Hesperidin, Hesperetin, Rutinose, and Rhamnose Act as Skin Anti-Aging Agents
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
RVO:61989592
Palacký University, Olomouc
IGA_LF_2022_025
Palacký University, Olomouc
CZ.02.2.69/0.0/0.0/19_073/0016713
OP VVV
MEYS LTC20069
COST Action CA18132 GLYCONanoPROBES
PubMed
36838716
PubMed Central
PMC9963045
DOI
10.3390/molecules28041728
PII: molecules28041728
Knihovny.cz E-resources
- Keywords
- hesperetin, hesperidin, normal human dermal fibroblast, rhamnose, rutinose, skin aging,
- MeSH
- Hesperidin * pharmacology MeSH
- Hyaluronoglucosaminidase MeSH
- Collagenases metabolism MeSH
- Humans MeSH
- Pancreatic Elastase MeSH
- Rhamnose * pharmacology MeSH
- Skin Aging * drug effects MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- hesperetin MeSH Browser
- Hesperidin * MeSH
- Hyaluronoglucosaminidase MeSH
- Collagenases MeSH
- Pancreatic Elastase MeSH
- Rhamnose * MeSH
- rutinose MeSH Browser
Aging is a complex physiological process that can be accelerated by chemical (high blood glucose levels) or physical (solar exposure) factors. It is accompanied by the accumulation of altered molecules in the human body. The accumulation of oxidatively modified and glycated proteins is associated with inflammation and the progression of chronic diseases (aging). The use of antiglycating agents is one of the recent approaches in the preventive strategy of aging and natural compounds seem to be promising candidates. Our study focused on the anti-aging effect of the flavonoid hesperetin, its glycoside hesperidin and its carbohydrate moieties rutinose and rhamnose on young and physiologically aged normal human dermal fibroblasts (NHDFs). The anti-aging activity of the test compounds was evaluated by measuring matrix metalloproteinases (MMPs) and inflammatory interleukins by ELISA. The modulation of elastase, hyaluronidase, and collagenase activity by the tested substances was evaluated spectrophotometrically by tube tests. Rutinose and rhamnose inhibited the activity of pure elastase, hyaluronidase, and collagenase. Hesperidin and hesperetin inhibited elastase and hyaluronidase activity. In skin aging models, MMP-1 and MMP-2 levels were reduced after application of all tested substances. Collagen I production was increased after the application of rhamnose and rutinose.
See more in PubMed
Vostálová J., Tinková E., Biedermann D., Kosina P., Ulrichová J., Rajnochová Svobodová A. Skin protective activity of silymarin and its flavonolignans. Molecules. 2019;24:1022. doi: 10.3390/molecules24061022. PubMed DOI PMC
Blume-Peytavi U., Kottner J., Sterry W., Hodin M., Griffiths T., Watson R., Hay R., Griffiths C. Age-associated skin conditions and diseases: Current perspectives and future options. Gerontologist. 2016;56:S230–S242. doi: 10.1093/geront/gnw003. PubMed DOI
Wang A., Dreesen O. Biomarkers of cellular senescence and skin aging. Front. Genet. 2018;9:247. doi: 10.3389/fgene.2018.00247. PubMed DOI PMC
Csekes E., Račková L. Skin aging, cellular senescence and natural polyphenols. Int. J. Mol. Sci. 2021;22:12641. doi: 10.3390/ijms222312641. PubMed DOI PMC
Shen C., Lu C., Wu C., Li K., Kuo Y., Hsieh S., Yu C. The development of Maillard reaction, and advanced glycation end product (AGE)-receptor for AGE (RAGE) signaling inhibitors as novel therapeutic strategies for patients with AGE-related diseases. Molecules. 2020;25:5591. doi: 10.3390/molecules25235591. PubMed DOI PMC
Velichkova S., Foubert K., Pieters L. Natural products as a source of inspiration for novel inhibitors of advanced glycation endproducts (AGEs) formation. Planta Med. 2021;87:780–801. doi: 10.1055/a-1527-7611. PubMed DOI
Gkogkolou P., Böhm M. Advanced glycation end products: Key players in skin aging? Derm.-Endocrinol. 2014;4:259–270. doi: 10.4161/derm.22028. PubMed DOI PMC
Stanisic D., Liu L., dos Santos R., Costa A., Durán N., Tasic L. New sustainable process for hesperidin isolation and anti-ageing effects of hesperidin nanocrystals. Molecules. 2020;25:4534. doi: 10.3390/molecules25194534. PubMed DOI PMC
Lee H., Im A., Kim S., Kang H., Lee J., Chae S. The flavonoid hesperidin exerts anti-photoaging effect by downregulating matrix metalloproteinase (MMP)-9 expression via mitogen activated protein kinase (MAPK)-dependent signaling pathways. BMC Complement. Altern. Med. 2018;18:39. doi: 10.1186/s12906-017-2058-8. PubMed DOI PMC
Sheen Y., Huang H., Liao Y. The efficacy and safety of an antiaging topical serum containing hesperetin and sodium cyclic lysophosphatidic acid: A single-center clinical trial. J. Cosmet. Dermatol. 2021;20:3960–3967. doi: 10.1111/jocd.14063. PubMed DOI
Hering A., Ochocka J.R., Baranska H., Cal K., Stefanowicz-Hajduk J. Mangiferin and hesperidin transdermal distribution and permeability through the skin from solutions and honeybush extracts (Cyclopia sp.)-A comparison ex vivo study. Molecules. 2021;26:6547. doi: 10.3390/molecules26216547. PubMed DOI PMC
Wdowiak K., Walkowiak J., Pietrzak R., Bazan-Woźniak A., Cielecka-Piontek J. Bioavailability of hesperidin and its aglycone hesperetin-compounds found in citrus fruits as a parameter conditioning the pro-health potential (neuroprotective and antidiabetic activity)-mini-review. Nutrients. 2022;14:2647. doi: 10.3390/nu14132647. PubMed DOI PMC
Pageon H., Azouaoui A., Zucchi H., Ricois S., Tran C., Asselineau D. Potentially beneficial effects of rhamnose on skin ageing: An in vitro and in vivo study. Int. J. Cosmet. Sci. 2019;41:213–220. doi: 10.1111/ics.12523. PubMed DOI
Ravelojaona V., Molinari J., Robert L. Protection by rhamnose-rich polysaccharides against the cytotoxicity of Maillard reaction products. Biomed. Pharmacother. 2006;60:359–362. doi: 10.1016/j.biopha.2006.06.019. PubMed DOI
Robert L., Molinari J., Ravelojaona V., Andrès E., Robert A. Age- and passage-dependent upregulation of fibroblast elastase-type endopeptidase activity. Role of advanced glycation endproducts, inhibition by fucose- and rhamnose-rich oligosaccharides. Arch. Gerontol. Geriatr. 2010;50:327–331. doi: 10.1016/j.archger.2009.05.006. PubMed DOI
Ho C., Dreesen O. Faces of cellular senescence in skin aging. Mech. Ageing Dev. 2021;198:111525. doi: 10.1016/j.mad.2021.111525. PubMed DOI
Gu Y., Han J., Jiang C., Zhang Y. Biomarkers, oxidative stress and autophagy in skin aging. Ageing Res. Rev. 2020;59:101036. doi: 10.1016/j.arr.2020.101036. PubMed DOI
Franco A., Aveleira C., Cavadas C. Skin senescence: Mechanisms and impact on whole-body aging. Trends Mol. Med. 2022;28:97–109. doi: 10.1016/j.molmed.2021.12.003. PubMed DOI
Nguyen H., Katta R. Sugar sag: Glycation and the role of diet in aging skin. Skin Therapy Lett. 2015;20:1–5. PubMed
Robert L., Labat-Robert J., Robert A. Physiology of skin aging. Pathol. Biol. 2009;57:336–341. doi: 10.1016/j.patbio.2008.09.007. PubMed DOI
Santhanam R., Fakurazi S., Ahmad S., Abas F., Ismail I., Rukayadi Y., Akhtar M., Shaari K. Inhibition of UVB-induced pro-inflammatory cytokines and MMP expression by Zanthoxylum rhetsa bark extract and its active constituent hesperidin. Phytother. Res. 2018;32:1608–1616. doi: 10.1002/ptr.6092. PubMed DOI
Lee D., Oh J., Chung J. Glycosaminoglycan and proteoglycan in skin aging. J. Dermatol. Sci. 2016;83:174–181. doi: 10.1016/j.jdermsci.2016.05.016. PubMed DOI
Andrès E., Molinari J., Péterszegi G., Mariko B., Ruszova E., Velebny V., Faury G., Robert L. Pharmacological properties of rhamnose-rich polysaccharides, potential interest in age-dependent alterations of connectives tissues. Pathol. Biol. 2006;54:420–425. doi: 10.1016/j.patbio.2006.07.004. PubMed DOI
Faury G., Ruszova E., Molinari J., Mariko B., Raveaud S., Velebny V., Robert L. The α-l-Rhamnose recognizing lectin site of human dermal fibroblasts functions as a signal transducer. Biochim. Biophys. Acta (BBA)—Gen. Subjects. 2008;1780:1388–1394. doi: 10.1016/j.bbagen.2008.07.008. PubMed DOI
Vidhya R., Anbumani V., Dinakara Rao A., Anuradha C. Identification of novel human neutrophil elastase inhibitors from dietary phytochemicals using in silico and in vitro studies. J. Biomol. Struct. Dyn. 2022;40:3451–3461. doi: 10.1080/07391102.2020.1847685. PubMed DOI
Li X., Xu R., Cheng Z., Song Z., Wang Z., Duan H., Wu X., Ni T. Comparative study on the interaction between flavonoids with different core structures and hyaluronidase. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021;262:120079. doi: 10.1016/j.saa.2021.120079. PubMed DOI
Man G., Mauro T., Zhai Y., Kim P., Cheung C., Hupe M., Crumrine D., Elias P., Man M. Topical hesperidin enhances epidermal function in an aged murine model. J. Investig. Dermatol. 2015;135:1184–1187. doi: 10.1038/jid.2014.486. PubMed DOI PMC
Roohbakhsh A., Parhiz H., Soltani F., Rezaee R., Iranshahi M. Molecular mechanisms behind the biological effects of hesperidin and hesperetin for the prevention of cancer and cardiovascular diseases. Life Sci. 2015;124:64–74. doi: 10.1016/j.lfs.2014.12.030. PubMed DOI
Quan T., Qin Z., Xia W., Shao Y., Voorhees J., Fisher G. Matrix-degrading metalloproteinases in photoaging. J. Investig. Dermatol. Symp. Proc. 2009;14:20–24. doi: 10.1038/jidsymp.2009.8. PubMed DOI PMC
Lu Z., Xia Q., Cheng Y., Lu Q., Li Y., Zeng N., Luan X., Li Y., Fan L., Luo D. Hesperetin attenuates UVA-induced photodamage in human dermal fibroblast cells. J. Cosmet. Dermatol. 2022;21:6261–6269. doi: 10.1111/jocd.15230. PubMed DOI
Hiraishi N., Maruno T., Tochio N., Sono R., Otsuki M., Takatsuka T., Tagami J., Kobayashi Y. Hesperidin interaction to collagen detected by physico-chemical techniques. Dent. Mater. 2017;33:33–42. doi: 10.1016/j.dental.2016.09.035. PubMed DOI
Péterszegi G., Andrès E., Molinari J., Ravelojaona V., Robert L. Effect of cellular aging on collagen biosynthesis. Arch. Gerontol. Geriatr. 2008;47:356–367. doi: 10.1016/j.archger.2007.08.019. PubMed DOI
Li M., Lin X., Lu J., Zhou B., Luo D. Hesperidin ameliorates UV radiation-induced skin damage by abrogation of oxidative stress and inflammatory in HaCaT cells. J. Photochem. Photobiol. B Biol. 2016;165:240–245. doi: 10.1016/j.jphotobiol.2016.10.037. PubMed DOI
de Araújo Andrade T., Heimfarth L., dos Santos D., dos Santos M., de Albuquerque-Júnior R., dos Santos-Neto A., de Araujo G., Lira A., Matos S., Frank L., et al. Hesperetin-based hydrogels protect the skin against UV radiation-induced damage. AAPS PharmSciTech. 2022;23:170. doi: 10.1208/s12249-022-02323-8. PubMed DOI
Huang A., Zhang Y., Ding H., Li B., Huang C., Meng X., Li J. Design, synthesis and investigation of potential anti-inflammatory activity of O-alkyl and O-benzyl hesperetin derivatives. Int. Immunopharmacol. 2018;61:82–91. doi: 10.1016/j.intimp.2018.05.009. PubMed DOI
Li X., Xie X., Zhang L., Meng Y., Li N., Wang M., Zhai C., Liu Z., Di T., Zhang L., et al. Hesperidin inhibits keratinocyte proliferation and imiquimod-induced psoriasis-like dermatitis via the IRS-1/ERK1/2 pathway. Life Sci. 2019;219:311–321. doi: 10.1016/j.lfs.2019.01.019. PubMed DOI
Kapešová J., Petrásková L., Markošová K., Rebroš M., Kotik M., Bojarová P., Křen V. Bioproduction of quercetin and rutinose catalyzed by rutinosidase: Novel concept of “solid state biocatalysis”. Int. J. Mol. Sci. 2019;20:1112. doi: 10.3390/ijms20051112. PubMed DOI PMC
Ndlovu G., Fouche G., Tselanyane M., Cordier W., Steenkamp V. In vitro determination of the anti-aging potential of four southern African medicinal plants. BMC Complement. Altern. Med. 2013;13:304. doi: 10.1186/1472-6882-13-304. PubMed DOI PMC
Ryšavá A., Čížková K., Franková J., Roubalová L., Ulrichová J., Vostálová J., Vrba J., Zálešák B., Rajnochová Svobodová A. Effect of UVA radiation on the Nrf2 signalling pathway in human skin cells. J. Photochem. Photobiol. B Biol. 2020;209:111948. doi: 10.1016/j.jphotobiol.2020.111948. PubMed DOI
Kumar P., Nagarajan A., Uchil P. Analysis of Cell Viability by the MTT Assay. Cold Spring Harbor Protocols. 2018;2018:6. doi: 10.1101/pdb.prot095505. PubMed DOI
Flavonoids as Aglycones in Retaining Glycosidase-Catalyzed Reactions: Prospects for Green Chemistry