Flavonoids as Aglycones in Retaining Glycosidase-Catalyzed Reactions: Prospects for Green Chemistry

. 2023 Oct 18 ; 71 (41) : 14890-14910. [epub] 20231006

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid37800688

Flavonoids and their glycosides are abundant in many plant-based foods. The (de)glycosylation of flavonoids by retaining glycoside hydrolases has recently attracted much interest in basic and applied research, including the possibility of altering the glycosylation pattern of flavonoids. Research in this area is driven by significant differences in physicochemical, organoleptic, and bioactive properties between flavonoid aglycones and their glycosylated counterparts. While many flavonoid glycosides are present in nature at low levels, some occur in substantial quantities, making them readily available low-cost glycosyl donors for transglycosylations. Retaining glycosidases can be used to synthesize natural and novel glycosides, which serve as standards for bioactivity experiments and analyses, using flavonoid glycosides as glycosyl donors. Engineered glycosidases also prove valuable for the synthesis of flavonoid glycosides using chemically synthesized activated glycosyl donors. This review outlines the bioactivities of flavonoids and their glycosides and highlights the applications of retaining glycosidases in the context of flavonoid glycosides, acting as substrates, products, or glycosyl donors in deglycosylation or transglycosylation reactions.

Zobrazit více v PubMed

dos Santos C. N.; Menezes R.; Carregosa D.; Valentova K.; Foito A.; McDougall G.; Stewart D.. Flavonols and flavones. In Dietary Polyphenols; Tomás-Barberán F. A., González-Sarrías A., García-Villalba R., Eds.; John Wiley & Sons: 2020; pp 163–198.10.1002/9781119563754.ch5 DOI

Kazlauskas R. J.; Kim B.-G.. Biotechnology tools for green synthesis: Enzymes, metabolic pathways, and their improvement by engineering. In Biocatalysis for Green Chemistry and Chemical Process Development; Tao J. A., Kazlauskas R., Eds.; John Wiley & Sons: 2011; pp 1–22.10.1002/9781118028308.ch1 DOI

Sheldon R. A.; Woodley J. M. Role of biocatalysis in sustainable chemistry. Chem. Rev. 2018, 118 (2), 801–838. 10.1021/acs.chemrev.7b00203. PubMed DOI

Tian Y.; Xu W.; Guang C.; Zhang W.; Mu W. Glycosylation of flavonoids by sucrose- and starch-utilizing glycoside hydrolases: A practical approach to enhance glycodiversification. Crit. Rev. Food Sci. Nutr. 2023, 1–18. 10.1080/10408398.2023.2185201. PubMed DOI

Mohanta T. K. Fungi contain genes associated with flavonoid biosynthesis pathway. J. Funct. Food. 2020, 68, 103910.10.1016/j.jff.2020.103910. DOI

Galeotti F.; Barile E.; Curir P.; Dolci M.; Lanzotti V. Flavonoids from carnation (Dianthus caryophyllus) and their antifungal activity. Phytochem. Lett. 2008, 1, 44–48. 10.1016/j.phytol.2007.10.001. DOI

Ghitti E.; Rolli E.; Crotti E.; Borin S. Flavonoids are intra- and inter-kingdom modulator signals. Microorganisms 2022, 10 (12), 2479.10.3390/microorganisms10122479. PubMed DOI PMC

Ramaroson M.-L.; Koutouan C.; Helesbeux J.-J.; Le Clerc V.; Hamama L.; Geoffriau E.; Briard M. Role of phenylpropanoids and flavonoids in plant resistance to pests and diseases. Molecules 2022, 27 (23), 8371.10.3390/molecules27238371. PubMed DOI PMC

Yao Q.; Peng Z.; Tong H.; Yang F.; Xing G.; Wang L.; Zheng J.; Zhang Y.; Su Q. Tomato plant flavonoids increase whitefly resistance and reduce spread of tomato yellow leaf curl virus. J. Econ. Entomol. 2019, 112, 2790–2796. 10.1093/jee/toz199. PubMed DOI

Yang F.; Zhang X.; Shen H.; Xue H.; Tian T.; Zhang Q.; Hu J.; Tong H.; Zhang Y.; Su Q. Flavonoid-producing tomato plants have a direct negative effect on the zoophytophagous biological control agent Orius sauteri. Insect Sci. 2023, 30 (1), 173–184. 10.1111/1744-7917.13085. PubMed DOI

Ardila H. D.; Martínez S. T.; Higuera B. L. Levels of constitutive flavonoid biosynthetic enzymes in carnation (Dianthus caryophyllus L.) cultivars with differential response to Fusarium oxysporum f. sp. dianthi. Acta Physiol. Plant. 2013, 35 (4), 1233–1245. 10.1007/s11738-012-1162-0. DOI

Koutouan C.; Clerc V. L.; Baltenweck R.; Claudel P.; Halter D.; Hugueney P.; Hamama L.; Suel A.; Huet S.; Merlet M.-H. B.; Briard M. Link between carrot leaf secondary metabolites and resistance to Alternaria dauci. Sci. Rep. 2018, 8, 13746.10.1038/s41598-018-31700-2. PubMed DOI PMC

Suzuki H.; Takahashi S.; Watanabe R.; Fukushima Y.; Fujita N.; Noguchi A.; Yokoyama R.; Nishitani K.; Nishino T.; Nakayama T. An isoflavone conjugate-hydrolyzing β-glucosidase from the roots of soybean (Glycine max) seedlings: purification, gene cloning, phylogenetics, and cellular localization. J. Biol. Chem. 2006, 281 (40), 30251–30259. 10.1074/jbc.M605726200. PubMed DOI

Xiao J.; Muzashvili T. S.; Georgiev M. I. Advances in the biotechnological glycosylation of valuable flavonoids. Biotechnol. Adv. 2014, 32 (6), 1145–1156. 10.1016/j.biotechadv.2014.04.006. PubMed DOI

Ji Y.; Li B.; Qiao M.; Li J.; Xu H.; Zhang L.; Zhang X. Advances on the in vivo and in vitro glycosylations of flavonoids. Appl. Microbiol. Biotechnol. 2020, 104 (15), 6587–6600. 10.1007/s00253-020-10667-z. PubMed DOI

Xie L.; Deng Z.; Zhang J.; Dong H.; Wang W.; Xing B.; Liu X. Comparison of flavonoid O-glycoside, C-glycoside and their aglycones on antioxidant capacity and metabolism during in vitro digestion and in vivo. Foods (Basel, Switzerland) 2022, 11 (6), 882.10.3390/foods11060882. PubMed DOI PMC

Zhang Y.-Q.; Zhang M.; Wang Z.-L.; Qiao X.; Ye M. Advances in plant-derived C-glycosides: Phytochemistry, bioactivities, and biotechnological production. Biotechnol. Adv. 2022, 60, 108030.10.1016/j.biotechadv.2022.108030. PubMed DOI

Schnarr L.; Segatto M. L.; Olsson O.; Zuin V. G.; Kümmerer K. Flavonoids as biopesticides - Systematic assessment of sources, structures, activities and environmental fate. Sci. Total Environ. 2022, 824, 153781.10.1016/j.scitotenv.2022.153781. PubMed DOI

Kim D. H.; Jung H. A.; Sohn H. S.; Kim J. W.; Choi J. S. Potential of icariin metabolites from Epimedium koreanum Nakai as antidiabetic therapeutic agents. Molecules 2017, 22 (6), 986.10.3390/molecules22060986. PubMed DOI PMC

Plaza M.; Pozzo T.; Liu J.; Gulshan Ara K. Z.; Turner C.; Nordberg Karlsson E. Substituent effects on in vitro antioxidizing properties, stability, and solubility in flavonoids. J. Agr. Food Chem. 2014, 62 (15), 3321–3333. 10.1021/jf405570u. PubMed DOI

Oteiza P. I.; Fraga C. G.; Mills D. A.; Taft D. H. Flavonoids and the gastrointestinal tract: Local and systemic effects. Mol. Aspects Med. 2018, 61, 41–49. 10.1016/j.mam.2018.01.001. PubMed DOI

He J.; Feng Y.; Ouyang H.-z.; Yu B.; Chang Y.-x.; Pan G.-x.; Dong G.-y.; Wang T.; Gao X.-m. A sensitive LC-MS/MS method for simultaneous determination of six flavonoids in rat plasma: Application to a pharmacokinetic study of total flavonoids from mulberry leaves. J. Pharm. Biomed. Anal. 2013, 84, 189–195. 10.1016/j.jpba.2013.06.019. PubMed DOI

Hu B.; Sun Y.; Wang M.; He Z.; Chen S.; Qi D.; Ge Z.; Fan L.; Chen J.; Wei Y. Simultaneous determination of ginkgolide A, B, C, bilobalide and rutin in rat plasma by LC-MS/MS and its application to a pharmacokinetic study. Acta Chromatogr. 2022, 34 (4), 386–393. 10.1556/1326.2021.00962. DOI

Valentová K.; Vrba J.; Bancířová M.; Ulrichová J.; Křen V. Isoquercitrin: Pharmacology, toxicology, and metabolism. Food Chem. Toxicol. 2014, 68, 267–282. 10.1016/j.fct.2014.03.018. PubMed DOI

Zhang X.; Zhang Z.-q.; Zhang L.-c.; Wang K.-x.; Zhang L.-t.; Li D.-q. The development and validation of a sensitive HPLC-MS/MS method for the quantitative and pharmacokinetic study of the seven components of Buddleja lindleyana Fort. RSC Adv. 2021, 11 (42), 26016–26028. 10.1039/D1RA04154A. PubMed DOI PMC

Almeida A. F.; Borge G. I. A.; Piskula M.; Tudose A.; Tudoreanu L.; Valentová K.; Williamson G.; Santos C. N. Bioavailability of quercetin in humans with a focus on interindividual variation. Comp Rev. Food Sci. Food Saf 2018, 17 (3), 714–731. 10.1111/1541-4337.12342. PubMed DOI

Lesjak M.; Beara I.; Simin N.; Pintać D.; Majkić T.; Bekvalac K.; Orčić D.; Mimica-Dukić N. Antioxidant and anti-inflammatory activities of quercetin and its derivatives. J. Funct. Food. 2018, 40, 68–75. 10.1016/j.jff.2017.10.047. DOI

Xiong H.-H.; Lin S.-Y.; Chen L.-L.; Ouyang K.-H.; Wang W.-J. The interaction between flavonoids and intestinal microbes: A review. Foods (Basel, Switzerland) 2023, 12 (2), 320.10.3390/foods12020320. PubMed DOI PMC

De Bruyne T.; Steenput B.; Roth L.; De Meyer G. R. Y.; Santos C. N. D.; Valentová K.; Dambrova M.; Hermans N. Dietary polyphenols targeting arterial stiffness: Interplay of contributing mechanisms and gut microbiome-related metabolism. Nutrients 2019, 11 (3), 578.10.3390/nu11030578. PubMed DOI PMC

Chen Y.; Peng F.; Xing Z.; Chen J.; Peng C.; Li D. Beneficial effects of natural flavonoids on neuroinflammation. Front. Immunol. 2022, 13, 1006434.10.3389/fimmu.2022.1006434. PubMed DOI PMC

Rakha A.; Umar N.; Rabail R.; Butt M. S.; Kieliszek M.; Hassoun A.; Aadil R. M. Anti-inflammatory and anti-allergic potential of dietary flavonoids: A review. Biomed. Pharmacother. 2022, 156, 113945.10.1016/j.biopha.2022.113945. PubMed DOI

Umeno A.; Horie M.; Murotomi K.; Nakajima Y.; Yoshida Y. Antioxidative and antidiabetic effects of natural polyphenols and isoflavones. Molecules 2016, 21 (6), 708.10.3390/molecules21060708. PubMed DOI PMC

Bae E.-A.; Han M. J.; Lee M.; Kim D.-H. In vitro inhibitory effect of some flavonoids on rotavirus infectivity. Biol. Pharm. Bull. 2000, 23 (9), 1122–1124. 10.1248/bpb.23.1122. PubMed DOI

Hassan S. T. S.; Šudomová M. Molecular mechanisms of flavonoids against tumor gamma-herpesviruses and their correlated cancers - A focus on EBV and KSHV life cycles and carcinogenesis. Int. J. Mol. Sci. 2023, 24 (1), 247.10.3390/ijms24010247. PubMed DOI PMC

Qiu X.; Kroeker A.; He S.; Kozak R.; Audet J.; Mbikay M.; Chrétien M. Prophylactic efficacy of quercetin 3-β-O-D-glucoside against Ebola virus infection. Antimicrob. Agents Ch. 2016, 60 (9), 5182–5188. 10.1128/AAC.00307-16. PubMed DOI PMC

Kampa R. P.; Sȩk A.; Bednarczyk P.; Szewczyk A.; Calderone V.; Testai L. Flavonoids as new regulators of mitochondrial potassium channels: contribution to cardioprotection. J. Pharm. Pharmacol. 2023, 75 (4), 466–481. 10.1093/jpp/rgac093. PubMed DOI

Treml J.; Šmejkal K. Flavonoids as potent scavengers of hydroxyl radicals. Comp Rev. Food Sci. Food Saf 2016, 15 (4), 720–738. 10.1111/1541-4337.12204. PubMed DOI

González-Paramás A. M.; Ayuda-Durán B.; Martínez S.; González-Manzano S.; Santos-Buelga C. The mechanisms behind the biological activity of flavonoids. Curr. Med. Chem. 2019, 26 (39), 6976–6990. 10.2174/0929867325666180706104829. PubMed DOI

Proença C.; Ribeiro D.; Freitas M.; Fernandes E. Flavonoids as potential agents in the management of type 2 diabetes through the modulation of α-amylase and α-glucosidase activity: a review. Crit. Rev. Food Sci. Nutr. 2022, 62, 3137.10.1080/10408398.2020.1862755. PubMed DOI

Purewal S. S.; Sandhu K. S. Debittering of citrus juice by different processing methods: A novel approach for food industry and agro-industrial sector. Sci. Hort. 2021, 276, 109750.10.1016/j.scienta.2020.109750. DOI

Wang C.; Chen P.-X.; Xiao Q.; Chen J.; Chen F.-Q.; Yang Q.-M.; Weng H.-F.; Fang B.-S.; Zhang Y.-H.; Xiao A.-F. Artificial naringinase system for cooperative enzymatic synthesis of naringenin. Biochem. Eng. J. 2022, 178, 108277.10.1016/j.bej.2021.108277. DOI

Carceller J. M.; Martínez Galán J. P.; Monti R.; Bassan J. C.; Filice M.; Iborra S.; Yu J.; Corma A. Selective synthesis of citrus flavonoids prunin and naringenin using heterogeneized biocatalyst on graphene oxide. Green Chem. 2019, 21 (4), 839–849. 10.1039/C8GC03661F. DOI

Karami F.; Ghorbani M.; Sadeghi Mahoonak A.; Shackebaei D.; Khodarahmi R. Green technology for production of potent antioxidants and alkyl glucosides by Aspergillus niger β-glucosidase: prospects for broad application in the food industry. J. Food Meas. Charact. 2022, 16 (3), 1834–1846. 10.1007/s11694-021-01260-7. DOI

Yang X.; Ma Y.; Li L. β-Glucosidase from tartary buckwheat immobilization on bifunctionalized nano-magnetic iron oxide and its application in tea soup for aroma and flavonoid aglycone enhancement. Food Funct. 2019, 10 (9), 5461–5472. 10.1039/C9FO00283A. PubMed DOI

Slámová K.; Kapešová J.; Valentová K. Sweet flavonoids”: Glycosidase-catalyzed modifications. Int. J. Mol. Sci. 2018, 19 (7), 2126.10.3390/ijms19072126. PubMed DOI PMC

Shin K.-C.; Nam H.-K.; Oh D.-K. Hydrolysis of flavanone glycosides by β-glucosidase from Pyrococcus furiosus and its application to the production of flavanone aglycones from citrus extracts. J. Agric. Food Chem. 2013, 61 (47), 11532–11540. 10.1021/jf403332e. PubMed DOI

Colacicco A.; Catinella G.; Pinna C.; Pellis A.; Farris S.; Tamborini L.; Dallavalle S.; Molinari F.; Contente M. L.; Pinto A. Flow bioprocessing of citrus glycosides for high-value aglycone preparation. Catal. Sci. Technol. 2023, 13 (15), 4348–4352. 10.1039/D3CY00603D. DOI

Xie J.; Xu H.; Jiang J.; Zhang N.; Yang J.; Zhao J.; Wei M. Characterization of a novel thermostable glucose-tolerant GH1 β-glucosidase from the hyperthermophile Ignisphaera aggregans and its application in the efficient production of baohuoside I from icariin and total Epimedium flavonoids. Bioorg. Chem. 2020, 104, 104296.10.1016/j.bioorg.2020.104296. PubMed DOI

Dong Y.; Zhang S.; Lu C.; Xu J.; Pei J.; Zhao L. Immobilization of thermostable β-glucosidase and α-L-rhamnosidase from Dictyoglomus thermophilum DSM3960 and their cooperated biotransformation of total flavonoids extract from Epimedium into icaritin. Catal. Lett. 2021, 151 (10), 2950–2963. 10.1007/s10562-020-03522-3. DOI

Liu F.; Wei B.; Cheng L.; Zhao Y.; Liu X.; Yuan Q.; Liang H. Co-immobilizing two glycosidases based on cross-linked enzyme aggregates to enhance enzymatic properties for achieving high titer icaritin biosynthesis. J. Agr. Food Chem. 2022, 70 (37), 11631–11642. 10.1021/acs.jafc.2c04253. PubMed DOI

Xie J.; Zhang S.; Tong X.; Wu T.; Pei J.; Zhao L. Biochemical characterization of a novel hyperthermophilic α-L-rhamnosidase from Thermotoga petrophila and its application in production of icaritin from epimedin C with a thermostable β-glucosidase. Process Biochem. 2020, 93, 115–124. 10.1016/j.procbio.2020.03.019. DOI

Zhang S.; Luo J.; Dong Y.; Wang Z.; Xiao W.; Zhao L. Biotransformation of the total flavonoid extract of Epimedium into icaritin by two thermostable glycosidases from Dictyoglomus thermophilum DSM3960. Process Biochem. 2021, 105, 8–18. 10.1016/j.procbio.2021.03.002. DOI

Wang Z.; Liu C.; Yu H.; Wu B.; Huai B.; Zhuang Z.; Sun C.; Xu L.; Jin F. Icaritin Preparation from icariin by a special epimedium flavonoid-glycosidase from Aspergillus sp. y848 strain. J. Microbiol. Biotechnol. 2022, 32 (4), 437–446. 10.4014/jmb.2112.12036. PubMed DOI PMC

Gaya P.; Peirotén Á.; Landete J. M. Expression of a β-glucosidase in bacteria with biotechnological interest confers them the ability to deglycosylate lignans and flavonoids in vegetal foods. Appl. Microbiol. Biotechnol. 2020, 104 (11), 4903–4913. 10.1007/s00253-020-10588-x. PubMed DOI

Kaya M.; Ito J.; Kotaka A.; Matsumura K.; Bando H.; Sahara H.; Ogino C.; Shibasaki S.; Kuroda K.; Ueda M.; Kondo A.; Hata Y. Isoflavone aglycones production from isoflavone glycosides by display of β-glucosidase from Aspergillus oryzae on yeast cell surface. Appl. Microbiol. Biotechnol. 2008, 79 (1), 51–60. 10.1007/s00253-008-1393-6. PubMed DOI

Guo Z.; Du X.; Zhang Y.; Su C.; Ran F.; Lu Q. Diosmin alleviates venous injury and muscle damage in a mouse model of iliac vein stenosis. Front. Cardiovasc. Med. 2022, 8, 785554.10.3389/fcvm.2021.785554. PubMed DOI PMC

Zou J.; Yuan D.; Yang J.; Yu Y. Effects of diosmin on vascular leakage and inflammation in a mouse model of venous obstruction. Front. Nutr. 2022, 9, 831485.10.3389/fnut.2022.831485. PubMed DOI PMC

Novotná R.; Škařupová D.; Hanyk J.; Ulrichová J.; Křen V.; Bojarová P.; Brodsky K.; Vostálová J.; Franková J. Hesperidin, hesperetin, rutinose, and rhamnose act as skin anti-aging agents. Molecules 2023, 28 (4), 1728.10.3390/molecules28041728. PubMed DOI PMC

Pageon H.; Azouaoui A.; Zucchi H.; Ricois S.; Tran C.; Asselineau D. Potentially beneficial effects of rhamnose on skin ageing: an in vitro and in vivo study. Int. J. Cosmetic Sci. 2019, 41 (3), 213–220. 10.1111/ics.12523. PubMed DOI

Lucci N.; Mazzafera P. Distribution of rutin in fava d’anta (Dimorphandra mollis) seedlings under stress. J. Plant Interact. 2009, 4 (3), 203–208. 10.1080/17429140802707035. DOI

Peterson J. J.; Beecher G. R.; Bhagwat S. A.; Dwyer J. T.; Gebhardt S. E.; Haytowitz D. B.; Holden J. M. Flavanones in grapefruit, lemons, and limes: A compilation and review of the data from the analytical literature. J. Food Compos. Anal. 2006, 19, S74–S80. 10.1016/j.jfca.2005.12.009. DOI

Singh B.; Singh J. P.; Kaur A.; Singh N. Phenolic composition, antioxidant potential and health benefits of citrus peel. Food Res. Int. 2020, 132, 109114.10.1016/j.foodres.2020.109114. PubMed DOI

Morishita T.; Ishiguro K.; Noda T.; Suzuki T. The effect of grain moisture contents on the roll milling characteristics of Tartary buckwheat cultivar ‘Manten-Kirari’. Plant Prod. Sci. 2020, 23 (4), 539–546. 10.1080/1343943X.2020.1747358. DOI

Nogata Y.; Sakamoto K.; Shiratsuchi H.; Ishii T.; Yano M.; Ohta H. Flavonoid composition of fruit tissues of citrus species. Biosci. Biotechnol. Biochemi. 2006, 70 (1), 178–192. 10.1271/bbb.70.178. PubMed DOI

Godse R.; Bawane H.; Tripathi J.; Kulkarni R. Unconventional β-glucosidases: A promising biocatalyst for industrial biotechnology. Appl. Biochem. Biotechnol. 2021, 193 (9), 2993–3016. 10.1007/s12010-021-03568-y. PubMed DOI

Tranchimand S.; Brouant P.; Iacazio G. The rutin catabolic pathway with special emphasis on quercetinase. Biodegradation 2010, 21 (6), 833–859. 10.1007/s10532-010-9359-7. PubMed DOI

Steenbakkers P. J. M.; Harhangi H. R.; Bosscher M. W.; Hooft M. M. C. V. D.; Keltjens J. T.; Drift C. V. D.; Vogels G. D.; Camp H. J. M. O. D. β-Glucosidase in cellulosome of the anaerobic fungus Piromyces sp. strain E2 is a family 3 glycoside hydrolase. Biochem. J. 2003, 370 (3), 963–970. 10.1042/bj20021767. PubMed DOI PMC

Lindroth R. L. Hydrolysis of phenolic glycosides by midgut β-glucosidases in Papilio glaucus subspecies. Insect Biochem. 1988, 18 (8), 789–792. 10.1016/0020-1790(88)90102-3. DOI

Opassiri R.; Pomthong B.; Onkoksoong T.; Akiyama T.; Esen A.; Ketudat Cairns J. R. Analysis of rice glycosyl hydrolase family 1 and expression of Os4bglu12 β-glucosidase. BMC Plant Biol. 2006, 6, 33.10.1186/1471-2229-6-33. PubMed DOI PMC

Xu Z.; Escamilla-Treviño L.; Zeng L.; Lalgondar M.; Bevan D.; Winkel B.; Mohamed A.; Cheng C.-L.; Shih M.-C.; Poulton J.; Esen A. Functional genomic analysis of Arabidopsis thaliana glycoside hydrolase family 1. Plant Mol. Biol. 2004, 55 (3), 343–367. 10.1007/s11103-004-0790-1. PubMed DOI

Behr M.; Neutelings G.; El Jaziri M.; Baucher M. You want it sweeter: How glycosylation affects plant response to oxidative stress. Front. Plant Sci. 2020, 11, 571399.10.3389/fpls.2020.571399. PubMed DOI PMC

Roepke J.; Gordon H. O. W.; Neil K. J. A.; Gidda S.; Mullen R. T.; Freixas Coutin J. A.; Bray-Stone D.; Bozzo G. G. An apoplastic β-glucosidase is essential for the degradation of flavonol 3-O-β-glucoside-7-O-α-rhamnosides in Arabidopsis. Plant Cell Physiol. 2017, 58 (6), 1030–1047. 10.1093/pcp/pcx050. PubMed DOI

O’Callaghan A.; van Sinderen D. Bifidobacteria and their role as members of the human gut microbiota. Front. Microbiol. 2016, 7, 925.10.3389/fmicb.2016.00925. PubMed DOI PMC

Arifin H. A.; Hashiguchi T.; Nagahama K.; Hashiguchi M.; Muguerza M.; Sakakibara Y.; Tanaka H.; Akashi R. Varietal differences in flavonoid and antioxidant activity in Japanese soybean accessions. Biosci. Biotechnol. Biochem. 2021, 85 (4), 916–922. 10.1093/bbb/zbaa104. PubMed DOI

Zhang Y.-J.; Pang Y.-B.; Wang X.-Y.; Jiang Y.-H.; Herrera-Balandrano D. D.; Jin Y.; Wang S.-Y.; Laborda P. Exogenous genistein enhances soybean resistance to Xanthomonas axonopodis pv. glycines. Pest Manag. Sci. 2022, 78 (8), 3664–3675. 10.1002/ps.7009. PubMed DOI

Ahmad M. Z.; Li P.; Wang J.; Rehman N. U.; Zhao J. Isoflavone malonyltransferases GmIMaT1 and GmIMaT3 differently modify isoflavone glucosides in soybean (Glycine max) under various stresses. Front. Plant Sci. 2017, 8, 735.10.3389/fpls.2017.00735. PubMed DOI PMC

Yeom S.-J.; Kim B.-N.; Kim Y.-S.; Oh D.-K. Hydrolysis of isoflavone glycosides by a thermostable β-glucosidase from Pyrococcus furiosus. J. Agri. Food Chem. 2012, 60 (6), 1535–1541. 10.1021/jf204432g. PubMed DOI

Baglioni M.; Breccia J. D.; Mazzaferro L. S. Peculiarities and systematics of microbial diglycosidases, and their applications in food technology. Appl. Microbiol. Biotechnol. 2021, 105 (7), 2693–2700. 10.1007/s00253-021-11219-9. PubMed DOI

Koseki T.; Ishikawa M.; Kawasaki M.; Shiono Y. β-Diglycosidases from microorganisms as industrial biocatalysts: biochemical characteristics and potential applications. Appl. Microbiol. Biotechnol. 2018, 102 (20), 8717–8723. 10.1007/s00253-018-9286-9. PubMed DOI

Neher B. D.; Mazzaferro L. S.; Kotik M.; Oyhenart J.; Halada P.; Křen V.; Breccia J. D. Bacteria as source of diglycosidase activity: Actinoplanes missouriensis produces 6-O-α-L-rhamnosyl-β-D-glucosidase active on flavonoids. Appl. Microbiol. Biotechnol. 2016, 100 (7), 3061–3070. 10.1007/s00253-015-7088-x. PubMed DOI

Cui X.-D.; Wang Z.-H. Preparation and properties of rutin-hydrolyzing enzyme from tartary buckwheat seeds. Food Chem. 2012, 132 (1), 60–66. 10.1016/j.foodchem.2011.10.032. PubMed DOI

Karnišová Potocká E.; Mastihubová M.; Mastihuba V. Transrutinosylation of tyrosol by flower buds of Sophora japonica. Food Chem. 2021, 336, 127674.10.1016/j.foodchem.2020.127674. PubMed DOI

Weiz G.; Breccia J. D.; Mazzaferro L. S. Screening and quantification of the enzymatic deglycosylation of the plant flavonoid rutin by UV-visible spectrometry. Food Chem. 2017, 229, 44–49. 10.1016/j.foodchem.2017.02.029. PubMed DOI

Zhou L.; Lu C.; Wang G.-L.; Geng H.-L.; Yang J.-W.; Chen P. Syntheses of R-β-rutinosides by rutin-degrading reaction. J. Asian Nat. Prod. Res. 2009, 11, 18–23. 10.1080/10286020802513822. PubMed DOI

Kotik M.; Javůrková H.; Brodsky K.; Pelantová H. Two fungal flavonoid-specific glucosidases/rutinosidases for rutin hydrolysis and rutinoside synthesis under homogeneous and heterogeneous reaction conditions. AMB Express 2021, 11, 136.10.1186/s13568-021-01298-2. PubMed DOI PMC

Makabe K.; Hirota R.; Shiono Y.; Tanaka Y.; Koseki T. Aspergillus oryzae rutinosidase: Biochemical and structural investigation. Appl. Environ. Microbiol. 2021, 87, e02438-2010.1128/AEM.02438-20. PubMed DOI PMC

Pachl P.; Kapešová J.; Brynda J.; Biedermannová L.; Pelantová H.; Bojarová P.; Křen V.; Řezáčová P.; Kotik M. Rutinosidase from Aspergillus niger: Crystal structure and insight into the enzymatic activity. FEBS J. 2020, 287 (15), 3315–3327. 10.1111/febs.15208. PubMed DOI

Weiz G.; Mazzaferro L. S.; Kotik M.; Neher B. D.; Halada P.; Křen V.; Breccia J. D. The flavonoid degrading fungus Acremonium sp. DSM 24697 produces two diglycosidases with different specificities. Appl. Microbiol. Biotechnol. 2019, 103 (23), 9493–9504. 10.1007/s00253-019-10180-y. PubMed DOI

Kotik M.; Brodsky K.; Halada P.; Javůrková H.; Pelantová H.; Konvalinková D.; Bojarová P.; Křen V. Access to both anomers of rutinosyl azide using wild-type rutinosidase and its catalytic nucleophile mutant. Catal. Commun. 2021, 149, 106193.10.1016/j.catcom.2020.106193. DOI

Narikawa T.; Shinoyama H.; Fujii T. A beta-rutinosidase from Penicillium rugulosum IFO 7242 that is a peculiar flavonoid glycosidase. Biosci. Biotechnol. Biochem. 2000, 64 (6), 1317–1319. 10.1271/bbb.64.1317. PubMed DOI

Šimčíková D.; Kotik M.; Weignerová L.; Halada P.; Pelantová H.; Adamcová K.; Křen V. α-L-Rhamnosyl-β-D-glucosidase (rutinosidase) from Aspergillus niger: Characterization and synthetic potential of a novel diglycosidase. Adv. Synth. Catal. 2015, 357 (1), 107–117. 10.1002/adsc.201400566. DOI

Ishikawa M.; Kawasaki M.; Shiono Y.; Koseki T. A novel Aspergillus oryzae diglycosidase that hydrolyzes 6-O-α-L-rhamnosyl-β-D-glucoside from flavonoids. Appl. Microbiol. Biotechnol. 2018, 102 (7), 3193–3201. 10.1007/s00253-018-8840-9. PubMed DOI

Bernauer L.; Radkohl A.; Lehmayer L. G. K.; Emmerstorfer-Augustin A. Komagataella phaffii as emerging model organism in fundamental research. Front. Microbiol. 2021, 11, 607028.10.3389/fmicb.2020.607028. PubMed DOI PMC

Nam H.-K.; Hong S.-H.; Shin K.-C.; Oh D.-K. Quercetin production from rutin by a thermostable β-rutinosidase from Pyrococcus furiosus. Biotechnol. Lett. 2012, 34 (3), 483–489. 10.1007/s10529-011-0786-2. PubMed DOI

Weiz G.; Braun L.; Lopez R.; de María P. D.; Breccia J. D. Enzymatic deglycosylation of flavonoids in deep eutectic solvents-aqueous mixtures: paving the way for sustainable flavonoid chemistry. J. Mol. Catal. B-Enzym. 2016, 130, 70–73. 10.1016/j.molcatb.2016.04.010. DOI

Frutos M. J.; Rincón-Frutos L.; Valero-Cases E.. Chapter 2.14: Rutin. In Nonvitamin and Nonmineral Nutritional Supplements; Nabavi S. M., Silva A. S., Eds.; Academic Press; 2019; pp 111–117.10.1016/B978-0-12-812491-8.00015-1 DOI

Kapešová J.; Petrásková L.; Markošová K.; Rebroš M.; Kotik M.; Bojarová P.; Křen V. Bioproduction of quercetin and rutinose catalyzed by rutinosidase: Novel concept of “solid state biocatalysis. Int. J. Mol. Sci. 2019, 20 (5), 1112.10.3390/ijms20051112. PubMed DOI PMC

Piñuel L.; Breccia J. D.; Guisán J. M.; López-Gallego F. Production of hesperetin using a covalently multipoint immobilized diglycosidase from Acremonium sp. DSM24697. J. Mol. Microbiol. Biotechnol. 2013, 23 (6), 410–417. 10.1159/000353208. PubMed DOI

Cutfield S. M.; Davies G. J.; Murshudov G.; Anderson B. F.; Moody P. C. E.; Sullivan P. A.; Cutfield J. F. The structure of the exo-β-(1,3)-glucanase from Candida albicans in native and bound forms: relationship between a pocket and groove in family 5 glycosyl hydrolases. J. Mol. Biol. 1999, 294 (3), 771–783. 10.1006/jmbi.1999.3287. PubMed DOI

Verdoucq L.; Morinière J.; Bevan D. R.; Esen A.; Vasella A.; Henrissat B.; Czjze M. Structural determinants of substrate specificity in family 1 β-glucosidases: Novel insights from the crystal structure of sorghum dhurrinase-1, a plant β-glucosidase with strict specificity, in complex with its natural substrate. J. Biol. Chem. 2004, 279 (30), 31796–31803. 10.1074/jbc.M402918200. PubMed DOI

Czjzek M.; Cicek M.; Zamboni V.; Bevan D. R.; Henrissat B.; Esen A. The mechanism of substrate (aglycone) specificity in β-glucosidases is revealed by crystal structures of mutant maize β-glucosidase-DIMBOA, -DIMBOAGlc, and -dhurrin complexes. Proc. Natl. Acad. Sci. U S A 2000, 97 (25), 13555–13560. 10.1073/pnas.97.25.13555. PubMed DOI PMC

Tribolo S.; Berrin J.-G.; Kroon P. A.; Czjzek M.; Juge N. The crystal structure of human cytosolic β-glucosidase unravels the substrate aglycone specificity of a family 1 glycoside hydrolase. J. Mol. Biol. 2007, 370 (5), 964–975. 10.1016/j.jmb.2007.05.034. PubMed DOI

Berrin J. G.; Czjzek M.; Kroon P. A.; McLauchlan W. R.; Puigserver A.; Williamson G.; Juge N. Substrate (aglycone) specificity of human cytosolic β-glucosidase. Biochem. J. 2003, 373, 41–48. 10.1042/bj20021876. PubMed DOI PMC

Babcock G. D.; Esen A. Substrate specificity of maize β-glucosidase. Plant Sci. 1994, 101 (1), 31–39. 10.1016/0168-9452(94)90162-7. DOI

Saino H.; Shimizu T.; Hiratake J.; Nakatsu T.; Kato H.; Sakata K.; Mizutani M. Crystal structures of β-primeverosidase in complex with disaccharide amidine inhibitors. J. Biol. Chem. 2014, 289 (24), 16826–16834. 10.1074/jbc.M114.553271. PubMed DOI PMC

Kulkarni T. S.; Khan S.; Villagomez R.; Mahmood T.; Lindahl S.; Logan D. T.; Linares-Pastén J. A.; Nordberg Karlsson E. Crystal structure of β-glucosidase 1A from Thermotoga neapolitana and comparison of active site mutants for hydrolysis of flavonoid glucosides. Proteins 2017, 85 (5), 872–884. 10.1002/prot.25256. PubMed DOI

Ramachandran P.; Jagtap S. S.; Patel S. K. S.; Li J.; Chan Kang Y.; Lee J.-K. Role of the non-conserved amino acid asparagine 285 in the glycone-binding pocket of Neosartorya fischeri β-glucosidase. RSC Adv. 2016, 6 (53), 48137–48144. 10.1039/C5RA28017F. DOI

Adlercreutz P. Comparison of lipases and glycoside hydrolases as catalysts in synthesis reactions. Appl. Microbiol. Biotechnol. 2017, 101 (2), 513–519. 10.1007/s00253-016-8055-x. PubMed DOI PMC

Bassanini I.; Krejzová J.; Panzeri W.; Monti D.; Křen V.; Riva S. A sustainable one-pot, two-enzyme synthesis of naturally occurring arylalkyl glucosides. ChemSusChem 2017, 10 (9), 2040–2045. 10.1002/cssc.201700136. PubMed DOI

Brodsky K.; Kutý M.; Pelantová H.; Cvačka J.; Rebroš M.; Kotik M.; KutáSmatanová I.; Křen V.; Bojarová P. Dual substrate specificity of the rutinosidase from Aspergillus niger and the role of its substrate tunnel. Int. J. Mol. Sci. 2020, 21 (16), 5671.10.3390/ijms21165671. PubMed DOI PMC

Katayama S.; Ohno F.; Yamauchi Y.; Kato M.; Makabe H.; Nakamura S. Enzymatic synthesis of novel phenol acid rutinosides using rutinase and their antiviral activity in vitro. J. Agr. Food Chem. 2013, 61 (40), 9617–9622. 10.1021/jf4021703. PubMed DOI

Mazzaferro L. S.; Weiz G.; Braun L.; Kotik M.; Pelantová H.; Křen V.; Breccia J. D. Enzyme-mediated transglycosylation of rutinose (6-O-α-L-rhamnosyl-D-glucose) to phenolic compounds by a diglycosidase from Acremonium sp. DSM 24697. Biotechnol. Appl. Biochem. 2019, 66 (1), 53–59. 10.1002/bab.1695. PubMed DOI

Minig M.; Mazzaferro L. S.; Erra-Balsells R.; Petroselli G.; Breccia J. D. α-Rhamnosyl-β-glucosidase-catalyzed reactions for analysis and biotransformations of plant-based foods. J. Agric. Food Chem. 2011, 59 (20), 11238–11243. 10.1021/jf202412e. PubMed DOI

Bissaro B.; Monsan P.; Fauré R.; O’Donohue M. Glycosynthesis in a waterworld: New insight into the molecular basis of transglycosylation in retaining glycoside hydrolases. Biochem. J. 2015, 467, 17–35. 10.1042/BJ20141412. PubMed DOI

Mészáros Z.; Nekvasilová P.; Bojarová P.; Křen V.; Slámová K. Advanced glycosidases as ingenious biosynthetic instruments. Biotechnol. Adv. 2021, 49, 107733.10.1016/j.biotechadv.2021.107733. PubMed DOI

Mazzaferro L. S.; Piñuel L.; Erra-Balsells R.; Giudicessi S. L.; Breccia J. D. Transglycosylation specificity of Acremonium sp. α-rhamnosyl-β-glucosidase and its application to the synthesis of the new fluorogenic substrate 4-methylumbelliferyl-rutinoside. Carbohyd. Res. 2012, 347 (1), 69–75. 10.1016/j.carres.2011.11.008. PubMed DOI

Mazzaferro L.; Piñuel L.; Minig M.; Breccia J. D. Extracellular monoenzyme deglycosylation system of 7-O-linked flavonoid β-rutinosides and its disaccharide transglycosylation activity from Stilbella fimetaria. Arch. Microbiol. 2010, 192 (5), 383–393. 10.1007/s00203-010-0567-7. PubMed DOI

Mazzaferro L.; Piñuel L.; Minig M.; Breccia J. D. Erratum to: Extracellular monoenzyme deglycosylation system of 7-O-linked flavonoid β-rutinosides and its disaccharide transglycosylation activity from Stilbella fimetaria. Arch. Microbiol. 2011, 193 (6), 461–461. 10.1007/s00203-011-0709-6. PubMed DOI

Bassanini I.; Kapešová J.; Petrásková L.; Pelantová H.; Markošová K.; Rebroš M.; Valentová K.; Kotik M.; Káňová K.; Bojarová P.; Cvačka J.; Turková L.; Ferrandi E. E.; Bayout I.; Riva S.; Křen V. Glycosidase-catalyzed synthesis of glycosyl esters and phenolic glycosides of aromatic acids. Adv. Synth. Catal. 2019, 361 (11), 2627–2637. 10.1002/adsc.201900259. DOI

Crawford L. M.; Holstege D. M.; Wang S. C. High-throughput extraction method for phenolic compounds in olive fruit (Olea europaea). J. Food Comp. Anal. 2018, 66, 136–144. 10.1016/j.jfca.2017.12.013. DOI

Moracci M.; Trincone A.; Perugino G.; Ciaramella M.; Rossi M. Restoration of the activity of active-site mutants of the hyperthermophilic β-glycosidase from Sulfolobus solfataricus: Dependence of the mechanism on the action of external nucleophiles. Biochemistry 1998, 37 (49), 17262–17270. 10.1021/bi981855f. PubMed DOI

Tiwari V. K.; Mishra B. B.; Mishra K. B.; Mishra N.; Singh A. S.; Chen X. Cu-catalyzed click reaction in carbohydrate chemistry. Chem. Rev. 2016, 116 (5), 3086–3240. 10.1021/acs.chemrev.5b00408. PubMed DOI

Bojarová P.; Petrásková L.; Ferrandi E. E.; Monti D.; Pelantová H.; Kuzma M.; Simerská P.; Křen V. Glycosyl azides - an alternative way to disaccharides. Adv. Synth. Catal. 2007, 349 (8–9), 1514–1520. 10.1002/adsc.200700028. DOI

Shimizu R.; Shimabayashi H.; Moriwaki M. Enzymatic production of highly soluble myricitrin glycosides using β-galactosidase. Biosci. Biotechnol. Biochem. 2006, 70 (4), 940–948. 10.1271/bbb.70.940. PubMed DOI

Wu X.; Chu J.; Wu B.; Zhang S.; He B. An efficient novel glycosylation of flavonoid by β-fructosidase resistant to hydrophilic organic solvents. Bioresour. Technol. 2013, 129, 659–662. 10.1016/j.biortech.2012.12.041. PubMed DOI

Du L.; Wang Z.; Zhao Y.; Huang J.; Pang H.; Wei Y.; Lin L.; Huang R. A β-glucosidase from Novosphingobium sp. GX9 with high catalytic efficiency toward isoflavonoid glycoside hydrolysis and (+)-catechin transglycosylation. Appl. Microbiol. Biotechnol. 2014, 98 (16), 7069–7079. 10.1007/s00253-014-5661-3. PubMed DOI

Jakeman D. L.; Withers S. G. Glycosynthases: New tools for oligosaccharide synthesis. Trends Glycosci. Glyc. 2002, 14 (75), 13–25. 10.4052/tigg.14.13. DOI

Mackenzie L. F.; Wang Q.; Warren R. A. J.; Withers S. G. Glycosynthases: Mutant Glycosidases for Oligosaccharide Synthesis. J. Am. Chem. Soc. 1998, 120 (22), 5583–5584. 10.1021/ja980833d. DOI

Malet C.; Planas A. From β-glucanase to β-glucansynthase: glycosyl transfer to α-glycosyl fluorides catalyzed by a mutant endoglucanase lacking its catalytic nucleophile. FEBS Lett. 1998, 440 (1), 208–212. 10.1016/S0014-5793(98)01448-3. PubMed DOI

Yang M.; Davies G. J.; Davis B. G. A glycosynthase catalyst for the synthesis of flavonoid glycosides. Angewandte Chem. Int. Ed. 2007, 46 (21), 3885–3888. 10.1002/anie.200604177. PubMed DOI

Méndez-Líter J. A.; Nieto-Domínguez M.; Fernández de Toro B.; González Santana A.; Prieto A.; Asensio J. L.; Cañada F. J.; de Eugenio L. I.; Martínez M. J. A glucotolerant β-glucosidase from the fungus Talaromyces amestolkiae and its conversion into a glycosynthase for glycosylation of phenolic compounds. Microb. Cell Fact. 2020, 19, 127.10.1186/s12934-020-01386-1. PubMed DOI PMC

Jahn M.; Marles J.; Warren R. A. J.; Withers S. G. Thioglycoligases: Mutant glycosidases for thioglycoside synthesis. Angewandte Chem. Int. Ed. 2003, 42 (3), 352–354. 10.1002/anie.200390114. PubMed DOI

Kurdziel M.; Kopeć M.; Pâris A.; Lewiński K.; Lafite P.; Daniellou R. Thioglycoligation of aromatic thiols using a natural glucuronide donor. Org. Biomol. Chem. 2020, 18 (29), 5582–5585. 10.1039/D0OB00226G. PubMed DOI

Nieto-Domínguez M.; Fernández de Toro B.; de Eugenio L. I.; Santana A. G.; Bejarano-Muñoz L.; Armstrong Z.; Méndez-Líter J. A.; Asensio J. L.; Prieto A.; Withers S. G.; Cañada F. J.; Martínez M. J. Thioglycoligase derived from fungal GH3 β-xylosidase is a multi-glycoligase with broad acceptor tolerance. Nat. Commun. 2020, 11, 4864.10.1038/s41467-020-18667-3. PubMed DOI PMC

Qiu X.; Fairbanks A. J. Direct synthesis of para-nitrophenyl glycosides from reducing sugars in water. Org. Lett. 2020, 22 (6), 2490–2493. 10.1021/acs.orglett.0c00728. PubMed DOI

Kim Y.-W.; Zhang R.; Chen H.; Withers S. G. O-Glycoligases, a new category of glycoside bond-forming mutant glycosidases, catalyse facile syntheses of isoprimeverosides. Chem. Commun. 2009, 46 (46), 8725–8727. 10.1039/c0cc03168b. PubMed DOI

Li C.; Roy J. K.; Park K.-C.; Cho A. E.; Lee J.; Kim Y.-W. pH-promoted O-α-glucosylation of flavonoids using an engineered α-glucosidase mutant. Bioorg. Chem. 2021, 107, 104581.10.1016/j.bioorg.2020.104581. PubMed DOI

Ly H. D.; Withers S. G. Mutagenesis of glycosidases. Annu. Rev. Biochem. 1999, 68 (1), 487–522. 10.1146/annurev.biochem.68.1.487. PubMed DOI

Pozzo T.; Plaza M.; Romero-García J.; Faijes M.; Karlsson E. N.; Planas A. Glycosynthases from Thermotoga neapolitana β-glucosidase 1A: A comparison of α-glucosyl fluoride and in situ-generated α-glycosyl formate donors. J. Mol. Catal. B-Enzym. 2014, 107, 132–139. 10.1016/j.molcatb.2014.05.021. DOI

Pozzo T.; Romero-García J.; Faijes M.; Planas A.; Nordberg Karlsson E. Rational design of a thermostable glycoside hydrolase from family 3 introduces β-glycosynthase activity. Glycobiology 2017, 27 (2), 165–175. 10.1093/glycob/cww081. PubMed DOI

Desmet T.; Soetaert W.; Bojarová P.; Křen V.; Dijkhuizen L.; Eastwick-Field V.; Schiller A. Enzymatic glycosylation of small molecules: Challenging substrates require tailored catalysts. Chem.—Eur. J. 2012, 18, 10786.10.1002/chem.201103069. PubMed DOI

De Winter K.; Dewitte G.; Dirks-Hofmeister M. E.; De Laet S.; Pelantová H.; Křen V.; Desmet T. Enzymatic glycosylation of phenolic antioxidants: Phosphorylase-mediated synthesis and characterization. J. Agr. Food Chem. 2015, 63 (46), 10131–10139. 10.1021/acs.jafc.5b04380. PubMed DOI

Kraus M.; Grimm C.; Seibel J. Redesign of the active site of sucrose phosphorylase through a clash-induced cascade of loop shifts. ChemBioChem. 2016, 17 (1), 33–36. 10.1002/cbic.201500514. PubMed DOI

Kraus M.; Grimm C.; Seibel J. Switching enzyme specificity from phosphate to resveratrol glucosylation. Chem. Commun. 2017, 53 (90), 12181–12184. 10.1039/C7CC05993K. PubMed DOI

Kraus M.; Grimm C.; Seibel J. Reversibility of a point mutation induced domain shift: Expanding the conformational space of a sucrose phosphorylase. Sci. Rep. 2018, 8, 10490.10.1038/s41598-018-28802-2. PubMed DOI PMC

Demonceaux M.; Goux M.; Hendrickx J.; Solleux C.; Cadet F.; Lormeau É.; Offmann B.; André-Miral C. Regioselective glucosylation of (+)-catechin using a new variant of sucrose phosphorylase from Bifidobacterium adolescentis. Org. Biomol. Chem. 2023, 21 (11), 2307–2311. 10.1039/D3OB00191A. PubMed DOI

Moulis C.; Guieysse D.; Morel S.; Séverac E.; Remaud-Siméon M. Natural and engineered transglycosylases: Green tools for the enzyme-based synthesis of glycoproducts. Curr. Opin. Chem. Biol. 2021, 61, 96–106. 10.1016/j.cbpa.2020.11.004. PubMed DOI

Luang S.; Cho J.-I.; Mahong B.; Opassiri R.; Akiyama T.; Phasai K.; Komvongsa J.; Sasaki N.; Hua Y.-l.; Matsuba Y.; Ozeki Y.; Jeon J.-S.; Cairns J. R. K. Rice Os9BGlu31 is a transglucosidase with the capacity to equilibrate phenylpropanoid, flavonoid, and phytohormone glycoconjugates. J. Biol. Chem. 2013, 288 (14), 10111–10123. 10.1074/jbc.M112.423533. PubMed DOI PMC

Tran L. T.; Blay V.; Luang S.; Eurtivong C.; Choknud S.; González-Díaz H.; Ketudat Cairns J. R. Engineering faster transglycosidases and their acceptor specificity. Green Chem. 2019, 21 (10), 2823–2836. 10.1039/C9GC00621D. DOI

Komvongsa J.; Luang S.; Marques J. V.; Phasai K.; Davin L. B.; Lewis N. G.; Ketudat Cairns J. R. Active site cleft mutants of Os9BGlu31 transglucosidase modify acceptor substrate specificity and allow production of multiple kaempferol glycosides. Biochim. Biophys. Acta 2015, 1850 (7), 1405–1414. 10.1016/j.bbagen.2015.03.013. PubMed DOI

Dulak K.; Sordon S.; Matera A.; Kozak B.; Huszcza E.; Popłoński J. Novel flavonoid C-8 hydroxylase from Rhodotorula glutinis: identification, characterization and substrate scope. Microb. Cell Fact. 2022, 21, 175.10.1186/s12934-022-01899-x. PubMed DOI PMC

Wang Z.; Huang X.; Liu J.; Xiao F.; Tian M.; Ding S.; Shan Y. Screening and heterologous expression of flavone synthase and flavonol synthase to catalyze hesperetin to diosmetin. Biotechnol. Lett. 2021, 43 (11), 2161–2183. 10.1007/s10529-021-03184-0. PubMed DOI

Webb B.; Sali A. Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinform. 2016, 54, 5.6.1.10.1002/cpbi.3. PubMed DOI PMC

Morris G. M.; Huey R.; Lindstrom W.; Sanner M. F.; Belew R. K.; Goodsell D. S.; Olson A. J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30 (16), 2785–2791. 10.1002/jcc.21256. PubMed DOI PMC

Cameron R. G.; Manthey J. A.; Baker R. A.; Grohmann K. Purification and characterization of a β-glucosidase from Citrus sinensis var. valencia fruit tissue. J. Agr. Food Chem. 2001, 49 (9), 4457–4462. 10.1021/jf010010z. PubMed DOI

Mamma D.; Hatzinikolaou D. G.; Christakopoulos P. Biochemical and catalytic properties of two intracellular β-glucosidases from the fungus Penicillium decumbens active on flavonoid glucosides. J. Mol. Catal. B-Enzym. 2004, 27 (4), 183–190. 10.1016/j.molcatb.2003.11.011. DOI

Youn S. Y.; Park M. S.; Ji G. E. Identification of the β-glucosidase gene from Bifidobacterium animalis subsp. lactis and its expression in B. bifidum BGN4. J. Microbiol. Biotechnol. 2012, 22 (12), 1714–1723. 10.4014/jmb.1208.08028. PubMed DOI

Shaik N. M.; Misra A.; Singh S.; Fatangare A. B.; Ramakumar S.; Rawal S. K.; Khan B. M. Functional characterization, homology modeling and docking studies of β-glucosidase responsible for bioactivation of cyanogenic hydroxynitrile glucosides from Leucaena leucocephala (subabul). Mol. Biol. Rep. 2013, 40 (2), 1351–1363. 10.1007/s11033-012-2179-6. PubMed DOI

Chen W.-L.; Yang Y.-M.; Guo G.-W.; Chen C.-Y.; Huang Y.-C.; Liu W.-H.; Huang K.-F.; Yang C.-H. Over-expression of the Thermobifida fusca β-glucosidase in a Yarrowia lipolytica transformant to degrade soybean isoflavones. Catalysts 2018, 8 (1), 24.10.3390/catal8010024. DOI

Guadamuro L.; Flórez A. B.; Alegría Á.; Vázquez L.; Mayo B. Characterization of four β-glucosidases acting on isoflavone-glycosides from Bifidobacterium pseudocatenulatum IPLA 36007. Food Res. Int. 2017, 100, 522–528. 10.1016/j.foodres.2017.07.024. PubMed DOI

Schmidt S.; Rainieri S.; Witte S.; Matern U.; Martens S. Identification of a Saccharomyces cerevisiae glucosidase that hydrolyzes flavonoid glucosides. Appl. Environ. Microbiol. 2011, 77 (5), 1751–1757. 10.1128/AEM.01125-10. PubMed DOI PMC

Xu J.; Liu S.; Liu G.; Liu Y.; He X. β-glucosidase from Hevea brasiliensis seeds: Purification, homology modeling, and insights into the substrate-binding model. J. Food Biochem 2020, 44, e1320610.1111/jfbc.13206. PubMed DOI

Li G.; Jiang Y.; Fan X.-j.; Liu Y.-h. Molecular cloning and characterization of a novel β-glucosidase with high hydrolyzing ability for soybean isoflavone glycosides and glucose-tolerance from soil metagenomic library. Bioresour. Technol. 2012, 123, 15–22. 10.1016/j.biortech.2012.07.083. PubMed DOI

Yang L.; Ning Z. S.; Shi C. Z.; Chang Z. Y.; Huan L. Y. Purification and characterization of an isoflavone-conjugates-hydrolyzing β-glucosidase from endophytic bacterium. J. Agr. Food Chem. 2004, 52 (7), 1940–1944. 10.1021/jf030476c. PubMed DOI

Hsieh M.-C.; Graham T. L. Partial purification and characterization of a soybean β-glucosidase with high specific activity towards isoflavone conjugates. Phytochemistry 2001, 58 (7), 995–1005. 10.1016/S0031-9422(01)00380-6. PubMed DOI

Asati V.; Sharma P. K. Purification and characterization of an isoflavones conjugate hydrolyzing β-glucosidase (ICHG) from Cyamopsis tetragonoloba (guar). Biochem. Biophys. Rep. 2019, 20, 100669.10.1016/j.bbrep.2019.100669. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...