Are There Hidden Genes in DNA/RNA Vaccines?

. 2022 ; 13 () : 801915. [epub] 20220208

Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35211117

Grantová podpora
Wellcome Trust - United Kingdom
200814/Z/16/Z Wellcome Trust - United Kingdom

Due to the fast global spreading of the Severe Acute Respiratory Syndrome Coronavirus - 2 (SARS-CoV-2), prevention and treatment options are direly needed in order to control infection-related morbidity, mortality, and economic losses. Although drug and inactivated and attenuated virus vaccine development can require significant amounts of time and resources, DNA and RNA vaccines offer a quick, simple, and cheap treatment alternative, even when produced on a large scale. The spike protein, which has been shown as the most antigenic SARS-CoV-2 protein, has been widely selected as the target of choice for DNA/RNA vaccines. Vaccination campaigns have reported high vaccination rates and protection, but numerous unintended effects, ranging from muscle pain to death, have led to concerns about the safety of RNA/DNA vaccines. In parallel to these studies, several open reading frames (ORFs) have been found to be overlapping SARS-CoV-2 accessory genes, two of which, ORF2b and ORF-Sh, overlap the spike protein sequence. Thus, the presence of these, and potentially other ORFs on SARS-CoV-2 DNA/RNA vaccines, could lead to the translation of undesired proteins during vaccination. Herein, we discuss the translation of overlapping genes in connection with DNA/RNA vaccines. Two mRNA vaccine spike protein sequences, which have been made publicly-available, were compared to the wild-type sequence in order to uncover possible differences in putative overlapping ORFs. Notably, the Moderna mRNA-1273 vaccine sequence is predicted to contain no frameshifted ORFs on the positive sense strand, which highlights the utility of codon optimization in DNA/RNA vaccine design to remove undesired overlapping ORFs. Since little information is available on ORF2b or ORF-Sh, we use structural bioinformatics techniques to investigate the structure-function relationship of these proteins. The presence of putative ORFs on DNA/RNA vaccine candidates implies that overlapping genes may contribute to the translation of smaller peptides, potentially leading to unintended clinical outcomes, and that the protein-coding potential of DNA/RNA vaccines should be rigorously examined prior to administration.

Zobrazit více v PubMed

Wu F, Zhao S, Yu B, Chen Y-M, Wang W, Song Z-G, et al. . A New Coronavirus Associated With Human Respiratory Disease in China. Nature (2020) 579:265–9. doi: 10.1038/s41586-020-2008-3 PubMed DOI PMC

Cevik M, Kuppalli K, Kindrachuk J, Peiris M. Virology, Transmission, and Pathogenesis of SARS-CoV-2. BMJ (2020) 371:m3862. doi: 10.1136/bmj.m3862 PubMed DOI

Cucinotta D, Vanelli M. WHO Declares COVID-19 a Pandemic. Acta BioMed (2020) 91:157–60. doi: 10.23750/abm.v91i1.9397 PubMed DOI PMC

Gorain B, Choudhury H, Molugulu N, Athawale RB, Kesharwani P. Fighting Strategies Against the Novel Coronavirus Pandemic: Impact on Global Economy. Front Public Heal (2020) 8:606129. doi: 10.3389/fpubh.2020.606129 PubMed DOI PMC

Pronker ES, Weenen TC, Commandeur H, Claassen EHJHM, Osterhaus ADME. Risk in Vaccine Research and Development Quantified. PloS One (2013) 8:e57755. doi: 10.1371/journal.pone.0057755 PubMed DOI PMC

Scannell JW, Blanckley A, Boldon H, Warrington B. Diagnosing the Decline in Pharmaceutical R&D Efficiency. Nat Rev Drug Discov (2012) 11:191–200. doi: 10.1038/nrd3681 PubMed DOI

Brisse M, Vrba SM, Kirk N, Liang Y, Ly H. Emerging Concepts and Technologies in Vaccine Development. Front Immunol (2020) 11:583077. doi: 10.3389/fimmu.2020.583077 PubMed DOI PMC

Nelson CW, Ardern Z, Goldberg TL, Meng C, Kuo C-H, Ludwig C, et al. . Dynamically Evolving Novel Overlapping Gene as a Factor in the SARS-CoV-2 Pandemic. Elife (2020) 9:e59633. doi: 10.7554/eLife.59633 PubMed DOI PMC

Finkel Y, Mizrahi O, Nachshon A, Weingarten-Gabbay S, Morgenstern D, Yahalom-Ronen Y, et al. . The Coding Capacity of SARS-CoV-2. Nature (2021) 589:125–30. doi: 10.1038/s41586-020-2739-1 PubMed DOI

Davidson AD, Williamson MK, Lewis S, Shoemark D, Carroll MW, Heesom KJ, et al. . Characterisation of the Transcriptome and Proteome of SARS-CoV-2 Reveals a Cell Passage Induced in-Frame Deletion of the Furin-Like Cleavage Site From the Spike Glycoprotein. Genome Med (2020) 12:68. doi: 10.1186/s13073-020-00763-0 PubMed DOI PMC

Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, et al. . Structure of the SARS-CoV-2 Spike Receptor-Binding Domain Bound to the ACE2 Receptor. Nature (2020) 581:215–20. doi: 10.1038/s41586-020-2180-5 PubMed DOI

Dandan L, Jinming L, Suzanne KC. Immunologic Testing for SARS-CoV-2 Infection From the Antigen Perspective. J Clin Microbiol (2021) 59:e02160-20. doi: 10.1128/JCM.02160-20 PubMed DOI PMC

Grant OC, Montgomery D, Ito K, Woods RJ. Analysis of the SARS-CoV-2 Spike Protein Glycan Shield Reveals Implications for Immune Recognition. Sci Rep (2020) 10:14991. doi: 10.1038/s41598-020-71748-7 PubMed DOI PMC

Watanabe Y, Allen JD, Wrapp D, McLellan JS, Crispin M. Site-Specific Glycan Analysis of the SARS-CoV-2 Spike. Science (2020) 369:330–3. doi: 10.1126/science.abb9983 PubMed DOI PMC

Samrat SK, Tharappel AM, Li Z, Li H. Prospect of SARS-CoV-2 Spike Protein: Potential Role in Vaccine and Therapeutic Development. Virus Res (2020) 288:198141. doi: 10.1016/j.virusres.2020.198141 PubMed DOI PMC

Wang J, Peng Y, Xu H, Cui Z. Williams RO 3rd. The COVID-19 Vaccine Race: Challenges and Opportunities in Vaccine Formulation. AAPS PharmSciTech (2020) 21:225. doi: 10.1208/s12249-020-01744-7 PubMed DOI PMC

Peletta A, Prompetchara E, Tharakhet K, Kaewpang P, Buranapraditkun S, Techawiwattanaboon T, et al. . DNA Vaccine Administered by Cationic Lipoplexes or by In Vivo Electroporation Induces Comparable Antibody Responses Against SARS-CoV-2 in Mice. Vaccines (2021) 9:874. doi: 10.3390/vaccines9080874 PubMed DOI PMC

Rijkers GT, Weterings N, Obregon-Henao A, Lepolder M, Dutt TS, van Overveld FJ, et al. . Antigen Presentation of mRNA-Based and Virus-Vectored SARS-CoV-2 Vaccines. Vaccines (2021) 9:848. doi: 10.3390/vaccines9080848 PubMed DOI PMC

Heinz FX, Stiasny K. Distinguishing Features of Current COVID-19 Vaccines: Knowns and Unknowns of Antigen Presentation and Modes of Action. NPJ Vaccines (2021) 6:104. doi: 10.1038/s41541-021-00369-6 PubMed DOI PMC

Park JW, Lagniton PNP, Liu Y, Xu R-H. mRNA Vaccines for COVID-19: What, Why and How. Int J Biol Sci (2021) 17:1446–60. doi: 10.7150/ijbs.59233 PubMed DOI PMC

Chung H, He S, Nasreen S, Sundaram ME, Buchan SA, Wilson SE, et al. . Effectiveness of BNT162b2 and mRNA-1273 Covid-19 Vaccines Against Symptomatic SARS-CoV-2 Infection and Severe Covid-19 Outcomes in Ontario, Canada: Test Negative Design Study. BMJ (2021) 374:n1943. doi: 10.1136/bmj.n1943 PubMed DOI PMC

Pritchard E, Matthews PC, Stoesser N, Eyre DW, Gethings O, Vihta K-D, et al. . Impact of Vaccination on New SARS-CoV-2 Infections in the United Kingdom. Nat Med (2021) 27:1370–8. doi: 10.1038/s41591-021-01410-w PubMed DOI PMC

Wibmer CK, Ayres F, Hermanus T. SARS-CoV-2 501Y.V2 Escapes Neutralization By South African COVID-19 Donor Plasma. Nat Med (2021) 27:622–5. PubMed

Hosseini SA, Zahedipour F, Mirzaei H, Kazemi Oskuee R. Potential SARS-CoV-2 Vaccines: Concept, Progress, and Challenges. Int Immunopharmacol (2021) 97:107622. doi: 10.1016/j.intimp.2021.107622 PubMed DOI PMC

FDA Approves First COVID-19 Vaccine (2021). Available at: https://www.fda.gov/news-events/press-announcements/fda-approves-first-covid-19-vaccine (Accessed September 17, 2021).

Chakraborty S, Mallajosyula V, Tato CM, Tan GS, Wang TT. SARS-CoV-2 Vaccines in Advanced Clinical Trials: Where Do We Stand? Adv Drug Deliv Rev (2021) 172:314–38. doi: 10.1016/j.addr.2021.01.014 PubMed DOI PMC

Menni C, Klaser K, May A, Polidori L, Capdevila J, Louca P, et al. . Vaccine Side-Effects and SARS-CoV-2 Infection After Vaccination in Users of the COVID Symptom Study App in the UK: A Prospective Observational Study. Lancet Infect Dis (2021) 21:939–49. doi: 10.1016/S1473-3099(21)00224-3 PubMed DOI PMC

Lv G, Yuan J, Xiong X, Li M. Mortality Rate and Characteristics of Deaths Following COVID-19 Vaccination. Front Med (2021) 8:670370. doi: 10.3389/fmed.2021.670370 PubMed DOI PMC

Karayeva E, Kim HW, Bandy U, Clyne A, Marak TP. Monitoring Vaccine Adverse Event Reporting System (VAERS) Reports Related to COVID-19 Vaccination Efforts in Rhode Island. R I Med J (2013) (2021) 104:64–6. PubMed

Deb A, Abdelmalek J, Iwuji K, Nugent K. Acute Myocardial Injury Following COVID-19 Vaccination: A Case Report and Review of Current Evidence From Vaccine Adverse Events Reporting System Database. J Prim Care Commun Health (2021) 12:21501327211029230. doi: 10.1177/21501327211029230 PubMed DOI PMC

Sharifian-Dorche M, Bahmanyar M, Sharifian-Dorche A, Mohammadi P, Nomovi M, Mowla A. Vaccine-Induced Immune Thrombotic Thrombocytopenia and Cerebral Venous Sinus Thrombosis Post COVID-19 Vaccination; a Systematic Review. J Neurol Sci (2021) 428:117607. doi: 10.1016/j.jns.2021.117607 PubMed DOI PMC

Martinez-Marmol R, Giordano-Santini R, Kaulich E, Cho A-N, Riyadh MA, Robinson E, et al. . The SARS-CoV-2 Spike (S) and the Orthoreovirus P15 Cause Neuronal and Glial Fusion. bioRxiv (2021), 2021.09.01.458544. doi: 10.1101/2021.09.01.458544 DOI

Buzhdygan TP, DeOre BJ, Baldwin-Leclair A, Bullock TA, McGary HM, Khan JA, et al. . The SARS-CoV-2 Spike Protein Alters Barrier Function in 2D Static and 3D Microfluidic In-Vitro Models of the Human Blood–Brain Barrier. Neurobiol Dis (2020) 146:105131. doi: 10.1016/j.nbd.2020.105131 PubMed DOI PMC

Olajide OA, Iwuanyanwu VU, Adegbola OD, Al-Hindawi AA. SARS-CoV-2 Spike Glycoprotein S1 Induces Neuroinflammation in BV-2 Microglia. bioRxiv (2021), 2020.12.29.424619. doi: 10.1101/2020.12.29.424619 PubMed DOI PMC

Keith M, Tapas P, Vijayamahantesh, Ranjit R, Tom G. SARS-CoV-2 Spike Protein Induces Paracrine Senescence and Leukocyte Adhesion in Endothelial Cells. J Virol (2021) 95:e00794-21. doi: 10.1128/JVI.00794-21 PubMed DOI PMC

Orr MW, Mao Y, Storz G, Qian S-B. Alternative ORFs and Small ORFs: Shedding Light on the Dark Proteome. Nucleic Acids Res (2020) 48:1029–42. doi: 10.1093/nar/gkz734 PubMed DOI PMC

Calviello L, Hirsekorn A, Ohler U. Quantification of Translation Uncovers the Functions of the Alternative Transcriptome. Nat Struct Mol Biol (2020) 27:717–25. doi: 10.1038/s41594-020-0450-4 PubMed DOI

Huang J-Z, Chen M, Chen D, Gao X-C, Zhu S, Huang H, et al. . A Peptide Encoded by a Putative lncRNA HOXB-AS3 Suppresses Colon Cancer Growth. Mol Cell (2017) 68:171–84.e6. doi: 10.1016/j.molcel.2017.09.015 PubMed DOI

Anderson DM, Anderson KM, Chang C-L, Makarewich CA, Nelson BR, McAnally JR, et al. . A Micropeptide Encoded by a Putative Long Noncoding RNA Regulates Muscle Performance. Cell (2015) 160:595–606. doi: 10.1016/j.cell.2015.01.009 PubMed DOI PMC

Dinman JD. Mechanisms and Implications of Programmed Translational Frameshifting. WIREs RNA (2012) 3:661–73. doi: 10.1002/wrna.1126 PubMed DOI PMC

Bazykin GA, Kochetov AV. Alternative Translation Start Sites Are Conserved in Eukaryotic Genomes. Nucleic Acids Res (2011) 39:567–77. doi: 10.1093/nar/gkq806 PubMed DOI PMC

Yang Y, Wang Z. IRES-Mediated Cap-Independent Translation, a Path Leading to Hidden Proteome. J Mol Cell Biol (2019) 11:911–9. doi: 10.1093/jmcb/mjz091 PubMed DOI PMC

Chirico N, Vianelli A, Belshaw R. Why Genes Overlap in Viruses. Proc Biol Sci (2010) 277:3809–17. doi: 10.1098/rspb.2010.1052 PubMed DOI PMC

Pavesi A. Origin, Evolution and Stability of Overlapping Genes in Viruses: A Systematic Review. Genes (Basel) (2021) 12:809. doi: 10.3390/genes12060809 PubMed DOI PMC

Michel CJ, Mayer C, Poch O, Thompson JD. Characterization of Accessory Genes in Coronavirus Genomes. Virol J (2020) 17:131. doi: 10.1186/s12985-020-01402-1 PubMed DOI PMC

Weingarten-Gabbay S, Klaeger S, Sarkizova S, Pearlman LR, Chen DY, Gallagher KM, et al. . Profiling SARS-CoV-2 HLA-I Peptidome Reveals T Cell Epitopes From Out-of- Frame ORFs. Cell (2021) 184(15):3962–80. PubMed PMC

Pavesi A. Prediction of Two Novel Overlapping ORFs in the Genome of SARS-CoV-2. Virology (2021) 562:149–57. doi: 10.1016/j.virol.2021.07.011 PubMed DOI PMC

Jungreis I, Sealfon R, Kellis M. SARS-CoV-2 Gene Content and COVID-19 Mutation Impact by Comparing 44 Sarbecovirus Genomes. Nat Commun (2021) 12:2642. doi: 10.1038/s41467-021-22905-7 PubMed DOI PMC

Aoki A, Adachi H, Mori Y, Ito M, Sato K, Okuda K, et al. . A Rapid Screening Assay for L452R and T478K Spike Mutations in SARS-CoV-2 Delta Variant Using High-Resolution Melting Analysis. J Toxicol Sci (2021) 46:471–6. doi: 10.2131/jts.46.471 PubMed DOI

Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, White KM, et al. . A SARS-CoV-2 Protein Interaction Map Reveals Targets for Drug Repurposing. Nature (2020) 583:459–68. doi: 10.1038/s41586-020-2286-9 PubMed DOI PMC

Dominguez Andres A, Feng Y, Campos AR, Yin J, Yang C-C, James B, et al. . SARS-CoV-2 ORF9c Is a Membrane-Associated Protein That Suppresses Antiviral Responses in Cells. bioRxiv (2020), 2020.08.18.256776. doi: 10.1101/2020.08.18.256776 DOI

Alsulami AF, Thomas SE, Jamasb AR, Beaudoin CA, Moghul I, Bannerman B, et al. . SARS-CoV-2 3D Database: Understanding the Coronavirus Proteome and Evaluating Possible Drug Targets. Brief Bioinform (2021) 22:769–80. doi: 10.1093/bib/bbaa404 PubMed DOI PMC

Beaudoin CA, Jamasb AR, Alsulami AF, Copoiu L, van Tonder AJ, Hala S, et al. . Predicted Structural Mimicry of Spike Receptor-Binding Motifs From Highly Pathogenic Human Coronaviruses. Comput Struct Biotechnol J (2021) 19:3938–53. doi: 10.1016/j.csbj.2021.06.041 PubMed DOI PMC

Šali A, Blundell TL. Comparative Protein Modelling by Satisfaction of Spatial Restraints. J Mol Biol (1993) 234:779–815. doi: 10.1006/jmbi.1993.1626 PubMed DOI

Wang S, Li W, Liu S, Xu J. RaptorX-Property: A Web Server for Protein Structure Property Prediction. Nucleic Acids Res (2016) 44:W430–5. doi: 10.1093/nar/gkw306 PubMed DOI PMC

Wang S, Ma J, Xu J. AUCpreD: Proteome-Level Protein Disorder Prediction by AUC-Maximized Deep Convolutional Neural Fields. Bioinformatics (2016) 32:i672–9. doi: 10.1093/bioinformatics/btw446 PubMed DOI PMC

Yang J, Anishchenko I, Park H, Peng Z, Ovchinnikov S, Baker D. Improved Protein Structure Prediction Using Predicted Interresidue Orientations. Proc Natl Acad Sci (2020) 117:1496–503. doi: 10.1073/pnas.1914677117 PubMed DOI PMC

Bartas M, Volná A, Beaudoin CA, Poulsen ET, Červeň J, Brázda V, et al. . Unheeded SARS-CoV-2 Proteins? A Deep Look Into Negative-Sense RNA. bioRxiv (2021), 2020.11.27.400788. doi: 10.1101/2020.11.27.400788 PubMed DOI PMC

Gabler F, Nam S-Z, Till S, Mirdita M, Steinegger M, Söding J, et al. . Protein Sequence Analysis Using the MPI Bioinformatics Toolkit. Curr Protoc Bioinforma (2020) 72:e108. doi: 10.1002/cpbi.108 PubMed DOI

Lu S, Wang J, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, et al. . CDD/SPARCLE: The Conserved Domain Database in 2020. Nucleic Acids Res (2020) 48:D265–8. doi: 10.1093/nar/gkz991 PubMed DOI PMC

Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting Transmembrane Protein Topology With a Hidden Markov Model: Application to Complete Genomes. J Mol Biol (2001) 305:567–80. doi: 10.1006/jmbi.2000.4315 PubMed DOI

Ayoub R, Lee Y. Rupee: A Fast and Accurate Purely Geometric Protein Structure Search. PloS One (2019) 14:1–17. doi: 10.1371/journal.pone.0213712 PubMed DOI PMC

McClenaghan C, Hanson A, Lee S-J, Nichols CG. Coronavirus Proteins as Ion Channels: Current and Potential Research. Front Immunol (2020) 11:573339. doi: 10.3389/fimmu.2020.573339 PubMed DOI PMC

Cagliani R, Forni D, Clerici M, Sironi M. Coding Potential and Sequence Conservation of SARS-CoV-2 and Related Animal Viruses. Infect Genet Evol (2020) 83:104353. doi: 10.1016/j.meegid.2020.104353 PubMed DOI PMC

Peisach E, Pabo CO. Constraints for Zinc Finger Linker Design as Inferred From X-Ray Crystal Structure of Tandem Zif268–DNA Complexes. J Mol Biol (2003) 330:1–7. doi: 10.1016/S0022-2836(03)00572-2 PubMed DOI

Mauro VP, Chappell SA. A Critical Analysis of Codon Optimization in Human Therapeutics. Trends Mol Med (2014) 20:604–13. doi: 10.1016/j.molmed.2014.09.003 PubMed DOI PMC

Madeira F, Park YM, Lee J, Buso N, Gur T, Madhusoodanan N, et al. . The EMBL-EBI Search and Sequence Analysis Tools APIs in 2019. Nucleic Acids Res (2019) 47:W636–41. doi: 10.1093/nar/gkz268 PubMed DOI PMC

Bourret J, Alizon S, Bravo IG. COUSIN (COdon Usage Similarity INdex): A Normalized Measure of Codon Usage Preferences. Genome Biol Evol (2019) 11:3523–8. doi: 10.1093/gbe/evz262 PubMed DOI PMC

Puigbò P, Bravo IG, Garcia-Vallve S. CAIcal: A Combined Set of Tools to Assess Codon Usage Adaptation. Biol Direct (2008) 3:38. doi: 10.1186/1745-6150-3-38 PubMed DOI PMC

Sharp PM, Li WH. The Codon Adaptation Index–a Measure of Directional Synonymous Codon Usage Bias, and its Potential Applications. Nucleic Acids Res (1987) 15:1281–95. doi: 10.1093/nar/15.3.1281 PubMed DOI PMC

Li Y, Yang X, Wang N, Wang H, Yin B, Yang X, et al. . GC Usage of SARS-CoV-2 Genes Might Adapt to the Environment of Human Lung Expressed Genes. Mol Genet Genomics (2020) 295:1537–46. doi: 10.1007/s00438-020-01719-0 PubMed DOI PMC

Dilucca M, Forcelloni S, Georgakilas AG, Giansanti A, Pavlopoulou A. Codon Usage and Phenotypic Divergences of SARS-CoV-2 Genes. Viruses (2020) 12:498. doi: 10.3390/v12050498 PubMed DOI PMC

Smith TRF, Patel A, Ramos S, Elwood D, Zhu X, Yan J, et al. . Immunogenicity of a DNA Vaccine Candidate for COVID-19. Nat Commun (2020) 11:2601. doi: 10.1038/s41467-020-16505-0 PubMed DOI PMC

Walsh EE, Frenck RW, Jr., Falsey AR, Kitchin N, Absalon J, Gurtman A, et al. . Safety and Immunogenicity of Two RNA-Based Covid-19 Vaccine Candidates. N Engl J Med (2020) 383:2439–50. doi: 10.1056/NEJMoa2027906 PubMed DOI PMC

Aebischer A, Wernike K, König P, Franzke K, Wichgers Schreur PJ, Kortekaas J, et al. . Development of a Modular Vaccine Platform for Multimeric Antigen Display Using an Orthobunyavirus Model. Vaccines (2021) 9:651. doi: 10.3390/vaccines9060651 PubMed DOI PMC

Denis J, Majeau N, Acosta-Ramirez E, Savard C, Bedard M-C, Simard S, et al. . Immunogenicity of Papaya Mosaic Virus-Like Particles Fused to a Hepatitis C Virus Epitope: Evidence for the Critical Function of Multimerization. Virology (2007) 363:59–68. doi: 10.1016/j.virol.2007.01.011 PubMed DOI

Sahin U, Oehm P, Derhovanessian E, Jabulowsky RA, Vormehr M, Gold M, et al. . An RNA Vaccine Drives Immunity in Checkpoint-Inhibitor-Treated Melanoma. Nature (2020) 585:107–12. doi: 10.1038/s41586-020-2537-9 PubMed DOI

Trovato M, Maurano F, D’Apice L, Costa V, Sartorius R, Cuccaro F, et al. . E2 Multimeric Scaffold for Vaccine Formulation: Immune Response by Intranasal Delivery and Transcriptome Profile of E2-Pulsed Dendritic Cells. BMC Microbiol (2016) 16:152. doi: 10.1186/s12866-016-0772-x PubMed DOI PMC

Yi C, Sun X, Ye J, Ding L, Liu M, Yang Z, et al. . Key Residues of the Receptor Binding Motif in the Spike Protein of SARS-CoV-2 That Interact With ACE2 and Neutralizing Antibodies. Cell Mol Immunol (2020) 17:621–30. doi: 10.1038/s41423-020-0458-z PubMed DOI PMC

Forni G, Mantovani A, Forni G, Mantovani A, Moretta L, Rappuoli R, et al. . COVID-19 Vaccines: Where We Stand and Challenges Ahead. Cell Death Differ (2021) 28:626–39. doi: 10.1038/s41418-020-00720-9 PubMed DOI PMC

Gonçalves E, Guillén Y, Lama JR, Sanchez J, Brander C, Paredes R, et al. . Host Transcriptome and Microbiota Signatures Prior to Immunization Profile Vaccine Humoral Responsiveness. Front Immunol (2021) 12:657162. doi: 10.3389/fimmu.2021.657162 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...