• This record comes from PubMed

Morphological and environmental analysis of the glacier ice alga Ancylonema alaskanum

. 2025 May 27 ; 15 (1) : 18578. [epub] 20250527

Language English Country England, Great Britain Media electronic

Document type Journal Article

Grant support
UNCE/24/SCI/006 Charles University Research Centre program

Links

PubMed 40425824
PubMed Central PMC12117168
DOI 10.1038/s41598-025-95754-9
PII: 10.1038/s41598-025-95754-9
Knihovny.cz E-resources

In the presented study, the cells of the glacial alga Ancylonema alaskanum collected in the Austrian Alps were analyzed. Algae were imaged both in their natural environment and in laboratory conditions using transmitted light and fluorescence microscopy. Using appropriate fluorochromes, the cell wall and cell organelles were studied. Oval nuclei located in the middle of the cell next to the chloroplasts and active mitochondria as well as lipid thylakoids of chloroplasts were imaged. Scanning electron microscopy showed that the surface of the algal cell wall was not significantly differentiated, and atomic force microscope imaging recorded little roughness. The SEM EDS analysis revealed that carbon, nitrogen, oxygen, and magnesium were the main components of the cells. It is worth emphasizing that the analyzed living algal cells were obtained directly from the glacier surface and demonstrated normal respiratory processes i.e. undisturbed physiological functions. Additionally, the mineral material accompanying the cells in their natural environment - fragments of the rock were imaged by Differential Interference Contrast microscopy and analyzed by Fourier Transform Infrared Spectroscopy. The study provides new data on the morphology and physicochemical characteristics of A. alaskanum, contributing to a more comprehensive characterization of their place in this harsh ecosystem.

See more in PubMed

Möller, M., Recinos, B., Rastner, P. & Marzeion, B. Heterogeneous impacts of ocean thermal forcing on ice discharge from Greenland’s peripheral tidewater glaciers over 2000–2021. Sci. Rep.17, 113–116. 10.1038/s41598-024-61930-6 (2024). PubMed PMC

Hudson, S. R., Warren, S. G., Brandt, R. E., Grenfell, T. C. & Six, D. Spectral bidirectional reflectance of Antarctic snow: Measurements and parameterization. J. Geophys. Res. Atmos.111, 10.1029/2006JD007290 (2006).

Flanner, M. G., Zender, C. S., Randerson, J. T. & Rasch, P. J. Present-day climate forcing and response from black carbon in snow. J. Geophys. Res. Atmos.112, 10.1029/2006JD008003 (2007).

Flanner, M. G. & Zender, C. S. Linking snowpack microphysics and albedo evolution. J. Geophys. Res. Atmos.111, 10.1029/2005JD006834 (2006).

Healy, S. M. & Khan, A. L. Albedo change from snow algae blooms can contribute substantially to snow melt in the North Cascades, USA. Commun. Earth Environ.4, 142. 10.1038/s43247-023-00768-8 (2023).

Hodson, A. et al. Glacial ecosystems. Ecol. Monogr.78, 41–67. 10.1890/07-0187.1 (2008).

Stibal, M., Šabacká, M. & Žárský, J. Biological processes on glacier and ice sheet surfaces. Nat. Geosci.5, 771–774. 10.1038/NGEO1611 (2012).

Anesio, A. A., Lutz, S., Chrismas, N. A. M. & Benning, L. G. The microbiome of glaciers and ice sheets. NPJ Biofilms Microbiomes3, 10.1038/s41522-017-0019-0 (2017). PubMed PMC

Di Mauro, B. et al. Glacier algae foster ice-albedo feedback in the European Alps. Sci. Rep.10, 4739. 10.1038/s41598-020-61762-0 (2020). PubMed PMC

Khan, A. L., Dierssen, H. M., Scambos, T. A., Höfer, J. & Cordero, R. R. Spectral characterization, radiative forcing and pigment content of coastal Antarctic snow algae: Approaches to spectrally discriminate red and green communities and their impact on snowmelt. Cryosphere15, 133–148. 10.5194/tc-15-133-2021 (2021).

Cook, J., Edwards, A., Takeuchi, N. & Irvine-Fynn, T. Cryoconite: The dark biological secret of the cryosphere. Prog. Phys. Geogr.40, 66–111. 10.1177/0309133315616574 (2016).

Bøggild, C. E., Brandt, R. E., Brown, K. J. & Warren, S. G. The ablation zone in northeast Greenland: Ice types, albedos and impurities. J. Glaciol.56, 101–113. 10.3189/002214310791190776 (2010).

Di Mauro, B. et al. Impact of impurities and cryoconite on the optical properties of the Morteratsch Glacier (Swiss Alps). Cryosph.11, 2393–2409. 10.5194/tc-11-2393-2017 (2017).

Takeuchi, N. Temporal and spatial variations in spectral reflectance and characteristics of surface dust on Gulkana Glacier. Alaska Range. J. Glaciol.55, 701–709. 10.3189/002214309789470914 (2009).

Remias, D., Procházková, L., Nedbalová, L., Benning, L. G. & Lutz, S. Novel insights in cryptic diversity of snow and glacier ice algae communities combining 18S rRNA gene and ITS2 amplicon sequencing. FEMS Microbiol. Ecol.99, 134. 10.1093/femsec/fiad134 (2023). PubMed PMC

Zada, S., Khan, M., Su, Z., Sajjad, W. & Rafiq, M. Cryosphere: A frozen home of microbes and a potential source for drug discovery. Arch. Microbiol.28, 196. 10.1007/s00203-024-03899-4 (2024). PubMed

Hoham, R. W. & Remias, D. Snow and glacial algae: A review. J. Phycol.56, 264–282. 10.1111/jpy.12952 (2020). PubMed PMC

Barbalace, M. C. et al. Anti-inflammatory activities of marine algae in neurodegenerative diseases. Int. J. Mol. Sci.20, 3061. 10.3390/ijms20123061 (2019). PubMed PMC

Procházková, L., Řezanka, T., Nedbalová, L. & Remias, D. Unicellular versus filamentous: The glacial alga Ancylonema alaskana comb. et stat. nov. and its ecophysiological relatedness to Ancylonema nordenskioeldii (Zygnematophyceae, Streptophyta). Microorganisms9, 1103 (2021). PubMed PMC

Remias, D. & Procházková, L. The first cultivation of the glacier ice alga Ancylonema alaskanum (Zygnematophyceae, Streptophyta): Differences in morphology and photophysiology of field vs laboratory strain cells. J. Glaciol.69, 1080–1084. 10.1017/jog.2023.22 (2023).

Uetake, J., Naganuma, T., Hebsgaard, M. B., Kanda, H. & Kohshima, S. Communities of algae and cyanobacteria on glaciers in west Greenland. Polar Sci.4, 71–80. 10.1016/j.polar.2010.03.002 (2010).

Onuma, Y. et al. Modeling seasonal growth of phototrophs on bare ice on the Qaanaaq Ice Cap, northwestern Greenland. J. Glaciol.69, 487–499. 10.1017/jog.2022.76 (2023).

Takeuchi, N. & Kohshima, S. A snow algal community on tyndall glacier in the southern Patagonia ice field, Chile. AAAR36, 92–99 (2004).

Ling, H. U. & Seppelt, R. D. Snow algae of the Windmill Islands, continental Antarctica. Mesotaenium berggrenii (Zygnematales, Chlorophyta) the alga of grey snow. Antarct. Sci.2, 143–148. 10.1017/S0954102090000189 (1990).

Remias, D., Holzinger, A. & Lütz, C. Physiology, ultrastructure and habitat of the ice alga Mesotaenium berggrenii (Zygnematophyceae, Chlorophyta) from glaciers in the European Alps. Phycologia48, 302–312 (2009).

Remias, D., Holzinger, A., Aigner, S. & Lütz, C. Ecophysiology and ultrastructure of Ancylonema nordenskiöldii (Zygnematales, Streptophyta), causing brown ice on glaciers in Svalbard (High Arctic). Polar Biol.35, 899–908. 10.1007/s00300-011-1135-6 (2012).

Williamson, C. J. et al. Glacier algae: A dark past and a darker future. Front. Microbiol.10, 524. 10.3389/fmicb.2019.00524 (2019). PubMed PMC

Monheit, J. E., Cowan, D. F. & Moore, D. G. Rapid detection of fungi in tissues using calcofluor white and fluorescence microscopy. Arch. Pathol. Lab. Med.108, 616–618 (1984). PubMed

Fiołka, M. J. et al. Anti-Candida albicans effect of the protein carbohydrate fraction obtained from the coelomic fluid of earthworm Dendrobaena veneta. PLoS ONE14, 0212869. 10.1371/journal.pone.0212869 (2019). PubMed PMC

Lewtak, K. et al. Sida hermaphrodita seeds as a source of anti-Candida albicans activity. Sci. Rep.9, 12233. 10.1038/s41598-019-48712-1 (2019). PubMed PMC

Meadows, M. G. A batch assay using Calcofluor fluorescence to characterize cell wall regeneration in plant protoplasts. Anal. Biochem.141, 38–42. 10.1016/0003-2697(84)90422-6 (1984). PubMed

Herburger, K. & Holzinger, A. Aniline blue and Calcofuor white staining of callose and cellulose in the streptophyte green algae Zygnema and Klebsormidium. Bio. Protoc.6, 1969. 10.21769/BioProtoc.1969 (2016). PubMed PMC

Bidhendi, A. J., Chebli, Y. & Geitmann, A. Fluorescence visualization of cellulose and pectin in the primary plant cell wall. J. Microsc.278, 164–181. 10.1111/jmi.12895 (2020). PubMed

Fiołka, M. J. et al. Metabolic, structural, and proteomic changes in Candida albicans cells induced by the protein-carbohydrate fraction of Dendrobaena veneta coelomic fluid. Sci. Rep.11, 113205. 10.1038/s41598-021-96093-1 (2021). PubMed PMC

Wu, S. Q. et al. Covalent labeling of mitochondria with a photostable fluorescent thiol-reactive rhodamine-based probe. Anal. Methods4, 1699–1703. 10.1039/C2AY25106J (2012).

Ludovico, P., Sansonetty, F. & Côrte-Real, M. Assessment of mitochondrial membrane potential in yeast cell populations by flow cytometry. Microbiology147, 3335–3343. 10.1099/00221287-147-12-3335 (2001). PubMed

Wójcik-Mieszawska, S., Lewtak, K., Sofińska-Chmiel, W., Wydrych, J. & Fiołka, M. J. Atypical changes in Candida albicans cells treated with the Venetin-1 complex from earthworm coelomic fluid. Sci. Rep.13, 2844. 10.1038/s41598-023-29728-0 (2023). PubMed PMC

Alemán-Nava, G. S. et al. How to use Nile Red, a selective fluorescent stain for microalgal neutral lipids. J. Microbiol. Methods128, 74–79. 10.1016/j.mimet.2016.07.011 (2016). PubMed

Greenspan, P. & Fowler, S. D. Spectrofluorometric studies of the lipid probe. Nile red. J. Lipid Res.26, 781–789. 10.1016/S0022-2275(20)34307-8 (1985). PubMed

Cooksey, K. E. et al. Fluorometric-determination of the neutral lipid-content of microalgal cells using Nile red. J. Microbiol. Methods6, 333–345. 10.1016/0167-7012(87)90019-4 (1987).

Fiołka, M. J., Takeuchi, N., Sofińska-Chmiel, W., Mieszawska, S. & Treska, I. Morphological and physicochemical diversity of snow algae from Alaska. Sci. Rep.10, 19167. 10.1038/s41598-020-76215-x (2020). PubMed PMC

Thomé, M. P. et al. Ratiometric analysis of acridine orange staining in the study of acidic organelles and autophagy. J. Cell Sci.129, 4622–4632. 10.1242/jcs.195057 (2016). PubMed

Cox, C. S. & Wathes, C. M. Bioaerosols Handbook 1st edn. (CRC Press, 2020).

Fiołka, M. J. et al. Morphological and spectroscopic analysis of snow and glacier algae and their parasitic fungi on different glaciers of Svalbard. Sci. Rep.11, 21785. 10.1038/s41598-021-01211-8 (2021). PubMed PMC

Silverstein, R. M., Webster, F. X. & Kiemle, D. J. Spectrometric identification of organic compounds 7th edn. (Wiley, 2005).

Glassford, S. E., Byrne, B. & Kazarian, S. G. Recent applications of ATR FTIR spectroscopy and imaging to proteins. Biochim. Biophys. Acta1834, 2849–2858. 10.1016/j.bbapap.2013.07.015 (2013). PubMed

Kazarian, S. G. & Chan, K. L. A. Applications of ATR-FTIR spectroscopic imaging to biomedical samples. Biochim. Biophys. Acta1758, 858–867. 10.1016/j.bbamem.2006.02.011 (2006). PubMed

Berthomieu, C. & Hienerwadel, R. Fourier transform infrared (FTIR) spectroscopy. Photosynth. Res.101, 157–170. 10.1007/s11120-009-9439-x (2009). PubMed

Herburger, K. & Holzinger, A. Aniline blue and Calcofluor white staining of callose and cellulose in the ctreptophyte creen Algae Zygnema and Klebsormidium. Bio. Protoc.6, 1969. 10.21769/BioProtoc.1969 (2016). PubMed PMC

Herth, W. & Schnepf, E. The fluorochrome, Calcofluor white, binds oriented to structural polysaccharide fibrils. Protoplasma105, 129–133. 10.1007/BF01279855 (1980).

Herburger, K. & Holzinger, A. Localization and quantification of callose in the streptophyte green algae Zygnema and Klebsormidium: correlation with desiccation tolerance. Plant Cell Physiol.56, 2259–2270. 10.1093/pcp/pcv139 (2015). PubMed PMC

Permann, C. et al. Induction of conjugation and zygospore cell wall characteristics in the alpine Spirogyra mirabilis (Zygnematophyceae, Charophyta): Advantage under climate change scenarios?. Plants10, 1740. 10.3390/plants10081740 (2021). PubMed PMC

Permann, C., Pierangelini, M., Remias, D., Lewis, L. A. & Holzinger, A. Photophysiological investigations of the temperature stress responses of Zygnema spp (Zygnematophyceae) from subpolar and polar habitats (Iceland, Svalbard). Phycologia61, 299–311. 10.1080/00318884.2022.2043089 (2022).

Mazzini, G. & Danova, M. Fluorochromes for DNA staining and quantitation. Methods Mol. Biol.1560, 239–259. 10.1007/978-1-4939-6788-9_18 (2017). PubMed

Gottfried, A. & Weinhold, E. Sequence-specific covalent labelling of DNA. Biochem. Soc. Trans.39, 623–628. 10.1042/BST0390623 (2011). PubMed

Bucevičius, J., Lukinavičius, G. & Gerasimaitė, R. The use of Hoechst dyes for DNA staining and beyond. Chemosensors6, 18. 10.3390/chemosensors6020018 (2018).

Chazotte, B. Labeling mitochondria with rhodamine 123. Cold Spring Harb. Protoc.7, 892–894 (2011). PubMed

Falkowski, P. G. & Raven, J. A. Aquatic photosynthesis (Princeton University Press, 2007).

Hernández, M. L. & Cejudo, F. J. Chloroplast lipids metabolism and function. A redox perspective. Front. Plant Sci.12, 712022. 10.3389/fpls.2021.712022 (2021). PubMed PMC

Moulin, S. L. et al. Fatty acid photodecarboxylase is an ancient photoenzyme that forms hydrocarbons in the thylakoids of algae. Plant Physiol.186, 1455–1472. 10.1093/plphys/kiab168 (2021). PubMed PMC

Mikucki, J. & Priscu, J. Bacterial diversity associated with Blood Falls, a subglacial outflow from the Taylor Glacier. Antarctica. Appl. Environ. Microbiol.73, 4029–4039. 10.1128/AEM.01396-06 (2007). PubMed PMC

Odom, I. E. Smectite clay minerals: Properties and uses. Phil. Trans. Roy. Soc. Lond.311, 391–409. 10.1098/rsta.1984.0036 (1984).

Środoń, J. Evolution of boron and nitrogen content during illitization of bentonites. Clay Clay Miner.58, 743–756. 10.1346/CCMN.2010.0580602 (2010).

Broadwell, E. L., Pickford, R. E., Perkins, R., Sgouridis, F. & Williamson, C. J. Adaptation versus plastic responses to temperature, light, and nitrate availability in cultured snow algal strains. FEMS Microbiol. Ecol.99, fiad088. 10.1093/femsec/fiad088 (2023). PubMed PMC

Williamson, C. J. et al. Macro-nutrient stoichiometry of glacier algae from the southwestern margin of the Greenland Ice Sheet. Front. Plant Sci.12, 673614. 10.3389/fpls.2021.673614 (2021). PubMed PMC

Kim, J., Dong, H. L., Seabaugh, J., Newell, S. W. & Eberl, D. D. Role of microbes in the smectite-to-illite reaction. Science303, 830–832. 10.1126/science.1093245 (2004). PubMed

Pollastro, R. M. Considerations and applications of the illite/smectite geothermometer in hydrocarbon-bearing rocks of miocene to mississippian Age. Clay Clay Miner.41, 119–133. 10.1346/CCMN.1993.0410202 (1993).

Köhler, B., Singer, A. & Stoffers, P. Biogenic nontronite from marine white smoker chimneys. Clay Clay Miner.42, 689–701. 10.1346/CCMN.1994 (1994).

Liu, Y. et al. A genome and gene catalog of glacier microbiomes. Nat. Biotechnol.40, 1341–1348. 10.1038/s41587-022-01367-2 (2022). PubMed

Holzinger, A. & Karsten, U. Desiccation stress and tolerance in green algae: Consequences for ultrastructure, physiological and molecular mechanisms. Front. Plant Sci.4, 327. 10.3389/fpls.2013.00327 (2013). PubMed PMC

Xie, X. et al. Purpurogallin is a novel mitogen-activated protein kinase kinase 1/2 inhibitor that suppresses esophageal squamous cell carcinoma growth in vitro and in vivo. Mol. Carcinog.58, 1248–1259. 10.1002/mc.23007 (2019). PubMed

Wu, T. W., Zeng, L. H., Wu, J. & Carey, D. Purpurogallin - A natural and effective hepatoprotector in vitro and in vivo. Biochem. Cell Biol.69, 747–750. 10.1139/o91-113 (1991). PubMed

Kim, K. et al. Inhibitory effect of purpurogallin on osteoclast differentiation in vitro through the downregulation of c-Fos and NFATc1. Int. J. Mol. Sci.19, 601. 10.3390/ijms19020601 (2018). PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...