Unheeded SARS-CoV-2 proteins? A deep look into negative-sense RNA

. 2022 May 13 ; 23 (3) : .

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35229157

Grantová podpora
200814/Z/16/Z Wellcome Trust - United Kingdom

SARS-CoV-2 is a novel positive-sense single-stranded RNA virus from the Coronaviridae family (genus Betacoronavirus), which has been established as causing the COVID-19 pandemic. The genome of SARS-CoV-2 is one of the largest among known RNA viruses, comprising of at least 26 known protein-coding loci. Studies thus far have outlined the coding capacity of the positive-sense strand of the SARS-CoV-2 genome, which can be used directly for protein translation. However, it has been recently shown that transcribed negative-sense viral RNA intermediates that arise during viral genome replication from positive-sense viruses can also code for proteins. No studies have yet explored the potential for negative-sense SARS-CoV-2 RNA intermediates to contain protein-coding loci. Thus, using sequence and structure-based bioinformatics methodologies, we have investigated the presence and validity of putative negative-sense ORFs (nsORFs) in the SARS-CoV-2 genome. Nine nsORFs were discovered to contain strong eukaryotic translation initiation signals and high codon adaptability scores, and several of the nsORFs were predicted to interact with RNA-binding proteins. Evolutionary conservation analyses indicated that some of the nsORFs are deeply conserved among related coronaviruses. Three-dimensional protein modeling revealed the presence of higher order folding among all putative SARS-CoV-2 nsORFs, and subsequent structural mimicry analyses suggest similarity of the nsORFs to DNA/RNA-binding proteins and proteins involved in immune signaling pathways. Altogether, these results suggest the potential existence of still undescribed SARS-CoV-2 proteins, which may play an important role in the viral lifecycle and COVID-19 pathogenesis.

Zobrazit více v PubMed

Zheng J. SARS-CoV-2: an emerging coronavirus that causes a global threat. Int J Biol Sci 2020;16:1678. PubMed PMC

Hu B, Guo H, Zhou P, et al. . Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol 2021;19:141–54. PubMed PMC

Wu F, Zhao S, Yu B, et al. . A new coronavirus associated with human respiratory disease in China. Nature 2020;579:265–9. PubMed PMC

Gordon DE, Jang GM, Bouhaddou M, et al. . A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature 2020;583:459–68. PubMed PMC

Zhang J, Cruz-cosme R, Zhuang M-W, et al. . A systemic and molecular study of subcellular localization of SARS-CoV-2 proteins. Signal Transduct Target Ther 2020;5:1–3. PubMed PMC

Jiang H, Li Y, Zhang H, et al. . SARS-CoV-2 proteome microarray for global profiling of COVID-19 specific IgG and IgM responses. Nat Commun 2020;11:1–11. PubMed PMC

Finkel Y, Mizrahi O, Nachshon A, et al. . The coding capacity of SARS-CoV-2. Nature 2021;589:125–30. PubMed

Brant AC, Tian W, Majerciak V, et al. . SARS-CoV-2: from its discovery to genome structure, transcription, and replication. Cell Biosci 2021;11:136. PubMed PMC

Nelson CW, Ardern Z, Goldberg TL, et al. . Dynamically evolving novel overlapping gene as a factor in the SARS-CoV-2 pandemic. Elife 2020;9:e59633. PubMed PMC

Pavesi A. Prediction of two novel overlapping ORFs in the genome of SARS-CoV-2. Virology 2021;562:149–57. PubMed PMC

Dinan AM, Lukhovitskaya NI, Olendraite I, et al. . A case for a negative-strand coding sequence in a group of positive-sense RNA viruses. Virus Evolution 2020;6:veaa007. PubMed PMC

Irigoyen N, Firth AE, Jones JD, et al. . High-resolution analysis of coronavirus gene expression by RNA sequencing and ribosome profiling. PLoS Pathog 2016;12:e1005473. PubMed PMC

Jungreis I, Sealfon R, Kellis M. SARS-CoV-2 gene content and COVID-19 mutation impact by comparing 44 Sarbecovirus genomes. Nat Commun 2021;12:2642. PubMed PMC

Alexandersen S, Chamings A, Bhatta TR. SARS-CoV-2 genomic and subgenomic RNAs in diagnostic samples are not an indicator of active replication. Nat Commun 2020;11:6059. PubMed PMC

Gong Y-N, Chen G-W, Chen C-J, et al. . Computational analysis and mapping of novel open reading frames in influenza a viruses. PLoS One 2014;9:e115016. PubMed PMC

Noderer WL, Flockhart RJ, Bhaduri A, et al. . Quantitative analysis of mammalian translation initiation sites by FACS-seq. Mol Syst Biol 2014;10:748. PubMed PMC

Nair VP, Anang S, Subramani C, et al. . Endoplasmic reticulum stress induced synthesis of a novel viral factor mediates efficient replication of genotype-1 hepatitis E virus. PLoS Pathog 2016;12:e1005521. PubMed PMC

Goldberg TL, Sibley SD, Pinkerton ME, et al. . Multidecade mortality and a homolog of hepatitis C virus in bald eagles (Haliaeetus leucocephalus), the National Bird of the USA. Sci Rep 2019;9:14953. PubMed PMC

La Bella T, Imbeaud S, Peneau C, et al. . Adeno-associated virus in the liver: natural history and consequences in tumour development. Gut 2020;69:737–47. PubMed

Tan K-E, Ng WL, Marinov GK, et al. . Identification and characterization of a novel Epstein-Barr virus-encoded circular RNA from LMP-2 gene. Sci Rep 2021;11:14392. PubMed PMC

Zuallaert J, Kim M, Soete A, et al. . TISRover: ConvNets learn biologically relevant features for effective translation initiation site prediction. Int J Data Min Bioinform 2018;20:267–84.

Salamov AA, Nishikawa T, Swindells MB. Assessing protein coding region integrity in cDNA sequencing projects. Bioinformatics 1998;14:384–90. PubMed

Acevedo JM, Hoermann B, Schlimbach T, et al. . Changes in global translation elongation or initiation rates shape the proteome via the Kozak sequence. Sci Rep 2018;8:4018. PubMed PMC

Jaafar ZA, Kieft JS. Viral RNA structure-based strategies to manipulate translation. Nat Rev Microbiol 2019;17:110–23. PubMed PMC

Monjaret F, Bourg N, Suel L, et al. . Cis-splicing and translation of the pre-trans-splicing molecule combine with efficiency in spliceosome-mediated RNA trans-splicing. Mol Ther 2014;22:1176–87. PubMed PMC

Hickman HD, Mays JW, Gibbs J, et al. . Influenza a virus negative strand RNA is translated for CD8+ T cell Immunosurveillance. The Journal of Immunology 2018;201:1222–8. PubMed PMC

Guarracino A, Pepe G, Ballesio F, et al. . BRIO: a web server for RNA sequence and structure motif scan. Nucleic Acids Res 2021;49:W67–71. PubMed PMC

Narita R, Takahasi K, Murakami E, et al. . A novel function of human Pumilio proteins in cytoplasmic sensing of viral infection. PLoS Pathog 2014;10:e1004417. PubMed PMC

May JP, Simon AE. Targeting of viral RNAs by Upf1-mediated RNA decay pathways. Curr Opin Virol 2021;47:1–8. PubMed PMC

Balinsky CA, Schmeisser H, Wells AI, et al. . IRAV (FLJ11286), an interferon-stimulated gene with antiviral activity against dengue virus, interacts with MOV10. J Virol 2017;91:e01606–16. PubMed PMC

Gregersen LH, Schueler M, Munschauer M, et al. . MOV10 is a 5′ to 3′ RNA helicase contributing to UPF1 mRNA target degradation by translocation along 3′ UTRs. Mol Cell 2014;54:573–85. PubMed

Szczesny RJ, Borowski LS, Brzezniak LK, et al. . Human mitochondrial RNA turnover caught in flagranti: involvement of hSuv3p helicase in RNA surveillance. Nucleic Acids Res 2010;38:279–98. PubMed PMC

Li Y, Masaki T, Shimakami T, et al. . hnRNP L and NF90 interact with hepatitis C virus 5′-terminal untranslated RNA and promote efficient replication. J Virol 2014;88:7199–209. PubMed PMC

Gebhardt A, Habjan M, Benda C, et al. . mRNA export through an additional cap-binding complex consisting of NCBP1 and NCBP3. Nat Commun 2015;6:8192. PubMed PMC

Taha MS, Haghighi F, Stefanski A, et al. . Novel FMRP interaction networks linked to cellular stress. FEBS J 2021;288:837–60. PubMed

Hu Y, Yang H, Hou C, et al. . COVID-19 related outcomes among individuals with neurodegenerative diseases: a cohort analysis in the UK biobank. BMC Neurol 2022;22:15. PubMed PMC

Mazza MG, De Lorenzo R, Conte C, et al. . Anxiety and depression in COVID-19 survivors: role of inflammatory and clinical predictors. Brain Behav Immun 2020;89:594–600. PubMed PMC

Szklarczyk D, Gable AL, Lyon D, et al. . STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 2019;47:D607–13. PubMed PMC

Soares MN, Eggelbusch M, Naddaf E, et al. . Skeletal muscle alterations in patients with acute Covid-19 and post-acute sequelae of Covid-19. J Cachexia Sarcopenia Muscle 2022;13:11–22. PubMed PMC

Patel KP, Patel PA, Vunnam RR, et al. . Gastrointestinal, hepatobiliary, and pancreatic manifestations of COVID-19. J Clin Virol 2020;128:104386. PubMed PMC

Bahir I, Fromer M, Prat Y, et al. . Viral adaptation to host: a proteome-based analysis of codon usage and amino acid preferences. Mol Syst Biol 2009;5:311. PubMed PMC

Jitobaom K, Phakaratsakul S, Sirihongthong T, et al. . Codon usage similarity between viral and some host genes suggests a codon-specific translational regulation. Heliyon 2020;6:e03915. PubMed PMC

Gu H, Chu DKW, Peiris M, et al. . Multivariate analyses of codon usage of SARS-CoV-2 and other betacoronaviruses. Virus Evolution 2020;6:veaa032. PubMed PMC

Roy A, Guo F, Singh B, et al. . Base composition and host adaptation of the SARS-CoV-2: insight from the codon usage perspective. Front Microbiol 2021;12:548275. PubMed PMC

Sharp PM, Li WH. The codon adaptation index--a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res 1987;15:1281–95. PubMed PMC

Dilucca M, Forcelloni S, Georgakilas AG, et al. . Codon usage and phenotypic divergences of SARS-CoV-2 genes. Viruses 2020;12:E498. PubMed PMC

Li Y, Yang X, Wang N, et al. . GC usage of SARS-CoV-2 genes might adapt to the environment of human lung expressed genes. Mol Genet Genom: MGG 2020;295:1537–46. PubMed PMC

Puigbò P, Bravo IG, Garcia-Vallve S. CAIcal: a combined set of tools to assess codon usage adaptation. Biol Direct 2008;3:38. PubMed PMC

Bourret J, Alizon S, Bravo IG. COUSIN (COdon usage similarity INdex): a normalized measure of codon usage preferences. Genome Biol Evol 2019;11:3523–8. PubMed PMC

Dalskov L, Møhlenberg M, Thyrsted J, et al. . SARS-CoV-2 evades immune detection in alveolar macrophages. EMBO Rep 2020;21:e51252. PubMed PMC

Grenga L, Gallais F, Pible O, et al. . Shotgun proteomics analysis of SARS-CoV-2-infected cells and how it can optimize whole viral particle antigen production for vaccines. Emerg Microb Infect 2020;9:1712–21. PubMed PMC

Bar-On YM, Flamholz A, Phillips R, et al. . SARS-CoV-2 (COVID-19) by the numbers. Elife 2020;9:e57309. PubMed PMC

Gouveia D, Grenga L, Gaillard J-C, et al. . Shortlisting SARS-CoV-2 peptides for targeted studies from experimental data-dependent acquisition tandem mass spectrometry data. Proteomics 2020;20:2000107. PubMed PMC

Renuse S, Vanderboom PM, Maus AD, et al. . A mass spectrometry-based targeted assay for detection of SARS-CoV-2 antigen from clinical specimens. EBioMedicine 2021;69:103465. PubMed PMC

Shi M, Jagger BW, Wise HM, et al. . Evolutionary conservation of the PA-X open reading frame in segment 3 of influenza A virus. J Virol 2012;86:12411–3. PubMed PMC

Veltri D, Wight MM, Crouch JA. SimpleSynteny: a web-based tool for visualization of microsynteny across multiple species. Nucleic Acids Res 2016;44:W41–5. PubMed PMC

Fuchs U, Rehkamp G, Haas OA, et al. . The human formin-binding protein 17 (FBP17) interacts with sorting nexin, SNX2, and is an MLL-fusion partner in acute myelogeneous leukemia. Proc Natl Acad Sci 2001;98:8756–61. PubMed PMC

Yang J, Anishchenko I, Park H, et al. . Improved protein structure prediction using predicted interresidue orientations. Proc Natl Acad Sci 2020;117:1496–503. PubMed PMC

Källberg M, Wang H, Wang S, et al. . Template-based protein structure modeling using the RaptorX web server. Nat Protoc 2012;7:1511–22. PubMed PMC

Sali A, Blundell TL. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 1993;234:779–815. PubMed

Webb B, Sali A. Protein structure modeling with MODELLER. Methods Mol Biol 2017;1654:39–54. PubMed

Krogh A, Larsson B, Heijne G, et al. . Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 2001;305:567–80. PubMed

Lomize MA, Pogozheva ID, Joo H, et al. . OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res 2012;40:D370–6. PubMed PMC

Gupta R, Brunak S. Prediction of glycosylation across the human proteome and the correlation to protein function. Pac Symp Biocomput 2001;7:310–22. PubMed

Steentoft C, Vakhrushev SY, Joshi HJ, et al. . Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. EMBO J 2013;32:1478–88. PubMed PMC

Park S-J, Lee J, Qi Y, et al. . CHARMM-GUI glycan modeler for modeling and simulation of carbohydrates and glycoconjugates. Glycobiology 2019;29:320–31. PubMed PMC

Reily C, Stewart TJ, Renfrow MB, et al. . Glycosylation in health and disease. Nat Rev Nephrol 2019;15:346–66. PubMed PMC

Gasteiger E, Hoogland C, Gattiker A, et al. . Protein identification and analysis tools on the ExPASy server. In: Walker J.M. (eds) The Proteomics Protocols Handbook. Springer Protocols Handbooks. Humana Press, 2005;571–607.

Komazin-Meredith G, Santos WL, Filman DJ, et al. . The positively charged surface of herpes simplex virus UL42 mediates DNA binding. J Biol Chem 2008;283:6154–61. PubMed PMC

Requião RD, Carneiro RL, Moreira MH, et al. . Viruses with different genome types adopt a similar strategy to pack nucleic acids based on positively charged protein domains. Sci Rep 2020;10:5470. PubMed PMC

Drayman N, Glick Y, Ben-nun-shaul O, et al. . Pathogens use structural mimicry of native host ligands as a mechanism for host receptor engagement. Cell Host Microbe 2013;14:63–73. PubMed

Beaudoin CA, Jamasb AR, Alsulami AF, et al. . Predicted structural mimicry of spike receptor-binding motifs from highly pathogenic human coronaviruses. Comput Struct Biotechnol J 2021;19:3938–53. PubMed PMC

Ayoub R, Lee Y. RUPEE: a fast and accurate purely geometric protein structure search. PLoS One 2019;14:e0213712. PubMed PMC

Guven-Maiorov E, Hakouz A, Valjevac S, et al. . HMI-PRED: a web server for structural prediction of host-microbe interactions based on interface mimicry. J Mol Biol 2020;432:3395–403. PubMed PMC

Zhang Y, Skolnick J. TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res 2005;33:2302–9. PubMed PMC

Miyazono K, Zhi Y, Takamura Y, et al. . Cooperative DNA-binding and sequence-recognition mechanism of aristaless and clawless. EMBO J 2010;29:1613–23. PubMed PMC

Thomas C, Moraga I, Levin D, et al. . Structural linkage between ligand discrimination and receptor activation by type I interferons. Cell 2011;146:621–32. PubMed PMC

Marchler-Bauer A, Derbyshire MK, Gonzales NR, et al. . CDD: NCBI’s conserved domain database. Nucleic Acids Res 2015;43:D222–6. PubMed PMC

Mistry J, Chuguransky S, Williams L, et al. . Pfam: the protein families database in 2021. Nucleic Acids Res 2021;49:D412–9. PubMed PMC

Letunic I, Khedkar S, Bork P. SMART: recent updates, new developments and status in 2020. Nucleic Acids Res 2021;49:D458–60. PubMed PMC

Xu D, Zhang Y. Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field. Prot Struct Funct Bioinform 2012;80:1715–35. PubMed PMC

Pettersen EF, Goddard TD, Huang CC, et al. . UCSF chimera—a visualization system for exploratory research and analysis. J Comput Chem 2004;25:1605–12. PubMed

Boeckmann B, Bairoch A, Apweiler R, et al. . The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res 2003;31:365–70. PubMed PMC

Consortium U . UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 2019;47:D506–15. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Are There Hidden Genes in DNA/RNA Vaccines?

. 2022 ; 13 () : 801915. [epub] 20220208

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...