Morphological and environmental analysis of the glacier ice alga Ancylonema alaskanum
Language English Country England, Great Britain Media electronic
Document type Journal Article
Grant support
UNCE/24/SCI/006
Charles University Research Centre program
PubMed
40425824
PubMed Central
PMC12117168
DOI
10.1038/s41598-025-95754-9
PII: 10.1038/s41598-025-95754-9
Knihovny.cz E-resources
- Keywords
- Ancylonema alaskanum, Glacier ice algae, Microscopy analysis, Mineral material, Spectroscopy analysis, Staining organelles,
- MeSH
- Ice Cover * MeSH
- Microscopy, Electron, Scanning MeSH
- Spectroscopy, Fourier Transform Infrared MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Austria MeSH
In the presented study, the cells of the glacial alga Ancylonema alaskanum collected in the Austrian Alps were analyzed. Algae were imaged both in their natural environment and in laboratory conditions using transmitted light and fluorescence microscopy. Using appropriate fluorochromes, the cell wall and cell organelles were studied. Oval nuclei located in the middle of the cell next to the chloroplasts and active mitochondria as well as lipid thylakoids of chloroplasts were imaged. Scanning electron microscopy showed that the surface of the algal cell wall was not significantly differentiated, and atomic force microscope imaging recorded little roughness. The SEM EDS analysis revealed that carbon, nitrogen, oxygen, and magnesium were the main components of the cells. It is worth emphasizing that the analyzed living algal cells were obtained directly from the glacier surface and demonstrated normal respiratory processes i.e. undisturbed physiological functions. Additionally, the mineral material accompanying the cells in their natural environment - fragments of the rock were imaged by Differential Interference Contrast microscopy and analyzed by Fourier Transform Infrared Spectroscopy. The study provides new data on the morphology and physicochemical characteristics of A. alaskanum, contributing to a more comprehensive characterization of their place in this harsh ecosystem.
Analytical Laboratory Institute of Chemistry Maria Curie Skłodowska University Lublin Poland
Chair and Department of Medical Microbiology Medical University of Lublin Lublin Poland
Department of Ecology Faculty of Science Charles University Prague Czech Republic
Department of Rheumatology and Connective Tissue Diseases Medical University of Lublin Lublin Poland
See more in PubMed
Möller, M., Recinos, B., Rastner, P. & Marzeion, B. Heterogeneous impacts of ocean thermal forcing on ice discharge from Greenland’s peripheral tidewater glaciers over 2000–2021. Sci. Rep.17, 113–116. 10.1038/s41598-024-61930-6 (2024). PubMed PMC
Hudson, S. R., Warren, S. G., Brandt, R. E., Grenfell, T. C. & Six, D. Spectral bidirectional reflectance of Antarctic snow: Measurements and parameterization. J. Geophys. Res. Atmos.111, 10.1029/2006JD007290 (2006).
Flanner, M. G., Zender, C. S., Randerson, J. T. & Rasch, P. J. Present-day climate forcing and response from black carbon in snow. J. Geophys. Res. Atmos.112, 10.1029/2006JD008003 (2007).
Flanner, M. G. & Zender, C. S. Linking snowpack microphysics and albedo evolution. J. Geophys. Res. Atmos.111, 10.1029/2005JD006834 (2006).
Healy, S. M. & Khan, A. L. Albedo change from snow algae blooms can contribute substantially to snow melt in the North Cascades, USA. Commun. Earth Environ.4, 142. 10.1038/s43247-023-00768-8 (2023).
Hodson, A. et al. Glacial ecosystems. Ecol. Monogr.78, 41–67. 10.1890/07-0187.1 (2008).
Stibal, M., Šabacká, M. & Žárský, J. Biological processes on glacier and ice sheet surfaces. Nat. Geosci.5, 771–774. 10.1038/NGEO1611 (2012).
Anesio, A. A., Lutz, S., Chrismas, N. A. M. & Benning, L. G. The microbiome of glaciers and ice sheets. NPJ Biofilms Microbiomes3, 10.1038/s41522-017-0019-0 (2017). PubMed PMC
Di Mauro, B. et al. Glacier algae foster ice-albedo feedback in the European Alps. Sci. Rep.10, 4739. 10.1038/s41598-020-61762-0 (2020). PubMed PMC
Khan, A. L., Dierssen, H. M., Scambos, T. A., Höfer, J. & Cordero, R. R. Spectral characterization, radiative forcing and pigment content of coastal Antarctic snow algae: Approaches to spectrally discriminate red and green communities and their impact on snowmelt. Cryosphere15, 133–148. 10.5194/tc-15-133-2021 (2021).
Cook, J., Edwards, A., Takeuchi, N. & Irvine-Fynn, T. Cryoconite: The dark biological secret of the cryosphere. Prog. Phys. Geogr.40, 66–111. 10.1177/0309133315616574 (2016).
Bøggild, C. E., Brandt, R. E., Brown, K. J. & Warren, S. G. The ablation zone in northeast Greenland: Ice types, albedos and impurities. J. Glaciol.56, 101–113. 10.3189/002214310791190776 (2010).
Di Mauro, B. et al. Impact of impurities and cryoconite on the optical properties of the Morteratsch Glacier (Swiss Alps). Cryosph.11, 2393–2409. 10.5194/tc-11-2393-2017 (2017).
Takeuchi, N. Temporal and spatial variations in spectral reflectance and characteristics of surface dust on Gulkana Glacier. Alaska Range. J. Glaciol.55, 701–709. 10.3189/002214309789470914 (2009).
Remias, D., Procházková, L., Nedbalová, L., Benning, L. G. & Lutz, S. Novel insights in cryptic diversity of snow and glacier ice algae communities combining 18S rRNA gene and ITS2 amplicon sequencing. FEMS Microbiol. Ecol.99, 134. 10.1093/femsec/fiad134 (2023). PubMed PMC
Zada, S., Khan, M., Su, Z., Sajjad, W. & Rafiq, M. Cryosphere: A frozen home of microbes and a potential source for drug discovery. Arch. Microbiol.28, 196. 10.1007/s00203-024-03899-4 (2024). PubMed
Hoham, R. W. & Remias, D. Snow and glacial algae: A review. J. Phycol.56, 264–282. 10.1111/jpy.12952 (2020). PubMed PMC
Barbalace, M. C. et al. Anti-inflammatory activities of marine algae in neurodegenerative diseases. Int. J. Mol. Sci.20, 3061. 10.3390/ijms20123061 (2019). PubMed PMC
Procházková, L., Řezanka, T., Nedbalová, L. & Remias, D. Unicellular versus filamentous: The glacial alga Ancylonema alaskana comb. et stat. nov. and its ecophysiological relatedness to Ancylonema nordenskioeldii (Zygnematophyceae, Streptophyta). Microorganisms9, 1103 (2021). PubMed PMC
Remias, D. & Procházková, L. The first cultivation of the glacier ice alga Ancylonema alaskanum (Zygnematophyceae, Streptophyta): Differences in morphology and photophysiology of field vs laboratory strain cells. J. Glaciol.69, 1080–1084. 10.1017/jog.2023.22 (2023).
Uetake, J., Naganuma, T., Hebsgaard, M. B., Kanda, H. & Kohshima, S. Communities of algae and cyanobacteria on glaciers in west Greenland. Polar Sci.4, 71–80. 10.1016/j.polar.2010.03.002 (2010).
Onuma, Y. et al. Modeling seasonal growth of phototrophs on bare ice on the Qaanaaq Ice Cap, northwestern Greenland. J. Glaciol.69, 487–499. 10.1017/jog.2022.76 (2023).
Takeuchi, N. & Kohshima, S. A snow algal community on tyndall glacier in the southern Patagonia ice field, Chile. AAAR36, 92–99 (2004).
Ling, H. U. & Seppelt, R. D. Snow algae of the Windmill Islands, continental Antarctica. Mesotaenium berggrenii (Zygnematales, Chlorophyta) the alga of grey snow. Antarct. Sci.2, 143–148. 10.1017/S0954102090000189 (1990).
Remias, D., Holzinger, A. & Lütz, C. Physiology, ultrastructure and habitat of the ice alga Mesotaenium berggrenii (Zygnematophyceae, Chlorophyta) from glaciers in the European Alps. Phycologia48, 302–312 (2009).
Remias, D., Holzinger, A., Aigner, S. & Lütz, C. Ecophysiology and ultrastructure of Ancylonema nordenskiöldii (Zygnematales, Streptophyta), causing brown ice on glaciers in Svalbard (High Arctic). Polar Biol.35, 899–908. 10.1007/s00300-011-1135-6 (2012).
Williamson, C. J. et al. Glacier algae: A dark past and a darker future. Front. Microbiol.10, 524. 10.3389/fmicb.2019.00524 (2019). PubMed PMC
Monheit, J. E., Cowan, D. F. & Moore, D. G. Rapid detection of fungi in tissues using calcofluor white and fluorescence microscopy. Arch. Pathol. Lab. Med.108, 616–618 (1984). PubMed
Fiołka, M. J. et al. Anti-Candida albicans effect of the protein carbohydrate fraction obtained from the coelomic fluid of earthworm Dendrobaena veneta. PLoS ONE14, 0212869. 10.1371/journal.pone.0212869 (2019). PubMed PMC
Lewtak, K. et al. Sida hermaphrodita seeds as a source of anti-Candida albicans activity. Sci. Rep.9, 12233. 10.1038/s41598-019-48712-1 (2019). PubMed PMC
Meadows, M. G. A batch assay using Calcofluor fluorescence to characterize cell wall regeneration in plant protoplasts. Anal. Biochem.141, 38–42. 10.1016/0003-2697(84)90422-6 (1984). PubMed
Herburger, K. & Holzinger, A. Aniline blue and Calcofuor white staining of callose and cellulose in the streptophyte green algae Zygnema and Klebsormidium. Bio. Protoc.6, 1969. 10.21769/BioProtoc.1969 (2016). PubMed PMC
Bidhendi, A. J., Chebli, Y. & Geitmann, A. Fluorescence visualization of cellulose and pectin in the primary plant cell wall. J. Microsc.278, 164–181. 10.1111/jmi.12895 (2020). PubMed
Fiołka, M. J. et al. Metabolic, structural, and proteomic changes in Candida albicans cells induced by the protein-carbohydrate fraction of Dendrobaena veneta coelomic fluid. Sci. Rep.11, 113205. 10.1038/s41598-021-96093-1 (2021). PubMed PMC
Wu, S. Q. et al. Covalent labeling of mitochondria with a photostable fluorescent thiol-reactive rhodamine-based probe. Anal. Methods4, 1699–1703. 10.1039/C2AY25106J (2012).
Ludovico, P., Sansonetty, F. & Côrte-Real, M. Assessment of mitochondrial membrane potential in yeast cell populations by flow cytometry. Microbiology147, 3335–3343. 10.1099/00221287-147-12-3335 (2001). PubMed
Wójcik-Mieszawska, S., Lewtak, K., Sofińska-Chmiel, W., Wydrych, J. & Fiołka, M. J. Atypical changes in Candida albicans cells treated with the Venetin-1 complex from earthworm coelomic fluid. Sci. Rep.13, 2844. 10.1038/s41598-023-29728-0 (2023). PubMed PMC
Alemán-Nava, G. S. et al. How to use Nile Red, a selective fluorescent stain for microalgal neutral lipids. J. Microbiol. Methods128, 74–79. 10.1016/j.mimet.2016.07.011 (2016). PubMed
Greenspan, P. & Fowler, S. D. Spectrofluorometric studies of the lipid probe. Nile red. J. Lipid Res.26, 781–789. 10.1016/S0022-2275(20)34307-8 (1985). PubMed
Cooksey, K. E. et al. Fluorometric-determination of the neutral lipid-content of microalgal cells using Nile red. J. Microbiol. Methods6, 333–345. 10.1016/0167-7012(87)90019-4 (1987).
Fiołka, M. J., Takeuchi, N., Sofińska-Chmiel, W., Mieszawska, S. & Treska, I. Morphological and physicochemical diversity of snow algae from Alaska. Sci. Rep.10, 19167. 10.1038/s41598-020-76215-x (2020). PubMed PMC
Thomé, M. P. et al. Ratiometric analysis of acridine orange staining in the study of acidic organelles and autophagy. J. Cell Sci.129, 4622–4632. 10.1242/jcs.195057 (2016). PubMed
Cox, C. S. & Wathes, C. M. Bioaerosols Handbook 1st edn. (CRC Press, 2020).
Fiołka, M. J. et al. Morphological and spectroscopic analysis of snow and glacier algae and their parasitic fungi on different glaciers of Svalbard. Sci. Rep.11, 21785. 10.1038/s41598-021-01211-8 (2021). PubMed PMC
Silverstein, R. M., Webster, F. X. & Kiemle, D. J. Spectrometric identification of organic compounds 7th edn. (Wiley, 2005).
Glassford, S. E., Byrne, B. & Kazarian, S. G. Recent applications of ATR FTIR spectroscopy and imaging to proteins. Biochim. Biophys. Acta1834, 2849–2858. 10.1016/j.bbapap.2013.07.015 (2013). PubMed
Kazarian, S. G. & Chan, K. L. A. Applications of ATR-FTIR spectroscopic imaging to biomedical samples. Biochim. Biophys. Acta1758, 858–867. 10.1016/j.bbamem.2006.02.011 (2006). PubMed
Berthomieu, C. & Hienerwadel, R. Fourier transform infrared (FTIR) spectroscopy. Photosynth. Res.101, 157–170. 10.1007/s11120-009-9439-x (2009). PubMed
Herburger, K. & Holzinger, A. Aniline blue and Calcofluor white staining of callose and cellulose in the ctreptophyte creen Algae Zygnema and Klebsormidium. Bio. Protoc.6, 1969. 10.21769/BioProtoc.1969 (2016). PubMed PMC
Herth, W. & Schnepf, E. The fluorochrome, Calcofluor white, binds oriented to structural polysaccharide fibrils. Protoplasma105, 129–133. 10.1007/BF01279855 (1980).
Herburger, K. & Holzinger, A. Localization and quantification of callose in the streptophyte green algae Zygnema and Klebsormidium: correlation with desiccation tolerance. Plant Cell Physiol.56, 2259–2270. 10.1093/pcp/pcv139 (2015). PubMed PMC
Permann, C. et al. Induction of conjugation and zygospore cell wall characteristics in the alpine Spirogyra mirabilis (Zygnematophyceae, Charophyta): Advantage under climate change scenarios?. Plants10, 1740. 10.3390/plants10081740 (2021). PubMed PMC
Permann, C., Pierangelini, M., Remias, D., Lewis, L. A. & Holzinger, A. Photophysiological investigations of the temperature stress responses of Zygnema spp (Zygnematophyceae) from subpolar and polar habitats (Iceland, Svalbard). Phycologia61, 299–311. 10.1080/00318884.2022.2043089 (2022).
Mazzini, G. & Danova, M. Fluorochromes for DNA staining and quantitation. Methods Mol. Biol.1560, 239–259. 10.1007/978-1-4939-6788-9_18 (2017). PubMed
Gottfried, A. & Weinhold, E. Sequence-specific covalent labelling of DNA. Biochem. Soc. Trans.39, 623–628. 10.1042/BST0390623 (2011). PubMed
Bucevičius, J., Lukinavičius, G. & Gerasimaitė, R. The use of Hoechst dyes for DNA staining and beyond. Chemosensors6, 18. 10.3390/chemosensors6020018 (2018).
Chazotte, B. Labeling mitochondria with rhodamine 123. Cold Spring Harb. Protoc.7, 892–894 (2011). PubMed
Falkowski, P. G. & Raven, J. A. Aquatic photosynthesis (Princeton University Press, 2007).
Hernández, M. L. & Cejudo, F. J. Chloroplast lipids metabolism and function. A redox perspective. Front. Plant Sci.12, 712022. 10.3389/fpls.2021.712022 (2021). PubMed PMC
Moulin, S. L. et al. Fatty acid photodecarboxylase is an ancient photoenzyme that forms hydrocarbons in the thylakoids of algae. Plant Physiol.186, 1455–1472. 10.1093/plphys/kiab168 (2021). PubMed PMC
Mikucki, J. & Priscu, J. Bacterial diversity associated with Blood Falls, a subglacial outflow from the Taylor Glacier. Antarctica. Appl. Environ. Microbiol.73, 4029–4039. 10.1128/AEM.01396-06 (2007). PubMed PMC
Odom, I. E. Smectite clay minerals: Properties and uses. Phil. Trans. Roy. Soc. Lond.311, 391–409. 10.1098/rsta.1984.0036 (1984).
Środoń, J. Evolution of boron and nitrogen content during illitization of bentonites. Clay Clay Miner.58, 743–756. 10.1346/CCMN.2010.0580602 (2010).
Broadwell, E. L., Pickford, R. E., Perkins, R., Sgouridis, F. & Williamson, C. J. Adaptation versus plastic responses to temperature, light, and nitrate availability in cultured snow algal strains. FEMS Microbiol. Ecol.99, fiad088. 10.1093/femsec/fiad088 (2023). PubMed PMC
Williamson, C. J. et al. Macro-nutrient stoichiometry of glacier algae from the southwestern margin of the Greenland Ice Sheet. Front. Plant Sci.12, 673614. 10.3389/fpls.2021.673614 (2021). PubMed PMC
Kim, J., Dong, H. L., Seabaugh, J., Newell, S. W. & Eberl, D. D. Role of microbes in the smectite-to-illite reaction. Science303, 830–832. 10.1126/science.1093245 (2004). PubMed
Pollastro, R. M. Considerations and applications of the illite/smectite geothermometer in hydrocarbon-bearing rocks of miocene to mississippian Age. Clay Clay Miner.41, 119–133. 10.1346/CCMN.1993.0410202 (1993).
Köhler, B., Singer, A. & Stoffers, P. Biogenic nontronite from marine white smoker chimneys. Clay Clay Miner.42, 689–701. 10.1346/CCMN.1994 (1994).
Liu, Y. et al. A genome and gene catalog of glacier microbiomes. Nat. Biotechnol.40, 1341–1348. 10.1038/s41587-022-01367-2 (2022). PubMed
Holzinger, A. & Karsten, U. Desiccation stress and tolerance in green algae: Consequences for ultrastructure, physiological and molecular mechanisms. Front. Plant Sci.4, 327. 10.3389/fpls.2013.00327 (2013). PubMed PMC
Xie, X. et al. Purpurogallin is a novel mitogen-activated protein kinase kinase 1/2 inhibitor that suppresses esophageal squamous cell carcinoma growth in vitro and in vivo. Mol. Carcinog.58, 1248–1259. 10.1002/mc.23007 (2019). PubMed
Wu, T. W., Zeng, L. H., Wu, J. & Carey, D. Purpurogallin - A natural and effective hepatoprotector in vitro and in vivo. Biochem. Cell Biol.69, 747–750. 10.1139/o91-113 (1991). PubMed
Kim, K. et al. Inhibitory effect of purpurogallin on osteoclast differentiation in vitro through the downregulation of c-Fos and NFATc1. Int. J. Mol. Sci.19, 601. 10.3390/ijms19020601 (2018). PubMed PMC