides by Aspergillus niger β-glucosidase: prospects for broad application in the food industry. J. Food Meas. Charact. 2022, 16 (3), 1834–1846. 10.1007/s11694-021-01260-7. DOI
Yang X.; Ma Y.; Li L. β-Glucosidase from tartary buckwheat immobilization on bifunctionalized nano-magnetic iron oxide and its application in tea soup for aroma and flavonoid aglycone enhancement. Food Funct. 2019, 10 (9), 5461–5472. 10.1039/C9FO00283A. PubMed DOI
Slámová K.; Kapešová J.; Valentová K. Sweet flavonoids”: Glycosidase-catalyzed modifications. Int. J. Mol. Sci. 2018, 19 (7), 2126.10.3390/ijms19072126. PubMed DOI PMC
Shin K.-C.; Nam H.-K.; Oh D.-K. Hydrolysis of flavanone glycosides by β-glucosidase from Pyrococcus furiosus and its application to the production of flavanone aglycones from citrus extracts. J. Agric. Food Chem. 2013, 61 (47), 11532–11540. 10.1021/jf403332e. PubMed DOI
Colacicco A.; Catinella G.; Pinna C.; Pellis A.; Farris S.; Tamborini L.; Dallavalle S.; Molinari F.; Contente M. L.; Pinto A. Flow bioprocessing of citrus glycosides for high-value aglycone preparation. Catal. Sci. Technol. 2023, 13 (15), 4348–4352. 10.1039/D3CY00603D. DOI
Xie J.; Xu H.; Jiang J.; Zhang N.; Yang J.; Zhao J.; Wei M. Characterization of a novel thermostable glucose-tolerant GH1 β-glucosidase from the hyperthermophile Ignisphaera aggregans and its application in the efficient production of baohuoside I from icariin and total Epimedium flavonoids. Bioorg. Chem. 2020, 104, 104296.10.1016/j.bioorg.2020.104296. PubMed DOI
Dong Y.; Zhang S.; Lu C.; Xu J.; Pei J.; Zhao L. Immobilization of thermostable β-glucosidase and α-L-rhamnosidase from Dictyoglomus thermophilum DSM3960 and their cooperated biotransformation of total flavonoids extract from Epimedium into icaritin. Catal. Lett. 2021, 151 (10), 2950–2963. 10.1007/s10562-020-03522-3. DOI
Liu F.; Wei B.; Cheng L.; Zhao Y.; Liu X.; Yuan Q.; Liang H. Co-immobilizing two glycosidases based on cross-linked enzyme aggregates to enhance enzymatic properties for achieving high titer icaritin biosynthesis. J. Agr. Food Chem. 2022, 70 (37), 11631–11642. 10.1021/acs.jafc.2c04253. PubMed DOI
Xie J.; Zhang S.; Tong X.; Wu T.; Pei J.; Zhao L. Biochemical characterization of a novel hyperthermophilic α-L-rhamnosidase from Thermotoga petrophila and its application in production of icaritin from epimedin C with a thermostable β-glucosidase. Process Biochem. 2020, 93, 115–124. 10.1016/j.procbio.2020.03.019. DOI
Zhang S.; Luo J.; Dong Y.; Wang Z.; Xiao W.; Zhao L. Biotransformation of the total flavonoid extract of Epimedium into icaritin by two thermostable glycosidases from Dictyoglomus thermophilum DSM3960. Process Biochem. 2021, 105, 8–18. 10.1016/j.procbio.2021.03.002. DOI
Wang Z.; Liu C.; Yu H.; Wu B.; Huai B.; Zhuang Z.; Sun C.; Xu L.; Jin F. Icaritin Preparation from icariin by a special epimedium flavonoid-glycosidase from Aspergillus sp. y848 strain. J. Microbiol. Biotechnol. 2022, 32 (4), 437–446. 10.4014/jmb.2112.12036. PubMed DOI PMC
Gaya P.; Peirotén Á.; Landete J. M. Expression of a β-glucosidase in bacteria with biotechnological interest confers them the ability to deglycosylate lignans and flavonoids in vegetal foods. Appl. Microbiol. Biotechnol. 2020, 104 (11), 4903–4913. 10.1007/s00253-020-10588-x. PubMed DOI
Kaya M.; Ito J.; Kotaka A.; Matsumura K.; Bando H.; Sahara H.; Ogino C.; Shibasaki S.; Kuroda K.; Ueda M.; Kondo A.; Hata Y. Isoflavone aglycones production from isoflavone glycosides by display of β-glucosidase from Aspergillus oryzae on yeast cell surface. Appl. Microbiol. Biotechnol. 2008, 79 (1), 51–60. 10.1007/s00253-008-1393-6. PubMed DOI
Guo Z.; Du X.; Zhang Y.; Su C.; Ran F.; Lu Q. Diosmin alleviates venous injury and muscle damage in a mouse model of iliac vein stenosis. Front. Cardiovasc. Med. 2022, 8, 785554.10.3389/fcvm.2021.785554. PubMed DOI PMC
Zou J.; Yuan D.; Yang J.; Yu Y. Effects of diosmin on vascular leakage and inflammation in a mouse model of venous obstruction. Front. Nutr. 2022, 9, 831485.10.3389/fnut.2022.831485. PubMed DOI PMC
Novotná R.; Škařupová D.; Hanyk J.; Ulrichová J.; Křen V.; Bojarová P.; Brodsky K.; Vostálová J.; Franková J. Hesperidin, hesperetin, rutinose, and rhamnose act as skin anti-aging agents. Molecules 2023, 28 (4), 1728.10.3390/molecules28041728. PubMed DOI PMC
Pageon H.; Azouaoui A.; Zucchi H.; Ricois S.; Tran C.; Asselineau D. Potentially beneficial effects of rhamnose on skin ageing: an in vitro and in vivo study. Int. J. Cosmetic Sci. 2019, 41 (3), 213–220. 10.1111/ics.12523. PubMed DOI
Lucci N.; Mazzafera P. Distribution of rutin in fava d’anta (Dimorphandra mollis) seedlings under stress. J. Plant Interact. 2009, 4 (3), 203–208. 10.1080/17429140802707035. DOI
Peterson J. J.; Beecher G. R.; Bhagwat S. A.; Dwyer J. T.; Gebhardt S. E.; Haytowitz D. B.; Holden J. M. Flavanones in grapefruit, lemons, and limes: A compilation and review of the data from the analytical literature. J. Food Compos. Anal. 2006, 19, S74–S80. 10.1016/j.jfca.2005.12.009. DOI
Singh B.; Singh J. P.; Kaur A.; Singh N. Phenolic composition, antioxidant potential and health benefits of citrus peel. Food Res. Int. 2020, 132, 109114.10.1016/j.foodres.2020.109114. PubMed DOI
Morishita T.; Ishiguro K.; Noda T.; Suzuki T. The effect of grain moisture contents on the roll milling characteristics of Tartary buckwheat cultivar ‘Manten-Kirari’. Plant Prod. Sci. 2020, 23 (4), 539–546. 10.1080/1343943X.2020.1747358. DOI
Nogata Y.; Sakamoto K.; Shiratsuchi H.; Ishii T.; Yano M.; Ohta H. Flavonoid composition of fruit tissues of citrus species. Biosci. Biotechnol. Biochemi. 2006, 70 (1), 178–192. 10.1271/bbb.70.178. PubMed DOI
Godse R.; Bawane H.; Tripathi J.; Kulkarni R. Unconventional β-glucosidases: A promising biocatalyst for industrial biotechnology. Appl. Biochem. Biotechnol. 2021, 193 (9), 2993–3016. 10.1007/s12010-021-03568-y. PubMed DOI
Tranchimand S.; Brouant P.; Iacazio G. The rutin catabolic pathway with special emphasis on quercetinase. Biodegradation 2010, 21 (6), 833–859. 10.1007/s10532-010-9359-7. PubMed DOI
Steenbakkers P. J. M.; Harhangi H. R.; Bosscher M. W.; Hooft M. M. C. V. D.; Keltjens J. T.; Drift C. V. D.; Vogels G. D.; Camp H. J. M. O. D. β-Glucosidase in cellulosome of the anaerobic fungus Piromyces sp. strain E2 is a family 3 glycoside hydrolase. Biochem. J. 2003, 370 (3), 963–970. 10.1042/bj20021767. PubMed DOI PMC
Lindroth R. L. Hydrolysis of phenolic glycosides by midgut β-glucosidases in Papilio glaucus subspecies. Insect Biochem. 1988, 18 (8), 789–792. 10.1016/0020-1790(88)90102-3. DOI
Opassiri R.; Pomthong B.; Onkoksoong T.; Akiyama T.; Esen A.; Ketudat Cairns J. R. Analysis of rice glycosyl hydrolase family 1 and expression of Os4bglu12 β-glucosidase. BMC Plant Biol. 2006, 6, 33.10.1186/1471-2229-6-33. PubMed DOI PMC
Xu Z.; Escamilla-Treviño L.; Zeng L.; Lalgondar M.; Bevan D.; Winkel B.; Mohamed A.; Cheng C.-L.; Shih M.-C.; Poulton J.; Esen A. Functional genomic analysis of Arabidopsis thaliana glycoside hydrolase family 1. Plant Mol. Biol. 2004, 55 (3), 343–367. 10.1007/s11103-004-0790-1. PubMed DOI
Behr M.; Neutelings G.; El Jaziri M.; Baucher M. You want it sweeter: How glycosylation affects plant response to oxidative stress. Front. Plant Sci. 2020, 11, 571399.10.3389/fpls.2020.571399. PubMed DOI PMC
Roepke J.; Gordon H. O. W.; Neil K. J. A.; Gidda S.; Mullen R. T.; Freixas Coutin J. A.; Bray-Stone D.; Bozzo G. G. An apoplastic β-glucosidase is essential for the degradation of flavonol 3-O-β-glucoside-7-O-α-rhamnosides in Arabidopsis. Plant Cell Physiol. 2017, 58 (6), 1030–1047. 10.1093/pcp/pcx050. PubMed DOI
O’Callaghan A.; van Sinderen D. Bifidobacteria and their role as members of the human gut microbiota. Front. Microbiol. 2016, 7, 925.10.3389/fmicb.2016.00925. PubMed DOI PMC
Arifin H. A.; Hashiguchi T.; Nagahama K.; Hashiguchi M.; Muguerza M.; Sakakibara Y.; Tanaka H.; Akashi R. Varietal differences in flavonoid and antioxidant activity in Japanese soybean accessions. Biosci. Biotechnol. Biochem. 2021, 85 (4), 916–922. 10.1093/bbb/zbaa104. PubMed DOI
Zhang Y.-J.; Pang Y.-B.; Wang X.-Y.; Jiang Y.-H.; Herrera-Balandrano D. D.; Jin Y.; Wang S.-Y.; Laborda P. Exogenous genistein enhances soybean resistance to Xanthomonas axonopodis pv. glycines. Pest Manag. Sci. 2022, 78 (8), 3664–3675. 10.1002/ps.7009. PubMed DOI
Ahmad M. Z.; Li P.; Wang J.; Rehman N. U.; Zhao J. Isoflavone malonyltransferases GmIMaT1 and GmIMaT3 differently modify isoflavone glucosides in soybean (Glycine max) under various stresses. Front. Plant Sci. 2017, 8, 735.10.3389/fpls.2017.00735. PubMed DOI PMC
Yeom S.-J.; Kim B.-N.; Kim Y.-S.; Oh D.-K. Hydrolysis of isoflavone glycosides by a thermostable β-glucosidase from Pyrococcus furiosus. J. Agri. Food Chem. 2012, 60 (6), 1535–1541. 10.1021/jf204432g. PubMed DOI
Baglioni M.; Breccia J. D.; Mazzaferro L. S. Peculiarities and systematics of microbial diglycosidases, and their applications in food technology. Appl. Microbiol. Biotechnol. 2021, 105 (7), 2693–2700. 10.1007/s00253-021-11219-9. PubMed DOI
Koseki T.; Ishikawa M.; Kawasaki M.; Shiono Y. β-Diglycosidases from microorganisms as industrial biocatalysts: biochemical characteristics and potential applications. Appl. Microbiol. Biotechnol. 2018, 102 (20), 8717–8723. 10.1007/s00253-018-9286-9. PubMed DOI
Neher B. D.; Mazzaferro L. S.; Kotik M.; Oyhenart J.; Halada P.; Křen V.; Breccia J. D. Bacteria as source of diglycosidase activity: Actinoplanes missouriensis produces 6-O-α-L-rhamnosyl-β-D-glucosidase active on flavonoids. Appl. Microbiol. Biotechnol. 2016, 100 (7), 3061–3070. 10.1007/s00253-015-7088-x. PubMed DOI
Cui X.-D.; Wang Z.-H. Preparation and properties of rutin-hydrolyzing enzyme from tartary buckwheat seeds. Food Chem. 2012, 132 (1), 60–66. 10.1016/j.foodchem.2011.10.032. PubMed DOI
Karnišová Potocká E.; Mastihubová M.; Mastihuba V. Transrutinosylation of tyrosol by flower buds of Sophora japonica. Food Chem. 2021, 336, 127674.10.1016/j.foodchem.2020.127674. PubMed DOI
Weiz G.; Breccia J. D.; Mazzaferro L. S. Screening and quantification of the enzymatic deglycosylation of the plant flavonoid rutin by UV-visible spectrometry. Food Chem. 2017, 229, 44–49. 10.1016/j.foodchem.2017.02.029. PubMed DOI
Zhou L.; Lu C.; Wang G.-L.; Geng H.-L.; Yang J.-W.; Chen P. Syntheses of R-β-rutinosides by rutin-degrading reaction. J. Asian Nat. Prod. Res. 2009, 11, 18–23. 10.1080/10286020802513822. PubMed DOI
Kotik M.; Javůrková H.; Brodsky K.; Pelantová H. Two fungal flavonoid-specific glucosidases/rutinosidases for rutin hydrolysis and rutinoside synthesis under homogeneous and heterogeneous reaction conditions. AMB Express 2021, 11, 136.10.1186/s13568-021-01298-2. PubMed DOI PMC
Makabe K.; Hirota R.; Shiono Y.; Tanaka Y.; Koseki T. Aspergillus oryzae rutinosidase: Biochemical and structural investigation. Appl. Environ. Microbiol. 2021, 87, e02438-2010.1128/AEM.02438-20. PubMed DOI PMC
Pachl P.; Kapešová J.; Brynda J.; Biedermannová L.; Pelantová H.; Bojarová P.; Křen V.; Řezáčová P.; Kotik M. Rutinosidase from Aspergillus niger: Crystal structure and insight into the enzymatic activity. FEBS J. 2020, 287 (15), 3315–3327. 10.1111/febs.15208. PubMed DOI
Weiz G.; Mazzaferro L. S.; Kotik M.; Neher B. D.; Halada P.; Křen V.; Breccia J. D. The flavonoid degrading fungus Acremonium sp. DSM 24697 produces two diglycosidases with different specificities. Appl. Microbiol. Biotechnol. 2019, 103 (23), 9493–9504. 10.1007/s00253-019-10180-y. PubMed DOI
Kotik M.; Brodsky K.; Halada P.; Javůrková H.; Pelantová H.; Konvalinková D.; Bojarová P.; Křen V. Access to both anomers of rutinosyl azide using wild-type rutinosidase and its catalytic nucleophile mutant. Catal. Commun. 2021, 149, 106193.10.1016/j.catcom.2020.106193. DOI
Narikawa T.; Shinoyama H.; Fujii T. A beta-rutinosidase from Penicillium rugulosum IFO 7242 that is a peculiar flavonoid glycosidase. Biosci. Biotechnol. Biochem. 2000, 64 (6), 1317–1319. 10.1271/bbb.64.1317. PubMed DOI
Šimčíková D.; Kotik M.; Weignerová L.; Halada P.; Pelantová H.; Adamcová K.; Křen V. α-L-Rhamnosyl-β-D-glucosidase (rutinosidase) from Aspergillus niger: Characterization and synthetic potential of a novel diglycosidase. Adv. Synth. Catal. 2015, 357 (1), 107–117. 10.1002/adsc.201400566. DOI
Ishikawa M.; Kawasaki M.; Shiono Y.; Koseki T. A novel Aspergillus oryzae diglycosidase that hydrolyzes 6-O-α-L-rhamnosyl-β-D-glucoside from flavonoids. Appl. Microbiol. Biotechnol. 2018, 102 (7), 3193–3201. 10.1007/s00253-018-8840-9. PubMed DOI
Bernauer L.; Radkohl A.; Lehmayer L. G. K.; Emmerstorfer-Augustin A. Komagataella phaffii as emerging model organism in fundamental research. Front. Microbiol. 2021, 11, 607028.10.3389/fmicb.2020.607028. PubMed DOI PMC
Nam H.-K.; Hong S.-H.; Shin K.-C.; Oh D.-K. Quercetin production from rutin by a thermostable β-rutinosidase from Pyrococcus furiosus. Biotechnol. Lett. 2012, 34 (3), 483–489. 10.1007/s10529-011-0786-2. PubMed DOI
Weiz G.; Braun L.; Lopez R.; de María P. D.; Breccia J. D. Enzymatic deglycosylation of flavonoids in deep eutectic solvents-aqueous mixtures: paving the way for sustainable flavonoid chemistry. J. Mol. Catal. B-Enzym. 2016, 130, 70–73. 10.1016/j.molcatb.2016.04.010. DOI
Frutos M. J.; Rincón-Frutos L.; Valero-Cases E.. Chapter 2.14: Rutin. In Nonvitamin and Nonmineral Nutritional Supplements; Nabavi S. M., Silva A. S., Eds.; Academic Press; 2019; pp 111–117.10.1016/B978-0-12-812491-8.00015-1 DOI
Kapešová J.; Petrásková L.; Markošová K.; Rebroš M.; Kotik M.; Bojarová P.; Křen V. Bioproduction of quercetin and rutinose catalyzed by rutinosidase: Novel concept of “solid state biocatalysis. Int. J. Mol. Sci. 2019, 20 (5), 1112.10.3390/ijms20051112. PubMed DOI PMC
Piñuel L.; Breccia J. D.; Guisán J. M.; López-Gallego F. Production of hesperetin using a covalently multipoint immobilized diglycosidase from Acremonium sp. DSM24697. J. Mol. Microbiol. Biotechnol. 2013, 23 (6), 410–417. 10.1159/000353208. PubMed DOI
Cutfield S. M.; Davies G. J.; Murshudov G.; Anderson B. F.; Moody P. C. E.; Sullivan P. A.; Cutfield J. F. The structure of the exo-β-(1,3)-glucanase from Candida albicans in native and bound forms: relationship between a pocket and groove in family 5 glycosyl hydrolases. J. Mol. Biol. 1999, 294 (3), 771–783. 10.1006/jmbi.1999.3287. PubMed DOI
Verdoucq L.; Morinière J.; Bevan D. R.; Esen A.; Vasella A.; Henrissat B.; Czjze M. Structural determinants of substrate specificity in family 1 β-glucosidases: Novel insights from the crystal structure of sorghum dhurrinase-1, a plant β-glucosidase with strict specificity, in complex with its natural substrate. J. Biol. Chem. 2004, 279 (30), 31796–31803. 10.1074/jbc.M402918200. PubMed DOI
Czjzek M.; Cicek M.; Zamboni V.; Bevan D. R.; Henrissat B.; Esen A. The mechanism of substrate (aglycone) specificity in β-glucosidases is revealed by crystal structures of mutant maize β-glucosidase-DIMBOA, -DIMBOAGlc, and -dhurrin complexes. Proc. Natl. Acad. Sci. U S A 2000, 97 (25), 13555–13560. 10.1073/pnas.97.25.13555. PubMed DOI PMC
Tribolo S.; Berrin J.-G.; Kroon P. A.; Czjzek M.; Juge N. The crystal structure of human cytosolic β-glucosidase unravels the substrate aglycone specificity of a family 1 glycoside hydrolase. J. Mol. Biol. 2007, 370 (5), 964–975. 10.1016/j.jmb.2007.05.034. PubMed DOI
Berrin J. G.; Czjzek M.; Kroon P. A.; McLauchlan W. R.; Puigserver A.; Williamson G.; Juge N. Substrate (aglycone) specificity of human cytosolic β-glucosidase. Biochem. J. 2003, 373, 41–48. 10.1042/bj20021876. PubMed DOI PMC
Babcock G. D.; Esen A. Substrate specificity of maize β-glucosidase. Plant Sci. 1994, 101 (1), 31–39. 10.1016/0168-9452(94)90162-7. DOI
Saino H.; Shimizu T.; Hiratake J.; Nakatsu T.; Kato H.; Sakata K.; Mizutani M. Crystal structures of β-primeverosidase in complex with disaccharide amidine inhibitors. J. Biol. Chem. 2014, 289 (24), 16826–16834. 10.1074/jbc.M114.553271. PubMed DOI PMC
Kulkarni T. S.; Khan S.; Villagomez R.; Mahmood T.; Lindahl S.; Logan D. T.; Linares-Pastén J. A.; Nordberg Karlsson E. Crystal structure of β-glucosidase 1A from Thermotoga neapolitana and comparison of active site mutants for hydrolysis of flavonoid glucosides. Proteins 2017, 85 (5), 872–884. 10.1002/prot.25256. PubMed DOI
Ramachandran P.; Jagtap S. S.; Patel S. K. S.; Li J.; Chan Kang Y.; Lee J.-K. Role of the non-conserved amino acid asparagine 285 in the glycone-binding pocket of Neosartorya fischeri β-glucosidase. RSC Adv. 2016, 6 (53), 48137–48144. 10.1039/C5RA28017F. DOI
Adlercreutz P. Comparison of lipases and glycoside hydrolases as catalysts in synthesis reactions. Appl. Microbiol. Biotechnol. 2017, 101 (2), 513–519. 10.1007/s00253-016-8055-x. PubMed DOI PMC
Bassanini I.; Krejzová J.; Panzeri W.; Monti D.; Křen V.; Riva S. A sustainable one-pot, two-enzyme synthesis of naturally occurring arylalkyl glucosides. ChemSusChem 2017, 10 (9), 2040–2045. 10.1002/cssc.201700136. PubMed DOI
Brodsky K.; Kutý M.; Pelantová H.; Cvačka J.; Rebroš M.; Kotik M.; KutáSmatanová I.; Křen V.; Bojarová P. Dual substrate specificity of the rutinosidase from Aspergillus niger and the role of its substrate tunnel. Int. J. Mol. Sci. 2020, 21 (16), 5671.10.3390/ijms21165671. PubMed DOI PMC
Katayama S.; Ohno F.; Yamauchi Y.; Kato M.; Makabe H.; Nakamura S. Enzymatic synthesis of novel phenol acid rutinosides using rutinase and their antiviral activity in vitro. J. Agr. Food Chem. 2013, 61 (40), 9617–9622. 10.1021/jf4021703. PubMed DOI
Mazzaferro L. S.; Weiz G.; Braun L.; Kotik M.; Pelantová H.; Křen V.; Breccia J. D. Enzyme-mediated transglycosylation of rutinose (6-O-α-L-rhamnosyl-D-glucose) to phenolic compounds by a diglycosidase from Acremonium sp. DSM 24697. Biotechnol. Appl. Biochem. 2019, 66 (1), 53–59. 10.1002/bab.1695. PubMed DOI
Minig M.; Mazzaferro L. S.; Erra-Balsells R.; Petroselli G.; Breccia J. D. α-Rhamnosyl-β-glucosidase-catalyzed reactions for analysis and biotransformations of plant-based foods. J. Agric. Food Chem. 2011, 59 (20), 11238–11243. 10.1021/jf202412e. PubMed DOI
Bissaro B.; Monsan P.; Fauré R.; O’Donohue M. Glycosynthesis in a waterworld: New insight into the molecular basis of transglycosylation in retaining glycoside hydrolases. Biochem. J. 2015, 467, 17–35. 10.1042/BJ20141412. PubMed DOI
Mészáros Z.; Nekvasilová P.; Bojarová P.; Křen V.; Slámová K. Advanced glycosidases as ingenious biosynthetic instruments. Biotechnol. Adv. 2021, 49, 107733.10.1016/j.biotechadv.2021.107733. PubMed DOI
Mazzaferro L. S.; Piñuel L.; Erra-Balsells R.; Giudicessi S. L.; Breccia J. D. Transglycosylation specificity of Acremonium sp. α-rhamnosyl-β-glucosidase and its application to the synthesis of the new fluorogenic substrate 4-methylumbelliferyl-rutinoside. Carbohyd. Res. 2012, 347 (1), 69–75. 10.1016/j.carres.2011.11.008. PubMed DOI
Mazzaferro L.; Piñuel L.; Minig M.; Breccia J. D. Extracellular monoenzyme deglycosylation system of 7-O-linked flavonoid β-rutinosides and its disaccharide transglycosylation activity from Stilbella fimetaria. Arch. Microbiol. 2010, 192 (5), 383–393. 10.1007/s00203-010-0567-7. PubMed DOI
Mazzaferro L.; Piñuel L.; Minig M.; Breccia J. D. Erratum to: Extracellular monoenzyme deglycosylation system of 7-O-linked flavonoid β-rutinosides and its disaccharide transglycosylation activity from Stilbella fimetaria. Arch. Microbiol. 2011, 193 (6), 461–461. 10.1007/s00203-011-0709-6. PubMed DOI
Bassanini I.; Kapešová J.; Petrásková L.; Pelantová H.; Markošová K.; Rebroš M.; Valentová K.; Kotik M.; Káňová K.; Bojarová P.; Cvačka J.; Turková L.; Ferrandi E. E.; Bayout I.; Riva S.; Křen V. Glycosidase-catalyzed synthesis of glycosyl esters and phenolic glycosides of aromatic acids. Adv. Synth. Catal. 2019, 361 (11), 2627–2637. 10.1002/adsc.201900259. DOI
Crawford L. M.; Holstege D. M.; Wang S. C. High-throughput extraction method for phenolic compounds in olive fruit (Olea europaea). J. Food Comp. Anal. 2018, 66, 136–144. 10.1016/j.jfca.2017.12.013. DOI
Moracci M.; Trincone A.; Perugino G.; Ciaramella M.; Rossi M. Restoration of the activity of active-site mutants of the hyperthermophilic β-glycosidase from Sulfolobus solfataricus: Dependence of the mechanism on the action of external nucleophiles. Biochemistry 1998, 37 (49), 17262–17270. 10.1021/bi981855f. PubMed DOI
Tiwari V. K.; Mishra B. B.; Mishra K. B.; Mishra N.; Singh A. S.; Chen X. Cu-catalyzed click reaction in carbohydrate chemistry. Chem. Rev. 2016, 116 (5), 3086–3240. 10.1021/acs.chemrev.5b00408. PubMed DOI
Bojarová P.; Petrásková L.; Ferrandi E. E.; Monti D.; Pelantová H.; Kuzma M.; Simerská P.; Křen V. Glycosyl azides - an alternative way to disaccharides. Adv. Synth. Catal. 2007, 349 (8–9), 1514–1520. 10.1002/adsc.200700028. DOI
Shimizu R.; Shimabayashi H.; Moriwaki M. Enzymatic production of highly soluble myricitrin glycosides using β-galactosidase. Biosci. Biotechnol. Biochem. 2006, 70 (4), 940–948. 10.1271/bbb.70.940. PubMed DOI
Wu X.; Chu J.; Wu B.; Zhang S.; He B. An efficient novel glycosylation of flavonoid by β-fructosidase resistant to hydrophilic organic solvents. Bioresour. Technol. 2013, 129, 659–662. 10.1016/j.biortech.2012.12.041. PubMed DOI
Du L.; Wang Z.; Zhao Y.; Huang J.; Pang H.; Wei Y.; Lin L.; Huang R. A β-glucosidase from Novosphingobium sp. GX9 with high catalytic efficiency toward isoflavonoid glycoside hydrolysis and (+)-catechin transglycosylation. Appl. Microbiol. Biotechnol. 2014, 98 (16), 7069–7079. 10.1007/s00253-014-5661-3. PubMed DOI
Jakeman D. L.; Withers S. G. Glycosynthases: New tools for oligosaccharide synthesis. Trends Glycosci. Glyc. 2002, 14 (75), 13–25. 10.4052/tigg.14.13. DOI
Mackenzie L. F.; Wang Q.; Warren R. A. J.; Withers S. G. Glycosynthases: Mutant Glycosidases for Oligosaccharide Synthesis. J. Am. Chem. Soc. 1998, 120 (22), 5583–5584. 10.1021/ja980833d. DOI
Malet C.; Planas A. From β-glucanase to β-glucansynthase: glycosyl transfer to α-glycosyl fluorides catalyzed by a mutant endoglucanase lacking its catalytic nucleophile. FEBS Lett. 1998, 440 (1), 208–212. 10.1016/S0014-5793(98)01448-3. PubMed DOI
Yang M.; Davies G. J.; Davis B. G. A glycosynthase catalyst for the synthesis of flavonoid glycosides. Angewandte Chem. Int. Ed. 2007, 46 (21), 3885–3888. 10.1002/anie.200604177. PubMed DOI
Méndez-Líter J. A.; Nieto-Domínguez M.; Fernández de Toro B.; González Santana A.; Prieto A.; Asensio J. L.; Cañada F. J.; de Eugenio L. I.; Martínez M. J. A glucotolerant β-glucosidase from the fungus Talaromyces amestolkiae and its conversion into a glycosynthase for glycosylation of phenolic compounds. Microb. Cell Fact. 2020, 19, 127.10.1186/s12934-020-01386-1. PubMed DOI PMC
Jahn M.; Marles J.; Warren R. A. J.; Withers S. G. Thioglycoligases: Mutant glycosidases for thioglycoside synthesis. Angewandte Chem. Int. Ed. 2003, 42 (3), 352–354. 10.1002/anie.200390114. PubMed DOI
Kurdziel M.; Kopeć M.; Pâris A.; Lewiński K.; Lafite P.; Daniellou R. Thioglycoligation of aromatic thiols using a natural glucuronide donor. Org. Biomol. Chem. 2020, 18 (29), 5582–5585. 10.1039/D0OB00226G. PubMed DOI
Nieto-Domínguez M.; Fernández de Toro B.; de Eugenio L. I.; Santana A. G.; Bejarano-Muñoz L.; Armstrong Z.; Méndez-Líter J. A.; Asensio J. L.; Prieto A.; Withers S. G.; Cañada F. J.; Martínez M. J. Thioglycoligase derived from fungal GH3 β-xylosidase is a multi-glycoligase with broad acceptor tolerance. Nat. Commun. 2020, 11, 4864.10.1038/s41467-020-18667-3. PubMed DOI PMC
Qiu X.; Fairbanks A. J. Direct synthesis of para-nitrophenyl glycosides from reducing sugars in water. Org. Lett. 2020, 22 (6), 2490–2493. 10.1021/acs.orglett.0c00728. PubMed DOI
Kim Y.-W.; Zhang R.; Chen H.; Withers S. G. O-Glycoligases, a new category of glycoside bond-forming mutant glycosidases, catalyse facile syntheses of isoprimeverosides. Chem. Commun. 2009, 46 (46), 8725–8727. 10.1039/c0cc03168b. PubMed DOI
Li C.; Roy J. K.; Park K.-C.; Cho A. E.; Lee J.; Kim Y.-W. pH-promoted O-α-glucosylation of flavonoids using an engineered α-glucosidase mutant. Bioorg. Chem. 2021, 107, 104581.10.1016/j.bioorg.2020.104581. PubMed DOI
Ly H. D.; Withers S. G. Mutagenesis of glycosidases. Annu. Rev. Biochem. 1999, 68 (1), 487–522. 10.1146/annurev.biochem.68.1.487. PubMed DOI
Pozzo T.; Plaza M.; Romero-García J.; Faijes M.; Karlsson E. N.; Planas A. Glycosynthases from Thermotoga neapolitana β-glucosidase 1A: A comparison of α-glucosyl fluoride and in situ-generated α-glycosyl formate donors. J. Mol. Catal. B-Enzym. 2014, 107, 132–139. 10.1016/j.molcatb.2014.05.021. DOI
Pozzo T.; Romero-García J.; Faijes M.; Planas A.; Nordberg Karlsson E. Rational design of a thermostable glycoside hydrolase from family 3 introduces β-glycosynthase activity. Glycobiology 2017, 27 (2), 165–175. 10.1093/glycob/cww081. PubMed DOI
Desmet T.; Soetaert W.; Bojarová P.; Křen V.; Dijkhuizen L.; Eastwick-Field V.; Schiller A. Enzymatic glycosylation of small molecules: Challenging substrates require tailored catalysts. Chem.—Eur. J. 2012, 18, 10786.10.1002/chem.201103069. PubMed DOI
De Winter K.; Dewitte G.; Dirks-Hofmeister M. E.; De Laet S.; Pelantová H.; Křen V.; Desmet T. Enzymatic glycosylation of phenolic antioxidants: Phosphorylase-mediated synthesis and characterization. J. Agr. Food Chem. 2015, 63 (46), 10131–10139. 10.1021/acs.jafc.5b04380. PubMed DOI
Kraus M.; Grimm C.; Seibel J. Redesign of the active site of sucrose phosphorylase through a clash-induced cascade of loop shifts. ChemBioChem. 2016, 17 (1), 33–36. 10.1002/cbic.201500514. PubMed DOI
Kraus M.; Grimm C.; Seibel J. Switching enzyme specificity from phosphate to resveratrol glucosylation. Chem. Commun. 2017, 53 (90), 12181–12184. 10.1039/C7CC05993K. PubMed DOI
Kraus M.; Grimm C.; Seibel J. Reversibility of a point mutation induced domain shift: Expanding the conformational space of a sucrose phosphorylase. Sci. Rep. 2018, 8, 10490.10.1038/s41598-018-28802-2. PubMed DOI PMC
Demonceaux M.; Goux M.; Hendrickx J.; Solleux C.; Cadet F.; Lormeau É.; Offmann B.; André-Miral C. Regioselective glucosylation of (+)-catechin using a new variant of sucrose phosphorylase from Bifidobacterium adolescentis. Org. Biomol. Chem. 2023, 21 (11), 2307–2311. 10.1039/D3OB00191A. PubMed DOI
Moulis C.; Guieysse D.; Morel S.; Séverac E.; Remaud-Siméon M. Natural and engineered transglycosylases: Green tools for the enzyme-based synthesis of glycoproducts. Curr. Opin. Chem. Biol. 2021, 61, 96–106. 10.1016/j.cbpa.2020.11.004. PubMed DOI
Luang S.; Cho J.-I.; Mahong B.; Opassiri R.; Akiyama T.; Phasai K.; Komvongsa J.; Sasaki N.; Hua Y.-l.; Matsuba Y.; Ozeki Y.; Jeon J.-S.; Cairns J. R. K. Rice Os9BGlu31 is a transglucosidase with the capacity to equilibrate phenylpropanoid, flavonoid, and phytohormone glycoconjugates. J. Biol. Chem. 2013, 288 (14), 10111–10123. 10.1074/jbc.M112.423533. PubMed DOI PMC
Tran L. T.; Blay V.; Luang S.; Eurtivong C.; Choknud S.; González-Díaz H.; Ketudat Cairns J. R. Engineering faster transglycosidases and their acceptor specificity. Green Chem. 2019, 21 (10), 2823–2836. 10.1039/C9GC00621D. DOI
Komvongsa J.; Luang S.; Marques J. V.; Phasai K.; Davin L. B.; Lewis N. G.; Ketudat Cairns J. R. Active site cleft mutants of Os9BGlu31 transglucosidase modify acceptor substrate specificity and allow production of multiple kaempferol glycosides. Biochim. Biophys. Acta 2015, 1850 (7), 1405–1414. 10.1016/j.bbagen.2015.03.013. PubMed DOI
Dulak K.; Sordon S.; Matera A.; Kozak B.; Huszcza E.; Popłoński J. Novel flavonoid C-8 hydroxylase from Rhodotorula glutinis: identification, characterization and substrate scope. Microb. Cell Fact. 2022, 21, 175.10.1186/s12934-022-01899-x. PubMed DOI PMC
Wang Z.; Huang X.; Liu J.; Xiao F.; Tian M.; Ding S.; Shan Y. Screening and heterologous expression of flavone synthase and flavonol synthase to catalyze hesperetin to diosmetin. Biotechnol. Lett. 2021, 43 (11), 2161–2183. 10.1007/s10529-021-03184-0. PubMed DOI
Webb B.; Sali A. Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinform. 2016, 54, 5.6.1.10.1002/cpbi.3. PubMed DOI PMC
Morris G. M.; Huey R.; Lindstrom W.; Sanner M. F.; Belew R. K.; Goodsell D. S.; Olson A. J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30 (16), 2785–2791. 10.1002/jcc.21256. PubMed DOI PMC
Cameron R. G.; Manthey J. A.; Baker R. A.; Grohmann K. Purification and characterization of a β-glucosidase from Citrus sinensis var. valencia fruit tissue. J. Agr. Food Chem. 2001, 49 (9), 4457–4462. 10.1021/jf010010z. PubMed DOI
Mamma D.; Hatzinikolaou D. G.; Christakopoulos P. Biochemical and catalytic properties of two intracellular β-glucosidases from the fungus Penicillium decumbens active on flavonoid glucosides. J. Mol. Catal. B-Enzym. 2004, 27 (4), 183–190. 10.1016/j.molcatb.2003.11.011. DOI
Youn S. Y.; Park M. S.; Ji G. E. Identification of the β-glucosidase gene from Bifidobacterium animalis subsp. lactis and its expression in B. bifidum BGN4. J. Microbiol. Biotechnol. 2012, 22 (12), 1714–1723. 10.4014/jmb.1208.08028. PubMed DOI
Shaik N. M.; Misra A.; Singh S.; Fatangare A. B.; Ramakumar S.; Rawal S. K.; Khan B. M. Functional characterization, homology modeling and docking studies of β-glucosidase responsible for bioactivation of cyanogenic hydroxynitrile glucosides from Leucaena leucocephala (subabul). Mol. Biol. Rep. 2013, 40 (2), 1351–1363. 10.1007/s11033-012-2179-6. PubMed DOI
Chen W.-L.; Yang Y.-M.; Guo G.-W.; Chen C.-Y.; Huang Y.-C.; Liu W.-H.; Huang K.-F.; Yang C.-H. Over-expression of the Thermobifida fusca β-glucosidase in a Yarrowia lipolytica transformant to degrade soybean isoflavones. Catalysts 2018, 8 (1), 24.10.3390/catal8010024. DOI
Guadamuro L.; Flórez A. B.; Alegría Á.; Vázquez L.; Mayo B. Characterization of four β-glucosidases acting on isoflavone-glycosides from Bifidobacterium pseudocatenulatum IPLA 36007. Food Res. Int. 2017, 100, 522–528. 10.1016/j.foodres.2017.07.024. PubMed DOI
Schmidt S.; Rainieri S.; Witte S.; Matern U.; Martens S. Identification of a Saccharomyces cerevisiae glucosidase that hydrolyzes flavonoid glucosides. Appl. Environ. Microbiol. 2011, 77 (5), 1751–1757. 10.1128/AEM.01125-10. PubMed DOI PMC
Xu J.; Liu S.; Liu G.; Liu Y.; He X. β-glucosidase from Hevea brasiliensis seeds: Purification, homology modeling, and insights into the substrate-binding model. J. Food Biochem 2020, 44, e1320610.1111/jfbc.13206. PubMed DOI
Li G.; Jiang Y.; Fan X.-j.; Liu Y.-h. Molecular cloning and characterization of a novel β-glucosidase with high hydrolyzing ability for soybean isoflavone glycosides and glucose-tolerance from soil metagenomic library. Bioresour. Technol. 2012, 123, 15–22. 10.1016/j.biortech.2012.07.083. PubMed DOI
Yang L.; Ning Z. S.; Shi C. Z.; Chang Z. Y.; Huan L. Y. Purification and characterization of an isoflavone-conjugates-hydrolyzing β-glucosidase from endophytic bacterium. J. Agr. Food Chem. 2004, 52 (7), 1940–1944. 10.1021/jf030476c. PubMed DOI
Hsieh M.-C.; Graham T. L. Partial purification and characterization of a soybean β-glucosidase with high specific activity towards isoflavone conjugates. Phytochemistry 2001, 58 (7), 995–1005. 10.1016/S0031-9422(01)00380-6. PubMed DOI
Asati V.; Sharma P. K. Purification and characterization of an isoflavones conjugate hydrolyzing β-glucosidase (ICHG) from Cyamopsis tetragonoloba (guar). Biochem. Biophys. Rep. 2019, 20, 100669.10.1016/j.bbrep.2019.100669. PubMed DOI PMC