Rutinosidase from Aspergillus niger: crystal structure and insight into the enzymatic activity
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31943739
DOI
10.1111/febs.15208
Knihovny.cz E-zdroje
- Klíčová slova
- SIRAS, X-ray crystallography, catalytic mechanism, diglycosidase, rutin,
- MeSH
- Aspergillus niger enzymologie MeSH
- fungální proteiny chemie genetika metabolismus MeSH
- glykosidhydrolasy chemie genetika metabolismus MeSH
- katalytická doména MeSH
- konformace proteinů MeSH
- krystalografie rentgenová MeSH
- molekulární modely MeSH
- mutace MeSH
- oxidace-redukce MeSH
- rutin chemie metabolismus MeSH
- sekvence aminokyselin MeSH
- sekvenční homologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fungální proteiny MeSH
- glykosidhydrolasy MeSH
- rutin MeSH
Rutinosidases (α-l-rhamnosyl-β-d-glucosidases) catalyze the cleavage of the glycosidic bond between the aglycone and the disaccharide rutinose (α-l-rhamnopyranosyl-(1→6)-β-d-glucopyranose) of specific flavonoid glycosides such as rutin (quercetin 3-O-rutinoside). Microbial rutinosidases are part of the rutin catabolic pathway, enabling the microorganism to utilize rutin and related plant phenolic glycosides. Here, we report the first three-dimensional structure of a rutinosidase determined at 1.27-Å resolution. The rutinosidase from Aspergillus niger K2 (AnRut), a member of glycoside hydrolase family GH-5, subfamily 23, was heterologously produced in Pichia pastoris. The X-ray structure of AnRut is represented by a distorted (β/α)8 barrel fold with its closest structural homologue being an exo-β-(1,3)-glucanase from Candida albicans (CaExg). The catalytic site is located in a deep pocket with a striking structural similarity to CaExg. However, the entrance to the active site of AnRut has been found to be different from that of CaExg - a mostly unstructured section of ~ 40 residues present in CaExg is missing in AnRut, whereas an additional loop of 13 amino acids partially covers the active site of AnRut. NMR analysis of reaction products provided clear evidence for a retaining reaction mechanism of AnRut. Unexpectedly, quercetin 3-O-glucoside was found to be a better substrate than rutin, and thus, AnRut cannot be considered a typical diglycosidase. Mutational analysis of conserved active site residues in combination with in silico modeling allowed identification of essential interactions for enzyme activity and helped to reveal further details of substrate binding. The protein sequence of AnRut has been revised. DATABASES: The nucleotide sequence of the rutinosidase-encoding gene is available in the GenBank database under the accession number MN393234. Structural data are available in the PDB database under the accession number 6I1A. ENZYME: α-l-Rhamnosyl-β-d-glucosidase (EC 3.2.1.168).
Institute of Biotechnology of the Czech Academy of Sciences BIOCEV Vestec Czech Republic
Institute of Microbiology of the Czech Academy of Sciences Prague Czech Republic
Institute of Molecular Genetics of the Czech Academy of Sciences Prague Czech Republic
Zobrazit více v PubMed
Mazzaferro LS & Breccia JD (2011) Functional and biotechnological insights into diglycosidases. Biocatal Biotransform 29, 103-112.
Koseki T, Ishikawa M, Kawasaki M & Shiono Y (2018) β-Diglycosidases from microorganisms as industrial biocatalysts: biochemical characteristics and potential applications. Appl Microbiol Biotechnol 102, 8717-8723.
Tranchimand S, Brouant P & Iacazio G (2010) The rutin catabolic pathway with special emphasis on quercetinase. Biodegradation 21, 833-859.
Peterson JJ, Beecher GR, Bhagwat SA, Dwyer JT, Gebhardt SE, Haytowitz DB & Holden JM (2006) Flavanones in grapefruit, lemons, and limes: a compilation and review of the data from the analytical literature. J Food Compost Anal 19, S74-S80.
Williamson G (2017) The role of polyphenols in modern nutrition. Nutr Bull 42, 226-235.
Neher BD, Mazzaferro LS, Kotik M, Oyhenart J, Halada P, Křen V & Breccia JD (2016) Bacteria as source of diglycosidase activity: Actinoplanes missouriensis produces 6-O-α-L-rhamnosyl-β-D-glucosidase active on flavonoids. Appl Microbiol Biotechnol 100, 3061-3070.
Ishikawa M, Kawasaki M, Shiono Y & Koseki T (2018) A novel Aspergillus oryzae diglycosidase that hydrolyzes 6-O-α-L-rhamnosyl-β-D-glucoside from flavonoids. Appl Microbiol Biotechnol 102, 3193-3201.
Šimčíková D, Kotik M, Weignerová L, Halada P, Pelantová H, Adamcová K & Křen V (2014) α-L-rhamnosyl-β-D-glucosidase (rutinosidase) from Aspergillus niger: characterization and synthetic potential of a novel diglycosidase. Adv Synth Catal 357, 107-117.
Katayama S, Ohno F, Yamauchi Y, Kato M, Makabe H & Nakamura S (2013) Enzymatic synthesis of novel phenol acid rutinosides using rutinase and their antiviral activity in vitro. J Agric Food Chem 61, 6917-9622.
Robinson MA, Charlton ST, Garnier P, Wang X, Davis SS, Perkins AC, Frier M, Duncan R, Savage TJ, Wyatt DA et al. (2004) LEAPT: lectin-directed enzyme-activated prodrug therapy. Proc Natl Acad Sci USA 101, 14527-14532.
Knaup B, Kahle K, Erk T, Anagnostis V, Scheppach W, Schreier P & Richling E (2007) Human intestinal hydrolysis of phenol glycosides - a study with quercetin and p-nitrophenol glycosides using ileostomy fluid. Mol Nutr Food Res 51, 1423-1429.
Bassanini I, Krejzová J, Panzeri W, Křen V, Monti D & Riva S (2017) A sustainable one-pot two-enzymes synthesis of naturally occurring arylalkyl glucosides. Chemsuschem 10, 2040-2045.
Kapešová J, Petrásková L, Markošová K, Rebroš M, Kotik M, Bojarová P & Křen V (2019) Bioproduction of quercetin and rutinose catalyzed by rutinosidase: novel concept of “solid state biocatalysis”. Int J Mol Sci 20, 1112.
Bassanini I, Kapešová J, Petrásková L, Pelantová H, Markošová K, Rebroš M, Valentová K, Kotik M, Káňová K, Bojarová P et al. (2019) Glycosidase-catalyzed synthesis of glycosyl esters and phenolic glycosides of aromatic acids. Adv Synth Catal 361, 2627-2637.
Betts MJ & Sternberg MJE (1999) An analysis of conformational changes on protein-protein association: implications for predictive docking. Protein Eng 12, 271-283.
Diederichs K & Karplus PA (1997) Improved R-factors for diffraction data analysis in macromolecular crystallography. Nat Struct Biol 4, 269-275.
Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, Keegan RM, Krissinel EB, Leslie AGW, McCoy A et al. (2011) Overview of the CCP4 suite and current developments. Acta Crystallogr D 67, 235-242.
Brünger AT (1992) Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472-475.
Williams CJ, Headd JJ, Moriarty NW, Prisant MG, Videau LL, Deis LN, Verma V, Keedy DA, Hintze BJ, Chen VB et al. (2018) MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci 27, 293-315.
Holm L & Laakso LM (2016) Dali server update. Nucleic Acids Res 44, W351-W355.
Cutfield SM, Davies GJ, Murshudov G, Anderson BF, Moody PCE, Sullivan PA & Cutfield JF (1999) The structure of the exo-β-(1,3)-glucanase from Candida albicans in native and bound forms: relationship between a pocket and groove in family 5 glycosyl hydrolases. J Mol Biol 294, 771-783.
Taylor SC, Ferguson AD, Bergeron JJM & Thomas DY (2004) The ER protein folding sensor UDP-glucose glycoprotein-glucosyltransferase modifies substrates distant to local changes in glycoprotein conformation. Nat Struct Mol Biol 11, 128-134.
Saino H, Shimizu T, Hiratake J, Nakatsu T, Kato H, Sakata K & Mizutani M (2014) Crystal structures of β-primeverosidase in complex with disaccharide amidine inhibitors. J Biol Chem 289, 16826-16834.
Aspeborg H, Coutinho PM, Wang Y, Brumer H III & Henrissat B (2012) Evolution, substrate specificity and subfamily classification of glycoside hydrolase family 5 (GH5). BMC Evol Biol 12, 186.
Patrick WM, Nakatani Y, Cutfield SM, Sharpe ML, Ramsay RJ & Cutfield JF (2010) Carbohydrate binding sites in Candida albicans exo-β-(1,3)-glucanase and the role of the Phe-Phe ‘clamp’ at the active site entrance. FEBS J 277, 4549-4561.
Ly HD & Withers SG (1999) Mutagenesis of glycosidases. Annu Rev Biochem 68, 487-522.
Davies G & Henrissat B (1995) Structures and mechanisms of glycosyl hydrolases. Structure 3, 853-859.
Rye CS & Withers SG (2000) Glycosidase mechanisms. Curr Opin Chem Biol 4, 573-580.
Tribolo S, Berrin J-G, Kroon PA, Czjzek M & Juge N (2007) The crystal structure of human cytosolic β-glucosidase unravels the substrate aglycone specificity of a family 1 glycoside hydrolase. J Mol Biol 370, 964-975.
Kantsadi AL, Apostolou A, Theofanous S, Stravodimos GA, Kyriakis E, Gorgogietas VA, Chatzileontiadou DSM, Pegiou K, Skamnaki VT, Stagos D et al. (2014) Biochemical and biological assessment of the inhibitory potency of extracts from vinification byproducts of Vitis vinifera extracts against glycogen phosphorylase. Food Chem Toxicol 67, 35-43.
Weignerová L, Marhol P, Gerstorferová D & Křen V (2012) Preparatory production of quercetin-3-β-D-glucopyranoside using alkali-tolerant thermostable α-L-rhamnosidase from Aspergillus terreus. Bioresour Technol 115, 222-227.
Ng JD, Gavira JA & Garcia-Ruiz JM (2003) Protein crystallization by capillary counterdiffusion for applied crystallographic structure determination. J Struct Biol 142, 218-231.
Stewart PDS, Kolek SA, Briggs RA, Chayen NE & Baldock PFM (2011) Random microseeding: a theoretical and practical exploration of seed stability and seeding techniques for successful protein crystallization. Cryst Growth Des 11, 3432-3441.
Mueller U, Förster R, Hellmig M, Huschmann FU, Kastner A, Malecki P, Pühringer S, Röwer M, Sparta K, Steffien M et al. (2015) The macromolecular crystallography beamlines at BESSY II of the Helmholtz-Zentrum Berlin: current status and perspectives. Eur Phys J Plus 130, 141-150.
Kabsch W (2010) XDS. Acta Crystallogr D 66, 125-132.
Krug M, Weiss MS, Heinemann U & Mueller U (2012) XDSAPP: a graphical user interface for the convenient processing of diffraction data using XDS. J Appl Crystallogr 45, 568-572.
Diederichs K (2010) Quantifying instrument errors in macromolecular X-ray data sets. Acta Crystallogr D 66, 733-740.
Pape T & Schneider TR (2004) KL2MAP: a graphical user interface for macromolecular phasing with SHELX programs. J Appl Crystallogr 37, 843-844.
Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A 64, 112-122.
Emsley P, Lohkamp B, Scott WG & Cowtan K (2010) Features and development of Coot. Acta Crystallogr D 66, 486-501.
Vagin A & Teplyakov A (2010) Molecular replacement with MOLREP. Acta Crystallogr D 66, 22-25.
Murshudov GN, Skubák P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, Winn MD, Long F & Vagin AA (2011) REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D 67, 355-367.
DeLano WL (2009) The PyMOL Molecular Graphics System. DeLano Scientific, San Carlos, CA.
Bordo D & Argos P (1991) Suggestions for "safe" residue substitutions in site-directed mutagenesis. J Mol Biol 217, 721-729.
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC & Ferrin TE (2004) UCSF Chimera - a visualization system for exploratory research and analysis. J Comput Chem 25, 1605-1612.
Needleman SB & Wunsch CD (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48, 443-53.
Henikoff S & Henikoff JG (1992) Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci USA 89, 10915-10919.
Schaftenaar G & Noordik JH (2000) Molden: a pre- and post-processing program for molecular and electronic structures. J Comput Aided Mol Design 14, 123-134.
Land H & Humble MS (2018) YASARA: a tool to obtain structural guidance in biocatalytic investigations. In Methods in Molecular Biology, Vol 1685, Protein Engineering (Bornscheuer U & Höhne M, eds), pp. 43-67. Humana Press, New York, NY.
Flavonoids as Aglycones in Retaining Glycosidase-Catalyzed Reactions: Prospects for Green Chemistry
GENBANK
MN393234