Oleaginous yeast Rhodotorula toruloides biomass effect on the metabolism of Arctic char (Salvelinus alpinus)

. 2022 ; 9 () : 931946. [epub] 20220816

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36052171

Sustainability issues arise when using fish oil and vegetable oils in fish feed production for aquaculture purposes. Microbial production of single cell oil is a potential alternative as a lipid ingredient in the production of fish feed. In this study, we replaced the vegetable oils with the oleaginous yeast R. toruloides biomass in the diet of Arctic char (S. alpinus) and investigated the effects on health and composition. Measurement of fish growth parameters showed a higher liver weight and hepatosomatic index in the experimental group of fish fed partly with yeast biomass compared to a control group fed a diet with vegetable oils. No significant differences in the lipid content of muscle and liver tissues were found. The fatty acid profiles in the muscle of both fish groups were similar while the experimental fish group had a higher amount of monounsaturated fatty acids in the liver. Histology of livers showed no significant difference in the number of lipid droplets. The size of hepatic lipid droplets seemed to be related to liver fat content. Quantification of metabolites in the liver revealed no differences between the fish groups while plasma metabolites involved in energy pathways such as alanine, 3-hydroxybutyrate, creatinine, serine, betaine, and choline were significantly higher in the experimental fish group.

Erratum v

PubMed

Zobrazit více v PubMed

Abeln F., Chuck C. J. (2021). The history, state of the art and future prospects for oleaginous yeast research. Microb. Cell Fact. 20, 221. 10.1186/s12934-021-01712-1 PubMed DOI PMC

Appelqvist L.-Å. (1968). Rapid methods of lipid extraction and fatty acid methyl ester preparation for seed and leaf tissue with special remarks on preventing the accumulation of lipid contaminants. Ark. för Kemi 28, 551–570.

Aru V., Khakimov B., Sørensen K. M., Chikwati E. M., Kortner T. M., Midtlyng P., et al. (2021). The plasma metabolome of Atlantic salmon as studied by 1H NMR spectroscopy using standard operating procedures: Effect of aquaculture location and growth stage. Metabolomics. 17, 50. 10.1007/s11306-021-01797-0 PubMed DOI

Blomqvist J., Pickova J., Tilami S. K., Sampels S., Mikkelsen N., Brandenburg J., et al. (2018). Oleaginous yeast as a component in fish feed. Sci. Rep. 8, 15945. 10.1038/s41598-018-34232-x PubMed DOI PMC

Bradbury J. (2011). Docosahexaenoic acid (DHA): An ancient nutrient for the modern human brain. Nutrients 3, 529–554. 10.3390/nu3050529 PubMed DOI PMC

Brandenburg J., Blomqvist J., Shapaval V., Kohler A., Sampels S., Sandgren M., et al. (2021). Oleaginous yeasts respond differently to carbon sources present in lignocellulose hydrolysate. Biotechnol. Biofuels 14, 124. 10.1186/s13068-021-01974-2 PubMed DOI PMC

Buck J. W., Andrews J. H. (1999). Attachment of the yeast Rhodosporidium toruloides is mediated by adhesives localized at sites of bud cell development. Appl. Environ. Microbiol. 65, 465–471. 10.1128/aem.65.2.465-471.1999 PubMed DOI PMC

Busti S., Bonaldo A., Dondi F., Cavallini D., Yúfera M., Gilannejad N., et al. (2020). Effects of different feeding frequencies on growth, feed utilisation, digestive enzyme activities and plasma biochemistry of gilthead sea bream (Sparus aurata) fed with different fishmeal and fish oil dietary levels. Aquaculture 529, 735616. 10.1016/j.aquaculture.2020.735616 DOI

Casu F., Watson A. M., Yost J., Leffler J. W., Gaylord T. G., Barrows F. T., et al. (2017). Metabolomics analysis of effects of commercial soy-based protein products in red drum (Sciaenops ocellatus). J. Proteome Res. 16, 2481–2494. 10.1021/acs.jproteome.7b00074 PubMed DOI PMC

Cheng K., Müllner E., Moazzami A. A., Carlberg H., Brännäs E., Pickova J. (2017). Metabolomics approach to evaluate a Baltic Sea sourced diet for cultured Arctic char (Salvelinus alpinus L.). J. Agric. Food Chem. 65, 5083–5090. 10.1021/acs.jafc.7b00994 PubMed DOI

Cheng K., Wagner L., Moazzami A. A., Gómez-Requeni P., Schiller Vestergren A., Brännäs E., et al. (2016a). Decontaminated fishmeal and fish oil from the Baltic Sea are promising feed sources for Arctic char (Salvelinus alpinus L.)-studies of flesh lipid quality and metabolic profile. Eur. J. Lipid Sci. Technol. 118, 862–873. 10.1002/ejlt.201500247 DOI

Cheng K., Wagner L., Pickova J., Moazzami A. A. (2016b). NMR-based metabolomics reveals compartmental metabolic heterogeneity in liver of Arctic char (Salvelinus alpinus). Can. J. Zool. 94, 665–669. 10.1139/cjz-2016-0051 DOI

da Silva R. P., Eudy B. J., Deminice R. (2020). One-carbon metabolism in fatty liver disease and fibrosis: One-carbon to rule them all. J. Nutr. 150, 994–1003. 10.1093/jn/nxaa032 PubMed DOI

de Roos B., Sneddon A. A., Sprague M., Horgan G. W., Brouwer I. A. (2017). The potential impact of compositional changes in farmed fish on its health-giving properties: Is it time to reconsider current dietary recommendations? Public Health Nutr. 20, 2042–2049. 10.1017/S1368980017000696 PubMed DOI PMC

deRoos R., deRoos C. C., Werner C. S., Werner H. (1985). Plasma levels of glucose, alanine, lactate, and β-hydroxybutyrate in the unfed spiny dogfish shark (Squalus acanthias) after surgery and following mammalian insulin infusion. Gen. Comp. Endocrinol. 58, 28–43. 10.1016/0016-6480(85)90133-9 PubMed DOI

Dupont-Cyr B. A., Le François N. R., Christen F., Desrosiers V., Savoie A., Vandenberg G. W., et al. (2022). Linseed oil as a substitute for fish oil in the diet of Arctic charr (Salvelinus alpinus), brook charr (S. fontinalis) and their reciprocal hybrids. Aquac. Rep. 22, 100949. 10.1016/j.aqrep.2021.100949 DOI

Eriksson L., Byrne T., Johansson E., Trygg J., Vikström C. (2013). Multi- and megavariate data analysis, basic principles and applications. Malmö MKS Umetrics AB, 521.

Eriksson L., Trygg J., Wold S. (2008). CV-ANOVA for significance testing of PLS and OPLS® models. J. Chemom. 22, 594–600. 10.1002/cem.1187 DOI

FAO (2020). The state of world fisheries and aquaculture 2020: Sustainability in action. Rome. 10.4060/ca9229en DOI

Fry J. P., Love D. C., MacDonald G. K., West P. C., Engstrom P. M., Nachman K. E., et al. (2016). Environmental health impacts of feeding crops to farmed fish. Environ. Int. 91, 201–214. 10.1016/j.envint.2016.02.022 PubMed DOI

Gamboa‐Delgado J., Márquez-Reyes J. M. (2018). Potential of microbial‐derived nutrients for aquaculture development. Rev. Aquac. 10, 224–246. 10.1111/raq.12157 DOI

Geisler C. E., Hepler C., Higgins M. R., Renquist B. J. (2016). Hepatic adaptations to maintain metabolic homeostasis in response to fasting and refeeding in mice. Nutr. Metab. 13, 62. 10.1186/s12986-016-0122-x PubMed DOI PMC

Hara A., Radin N. S. (1978). Lipid extraction of tissues with a low-toxicity solvent. Anal. Biochem. 90, 420–426. 10.1016/0003-2697(78)90046-5 PubMed DOI

Hatlen B., Berge M. G., Odom J. M., Mundheim H., Ruyter B. (2012). Growth performance, feed utilisation and fatty acid deposition in Atlantic salmon , Salmo salar L., fed graded levels of high-lipid/high-EPA Yarrowia lipolytica biomass. Aquaculture 364–365, 39–47. 10.1016/j.aquaculture.2012.07.005 DOI

Hemre G. I., Mommsen T. P., Krogdahl Å. (2002). Carbohydrates in fish nutrition: Effects on growth, glucose metabolism and hepatic enzymes. Aquac. Nutr. 8, 175–194. 10.1046/j.1365-2095.2002.00200.x DOI

Hilton J. W., Atkinson J. L., Slinger S. J. (1986). Effect of propylene glycol on feed digestibility and the growth and physiological response of rainbow trout. Can. J. Anim. Sci. 66, 1057–1063. 10.4141/cjas86-116 DOI

Kalogeropoulos N., Alexis M. N., Henderson R. J. (1992). Effects of dietary soybean and cod-liver oil levels on growth and body composition of gilthead bream (Sparus aurata). Aquaculture 104, 293–308. 10.1016/0044-8486(92)90211-3 DOI

Kullgren A., Samuelsson L. M., Larsson D. G. J., Björnsson B. T., Bergman E. J. (2010). A metabolomics approach to elucidate effects of food deprivation in juvenile rainbow trout (Oncorhynchus mykiss). Am. J. Physiol. Regul. Integr. Comp. Physiol. 299, 1440–1448. 10.1152/ajpregu.00281.2010 PubMed DOI

Lulijwa R., Alfaro A. C., Young T. (2022). Metabolomics in salmonid aquaculture research: Applications and future perspectives. Rev. Aquac. 14, 547–577. 10.1111/raq.12612 DOI

Moazzami A. A., Andersson R., Kamal-Eldin A. (2011). Changes in the metabolic profile of rat liver after α-tocopherol deficiency as revealed by metabolomics analysis. NMR Biomed. 24, 499–505. 10.1002/nbm.1615 PubMed DOI

Mommsen T. P., French C. J., Hochachka P. W. (1980). Sites and patterns of protein and amino acid utilization during the spawning migration of salmon. Can. J. Zool. 58, 1785–1799. 10.1139/z80-246 DOI

Monge-Ortiz R., Tomás-Vidal A., Rodriguez-Barreto D., Martínez-Llorens S., Pérez J. A., Jover-Cerdá M., et al. (2018). Replacement of fish oil with vegetable oil blends in feeds for greater amberjack (Seriola dumerili) juveniles: Effect on growth performance, feed efficiency, tissue fatty acid composition and flesh nutritional value. Aquac. Nutr. 24, 605–615. 10.1111/anu.12595 DOI

Morales-Sánchez D., Martinez-Rodriguez O. A., Martinez A. (2017). Heterotrophic cultivation of microalgae: Production of metabolites of commercial interest. J. Chem. Technol. Biotechnol. 92, 925–936. 10.1002/jctb.5115 DOI

Moreira I. S., Peres H., Couto A., Enes P., Oliva-Teles A. (2008). Temperature and dietary carbohydrate level effects on performance and metabolic utilisation of diets in European sea bass (Dicentrarchus labrax) juveniles. Aquaculture 274, 153–160. 10.1016/j.aquaculture.2007.11.016 DOI

Mráz J., Pickova J. (2009). Differences between lipid content and composition of different parts of fillets from crossbred farmed carp (Cyprinus carpio). Fish. Physiol. Biochem. 35, 615–623. 10.1007/s10695-008-9291-5 PubMed DOI

Nagaraj Y. N., Burkina V., Okmane L., Blomqvist J., Rapoport A., Sandgren M., et al. (2022). Identification, quantification and kinetic study of carotenoids and lipids in Rhodotorula toruloides CBS 14 cultivated on wheat straw hydrolysate. Fermentation 8, 300. 10.3390/fermentation8070300 DOI

Nalawade T. M., Bhat K., Sogi S. H. P. (2015). Bactericidal activity of propylene glycol, glycerine, polyethylene glycol 400, and polyethylene glycol 1000 against selected microorganisms. J. Int. Soc. Prev. Community Dent. 5, 114–119. 10.4103/2231-0762.155736 PubMed DOI PMC

Navarrete P., Tovar-Ramírez D. (2014). Use of yeasts as probiotics in fish aquaculture. Sustain. Aquac. Tech. 10.5772/57196 DOI

Nayak N. C., Sathar S. A., Mughal S., Duttagupta S., Mathur M., Chopra P. (1996). The nature and significance of liver cell vacuolation following hepatocellular injury - an analysis based on observations on rats rendered tolerant to hepatotoxic damage. Virchows Arch. 428, 353–365. 10.1007/BF00202202 PubMed DOI

Øverland M., Karlsson A., Mydland L. T., Romarheim O. H., Skrede A. (2013). Evaluation of Candida utilis, Kluyveromyces marxianus and Saccharomyces cerevisiae yeasts as protein sources in diets for Atlantic salmon (Salmo salar). Aquaculture 402-403, 1–7. 10.1016/j.aquaculture.2013.03.016 DOI

Øverland M., Skrede A. (2017). Yeast derived from lignocellulosic biomass as a sustainable feed resource for use in aquaculture. J. Sci. Food Agric. 97, 733–742. 10.1002/jsfa.8007 PubMed DOI

Pettersson A., Johnsson L., Brännäs E., Pickova J. (2009). Effects of rapeseed oil replacement in fish feed on lipid composition and self-selection by rainbow trout (Oncorhynchus mykiss). Aquac. Nutr. 15, 577–586. 10.1111/j.1365-2095.2008.00625.x DOI

Pettersson A., Pickova J., Brännäs E. (2010). Swimming performance at different temperatures and fatty acid composition of Arctic charr (Salvelinus alpinus) fed palm and rapeseed oils. Aquaculture 300, 176–181. 10.1016/j.aquaculture.2010.01.017 DOI

Pickova J., Dutta P. C., Larsson P.-O., Kiessling A. (1997). Early embryonic cleavage pattern, hatching success, and egg-lipid fatty acid composition: Comparison between two cod (Gadus morhua) stocks. Can. J. Fish. Aquat. Sci. 54, 2410–2416. 10.1139/f97-148 DOI

Pinheiro M. J., Bonturi N., Belouah I., Miranda E. A., Lahtvee P. J. (2020). Xylose metabolism and the effect of oxidative stress on lipid and carotenoid production in Rhodotorula toruloides: Insights for future biorefinery. Front. Bioeng. Biotechnol. 8, 1008. 10.3389/fbioe.2020.01008 PubMed DOI PMC

Prathomya P., Prisingkorn W., Jakovlić I., Deng F. Y., Zhao Y. H., Wang W. M. (2017). 1H NMR-based metabolomics approach reveals metabolic alterations in response to dietary imbalances in Megalobrama amblycephala . Metabolomics 13, 17. 10.1007/s11306-016-1158-7 DOI

Rimoldi S., Gini E., Koch J. F. A., Iannini F., Brambilla F., Terova G. (2020). Correction to: Effects of hydrolyzed fish protein and autolyzed yeast as substitutes of fishmeal in the gilthead sea bream (Sparus aurata) diet, on fish intestinal microbiome. BMC Vet. Res. 16, 219. 10.1186/s12917-020-02416-1 PubMed DOI PMC

Röhnisch H. E., Eriksson J., Müllner E., Agback P., Sandström C., Moazzami A. A. (2018). AQuA: An automated quantification algorithm for high-throughput NMR-based metabolomics and its application in human plasma. Anal. Chem. 90, 2095–2102. 10.1021/acs.analchem.7b04324 PubMed DOI

Roques S., Deborde C., Richard N., Skiba-Cassy S., Moing A., Fauconneau B. (2020). Metabolomics and fish nutrition: A review in the context of sustainable feed development. Rev. Aquac. 12, 261–282. 10.1111/raq.12316 DOI

Sahlmann C., Djordjevic B., Lagos L., Mydland L. T., Morales-Lange B., Hansen J. Ø., et al. (2019). Yeast as a protein source during smoltification of Atlantic salmon (Salmo salar L.), enhances performance and modulates health. Aquaculture 513, 734396. 10.1016/j.aquaculture.2019.734396 DOI

Sánchez-Vázquez F. J., Yamamoto T., Akiyama T., Madrid J. A., Tabata M. (1999). Macronutrient self-selection through demand-feeders in rainbow trout. Physiol. Behav. 66, 45–51. 10.1016/S0031-9384(98)00313-8 PubMed DOI

Shah M. R., Lutzu G. A., Alam A., Sarker P., Kabir Chowdhury M. A., Parsaeimehr A., et al. (2018). Microalgae in aquafeeds for a sustainable aquaculture industry. J. Appl. Phycol. 30, 197–213. 10.1007/s10811-017-1234-z DOI

Soaudy M. R., Mohammady E. Y., Elashry M. A., Ali M. M., Ahmed N. M., Hegab M. H., et al. (2021). Possibility mitigation of cold stress in Nile tilapia under biofloc system by dietary propylene glycol: Performance feeding status, immune, physiological responses and transcriptional response of delta-9-desaturase gene. Aquaculture 538, 736519. 10.1016/j.aquaculture.2021.736519 DOI

Song X., Marandel L., Skiba-Cassy S., Corraze G., Dupont-Nivet M., Quillet E., et al. (2018). Regulation by dietary carbohydrates of intermediary metabolism in liver and muscle of two isogenic lines of rainbow trout. Front. Physiol. 9, 1579. 10.3389/fphys.2018.01579 PubMed DOI PMC

Sprague M., Betancor M. B., Tocher D. R. (2017). Microbial and genetically engineered oils as replacements for fish oil in aquaculture feeds. Biotechnol. Lett. 39, 1599–1609. 10.1007/s10529-017-2402-6 PubMed DOI PMC

Stoskopf M. K. (1993). Fish medicine. Saint Louis, MO: WB Saunders Company.

Sugiyama J., Fukagawa M., Chiu S. W., Komagata K. (1985). Cellular carbohydrate composition, DNA base composition, ubiquinone systems, and diazonium blue B color test in the genera Rhodosporidium, Leucosporidium, Rhodotorula and related basidiomycetous yeasts. J. Gen. Appl. Microbiol. 31, 519–550. 10.2323/jgam.31.519 DOI

Taheri Mirghaed A., Ghelichpour M., Mirzargar S. S., Joshaghani H., Ebrahimzadeh Mousavi H. (2018). Toxic effects of indoxacarb on gill and kidney histopathology and biochemical indicators in common carp (Cyprinus carpio). Aquac. Res. 49, 1616–1627. 10.1111/are.13617 DOI

Teoh C. Y., Ng W. K. (2016). The implications of substituting dietary fish oil with vegetable oils on the growth performance, fillet fatty acid profile and modulation of the fatty acid elongase, desaturase and oxidation activities of red hybrid tilapia, Oreochromis sp. Aquaculture 465, 311–322. 10.1016/j.aquaculture.2016.09.023 DOI

Thomassen M. S., Røsjø C. (1989). Different fats in feed for salmon: Influence on sensory parameters, growth rate and fatty acids in muscle and heart. Aquaculture 79, 129–135. 10.1016/0044-8486(89)90453-5 DOI

Vidakovic A., Huyben D., Sundh H., Nyman A., Vielma J., Passoth V., et al. (2020). Growth performance, nutrient digestibility and intestinal morphology of rainbow trout (Oncorhynchus mykiss) fed graded levels of the yeasts Saccharomyces cerevisiae and Wickerhamomyces anomalus . Aquac. Nutr. 26, 275–286. 10.1111/anu.12988 DOI

Wagner L., Gómez-Requeni P., Moazzami A. A., Lundh T., Vidakovic A., Langeland M., et al. (2019). 1H NMR-based metabolomics and lipid analyses revealed the effect of dietary replacement of microbial extracts or mussel meal with fish meal to Arctic charr (Salvelinus alpinus). Fishes 4, 46. 10.3390/fishes4030046 DOI

Wagner L., Trattner S., Pickova J., Gómez-Requeni P., Moazzami A. A. (2014). ¹H NMR-based metabolomics studies on the effect of sesamin in Atlantic salmon (Salmo salar). Food Chem. 147, 98–105. 10.1016/j.foodchem.2013.09.128 PubMed DOI

Weijman A. C. M., Rodrigues de Miranda L., Van Der Walt J. P. (1988). Redefinition of Candida Berkhout and the consequent emendation of Cryptococcus Kützing and Rhodotorula Harrison. Antonie van Leeuwenhoek 54, 545–553. 10.1007/BF00588390 PubMed DOI

Willora F. P., Grønevik B., Liu C., Palihawadana A., Sørensen M., Hagen Ø. (2021). Total replacement of marine oil by rapeseed oil in plant protein rich diets of juvenile lumpfish (Cyclopterus lumpus): Effects on growth performance, chemical and fatty acid composition. Aquac. Rep. 19, 100560. 10.1016/j.aqrep.2020.100560 DOI

Wilson R. P. (1994). Utilization of dietary carbohydrate by fish. Aquaculture 124, 67–80. 10.1016/0044-8486(94)90363-8 DOI

Yockey J., Andres L., Carson M., Ory J. J., Reese A. J. (2019). Cell envelope integrity and capsule characterization of Rhodotorula mucilaginosa strains from clinical and environmental sources. MSphere 4, e00166–19. 10.1128/msphere.00166-19 PubMed DOI PMC

Zhang P., Yang F., Hu J., Han D., Liu H., Jin J., et al. (2020). Optimal form of yeast cell wall promotes growth, immunity and disease resistance in gibel carp (Carassius auratus gibelio). Aquac. Rep. 18, 100465. 10.1016/j.aqrep.2020.100465 DOI

Zhao L., Liao L., Tang X., Liang J., Liu Q., Luo W., et al. (2022). High-carbohydrate diet altered conversion of metabolites, and deteriorated health in juvenile largemouth bass. Aquaculture 549, 737816. 10.1016/j.aquaculture.2021.737816 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...