Unheeded SARS-CoV-2 proteins? A deep look into negative-sense RNA
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
200814/Z/16/Z
Wellcome Trust - United Kingdom
PubMed
35229157
PubMed Central
PMC9116216
DOI
10.1093/bib/bbac045
PII: 6539840
Knihovny.cz E-zdroje
- Klíčová slova
- Kozak sequence, ORFs, RNA, SARS-CoV-2, proteomics, structures,
- MeSH
- COVID-19 * genetika MeSH
- genom virový MeSH
- lidé MeSH
- pandemie MeSH
- proteiny vázající RNA genetika MeSH
- RNA virová chemie genetika MeSH
- SARS-CoV-2 * genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- proteiny vázající RNA MeSH
- RNA virová MeSH
SARS-CoV-2 is a novel positive-sense single-stranded RNA virus from the Coronaviridae family (genus Betacoronavirus), which has been established as causing the COVID-19 pandemic. The genome of SARS-CoV-2 is one of the largest among known RNA viruses, comprising of at least 26 known protein-coding loci. Studies thus far have outlined the coding capacity of the positive-sense strand of the SARS-CoV-2 genome, which can be used directly for protein translation. However, it has been recently shown that transcribed negative-sense viral RNA intermediates that arise during viral genome replication from positive-sense viruses can also code for proteins. No studies have yet explored the potential for negative-sense SARS-CoV-2 RNA intermediates to contain protein-coding loci. Thus, using sequence and structure-based bioinformatics methodologies, we have investigated the presence and validity of putative negative-sense ORFs (nsORFs) in the SARS-CoV-2 genome. Nine nsORFs were discovered to contain strong eukaryotic translation initiation signals and high codon adaptability scores, and several of the nsORFs were predicted to interact with RNA-binding proteins. Evolutionary conservation analyses indicated that some of the nsORFs are deeply conserved among related coronaviruses. Three-dimensional protein modeling revealed the presence of higher order folding among all putative SARS-CoV-2 nsORFs, and subsequent structural mimicry analyses suggest similarity of the nsORFs to DNA/RNA-binding proteins and proteins involved in immune signaling pathways. Altogether, these results suggest the potential existence of still undescribed SARS-CoV-2 proteins, which may play an important role in the viral lifecycle and COVID-19 pathogenesis.
Department of Biology and Ecology University of Ostrava Ostrava 710 00 Czech Republic
Department of Molecular Biology and Genetics Aarhus University 8000 Aarhus Denmark
Department of Physics University of Ostrava Ostrava 710 00 Czech Republic
Global Change Research Institute Czech Academy of Sciences Brno 603 00 Czech Republic
Institute of Biophysics Czech Academy of Sciences Brno 612 65 Czech Republic
Zobrazit více v PubMed
Zheng J. SARS-CoV-2: an emerging coronavirus that causes a global threat. Int J Biol Sci 2020;16:1678. PubMed PMC
Hu B, Guo H, Zhou P, et al. . Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol 2021;19:141–54. PubMed PMC
Wu F, Zhao S, Yu B, et al. . A new coronavirus associated with human respiratory disease in China. Nature 2020;579:265–9. PubMed PMC
Gordon DE, Jang GM, Bouhaddou M, et al. . A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature 2020;583:459–68. PubMed PMC
Zhang J, Cruz-cosme R, Zhuang M-W, et al. . A systemic and molecular study of subcellular localization of SARS-CoV-2 proteins. Signal Transduct Target Ther 2020;5:1–3. PubMed PMC
Jiang H, Li Y, Zhang H, et al. . SARS-CoV-2 proteome microarray for global profiling of COVID-19 specific IgG and IgM responses. Nat Commun 2020;11:1–11. PubMed PMC
Finkel Y, Mizrahi O, Nachshon A, et al. . The coding capacity of SARS-CoV-2. Nature 2021;589:125–30. PubMed
Brant AC, Tian W, Majerciak V, et al. . SARS-CoV-2: from its discovery to genome structure, transcription, and replication. Cell Biosci 2021;11:136. PubMed PMC
Nelson CW, Ardern Z, Goldberg TL, et al. . Dynamically evolving novel overlapping gene as a factor in the SARS-CoV-2 pandemic. Elife 2020;9:e59633. PubMed PMC
Pavesi A. Prediction of two novel overlapping ORFs in the genome of SARS-CoV-2. Virology 2021;562:149–57. PubMed PMC
Dinan AM, Lukhovitskaya NI, Olendraite I, et al. . A case for a negative-strand coding sequence in a group of positive-sense RNA viruses. Virus Evolution 2020;6:veaa007. PubMed PMC
Irigoyen N, Firth AE, Jones JD, et al. . High-resolution analysis of coronavirus gene expression by RNA sequencing and ribosome profiling. PLoS Pathog 2016;12:e1005473. PubMed PMC
Jungreis I, Sealfon R, Kellis M. SARS-CoV-2 gene content and COVID-19 mutation impact by comparing 44 Sarbecovirus genomes. Nat Commun 2021;12:2642. PubMed PMC
Alexandersen S, Chamings A, Bhatta TR. SARS-CoV-2 genomic and subgenomic RNAs in diagnostic samples are not an indicator of active replication. Nat Commun 2020;11:6059. PubMed PMC
Gong Y-N, Chen G-W, Chen C-J, et al. . Computational analysis and mapping of novel open reading frames in influenza a viruses. PLoS One 2014;9:e115016. PubMed PMC
Noderer WL, Flockhart RJ, Bhaduri A, et al. . Quantitative analysis of mammalian translation initiation sites by FACS-seq. Mol Syst Biol 2014;10:748. PubMed PMC
Nair VP, Anang S, Subramani C, et al. . Endoplasmic reticulum stress induced synthesis of a novel viral factor mediates efficient replication of genotype-1 hepatitis E virus. PLoS Pathog 2016;12:e1005521. PubMed PMC
Goldberg TL, Sibley SD, Pinkerton ME, et al. . Multidecade mortality and a homolog of hepatitis C virus in bald eagles (Haliaeetus leucocephalus), the National Bird of the USA. Sci Rep 2019;9:14953. PubMed PMC
La Bella T, Imbeaud S, Peneau C, et al. . Adeno-associated virus in the liver: natural history and consequences in tumour development. Gut 2020;69:737–47. PubMed
Tan K-E, Ng WL, Marinov GK, et al. . Identification and characterization of a novel Epstein-Barr virus-encoded circular RNA from LMP-2 gene. Sci Rep 2021;11:14392. PubMed PMC
Zuallaert J, Kim M, Soete A, et al. . TISRover: ConvNets learn biologically relevant features for effective translation initiation site prediction. Int J Data Min Bioinform 2018;20:267–84.
Salamov AA, Nishikawa T, Swindells MB. Assessing protein coding region integrity in cDNA sequencing projects. Bioinformatics 1998;14:384–90. PubMed
Acevedo JM, Hoermann B, Schlimbach T, et al. . Changes in global translation elongation or initiation rates shape the proteome via the Kozak sequence. Sci Rep 2018;8:4018. PubMed PMC
Jaafar ZA, Kieft JS. Viral RNA structure-based strategies to manipulate translation. Nat Rev Microbiol 2019;17:110–23. PubMed PMC
Monjaret F, Bourg N, Suel L, et al. . Cis-splicing and translation of the pre-trans-splicing molecule combine with efficiency in spliceosome-mediated RNA trans-splicing. Mol Ther 2014;22:1176–87. PubMed PMC
Hickman HD, Mays JW, Gibbs J, et al. . Influenza a virus negative strand RNA is translated for CD8+ T cell Immunosurveillance. The Journal of Immunology 2018;201:1222–8. PubMed PMC
Guarracino A, Pepe G, Ballesio F, et al. . BRIO: a web server for RNA sequence and structure motif scan. Nucleic Acids Res 2021;49:W67–71. PubMed PMC
Narita R, Takahasi K, Murakami E, et al. . A novel function of human Pumilio proteins in cytoplasmic sensing of viral infection. PLoS Pathog 2014;10:e1004417. PubMed PMC
May JP, Simon AE. Targeting of viral RNAs by Upf1-mediated RNA decay pathways. Curr Opin Virol 2021;47:1–8. PubMed PMC
Balinsky CA, Schmeisser H, Wells AI, et al. . IRAV (FLJ11286), an interferon-stimulated gene with antiviral activity against dengue virus, interacts with MOV10. J Virol 2017;91:e01606–16. PubMed PMC
Gregersen LH, Schueler M, Munschauer M, et al. . MOV10 is a 5′ to 3′ RNA helicase contributing to UPF1 mRNA target degradation by translocation along 3′ UTRs. Mol Cell 2014;54:573–85. PubMed
Szczesny RJ, Borowski LS, Brzezniak LK, et al. . Human mitochondrial RNA turnover caught in flagranti: involvement of hSuv3p helicase in RNA surveillance. Nucleic Acids Res 2010;38:279–98. PubMed PMC
Li Y, Masaki T, Shimakami T, et al. . hnRNP L and NF90 interact with hepatitis C virus 5′-terminal untranslated RNA and promote efficient replication. J Virol 2014;88:7199–209. PubMed PMC
Gebhardt A, Habjan M, Benda C, et al. . mRNA export through an additional cap-binding complex consisting of NCBP1 and NCBP3. Nat Commun 2015;6:8192. PubMed PMC
Taha MS, Haghighi F, Stefanski A, et al. . Novel FMRP interaction networks linked to cellular stress. FEBS J 2021;288:837–60. PubMed
Hu Y, Yang H, Hou C, et al. . COVID-19 related outcomes among individuals with neurodegenerative diseases: a cohort analysis in the UK biobank. BMC Neurol 2022;22:15. PubMed PMC
Mazza MG, De Lorenzo R, Conte C, et al. . Anxiety and depression in COVID-19 survivors: role of inflammatory and clinical predictors. Brain Behav Immun 2020;89:594–600. PubMed PMC
Szklarczyk D, Gable AL, Lyon D, et al. . STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 2019;47:D607–13. PubMed PMC
Soares MN, Eggelbusch M, Naddaf E, et al. . Skeletal muscle alterations in patients with acute Covid-19 and post-acute sequelae of Covid-19. J Cachexia Sarcopenia Muscle 2022;13:11–22. PubMed PMC
Patel KP, Patel PA, Vunnam RR, et al. . Gastrointestinal, hepatobiliary, and pancreatic manifestations of COVID-19. J Clin Virol 2020;128:104386. PubMed PMC
Bahir I, Fromer M, Prat Y, et al. . Viral adaptation to host: a proteome-based analysis of codon usage and amino acid preferences. Mol Syst Biol 2009;5:311. PubMed PMC
Jitobaom K, Phakaratsakul S, Sirihongthong T, et al. . Codon usage similarity between viral and some host genes suggests a codon-specific translational regulation. Heliyon 2020;6:e03915. PubMed PMC
Gu H, Chu DKW, Peiris M, et al. . Multivariate analyses of codon usage of SARS-CoV-2 and other betacoronaviruses. Virus Evolution 2020;6:veaa032. PubMed PMC
Roy A, Guo F, Singh B, et al. . Base composition and host adaptation of the SARS-CoV-2: insight from the codon usage perspective. Front Microbiol 2021;12:548275. PubMed PMC
Sharp PM, Li WH. The codon adaptation index--a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res 1987;15:1281–95. PubMed PMC
Dilucca M, Forcelloni S, Georgakilas AG, et al. . Codon usage and phenotypic divergences of SARS-CoV-2 genes. Viruses 2020;12:E498. PubMed PMC
Li Y, Yang X, Wang N, et al. . GC usage of SARS-CoV-2 genes might adapt to the environment of human lung expressed genes. Mol Genet Genom: MGG 2020;295:1537–46. PubMed PMC
Puigbò P, Bravo IG, Garcia-Vallve S. CAIcal: a combined set of tools to assess codon usage adaptation. Biol Direct 2008;3:38. PubMed PMC
Bourret J, Alizon S, Bravo IG. COUSIN (COdon usage similarity INdex): a normalized measure of codon usage preferences. Genome Biol Evol 2019;11:3523–8. PubMed PMC
Dalskov L, Møhlenberg M, Thyrsted J, et al. . SARS-CoV-2 evades immune detection in alveolar macrophages. EMBO Rep 2020;21:e51252. PubMed PMC
Grenga L, Gallais F, Pible O, et al. . Shotgun proteomics analysis of SARS-CoV-2-infected cells and how it can optimize whole viral particle antigen production for vaccines. Emerg Microb Infect 2020;9:1712–21. PubMed PMC
Bar-On YM, Flamholz A, Phillips R, et al. . SARS-CoV-2 (COVID-19) by the numbers. Elife 2020;9:e57309. PubMed PMC
Gouveia D, Grenga L, Gaillard J-C, et al. . Shortlisting SARS-CoV-2 peptides for targeted studies from experimental data-dependent acquisition tandem mass spectrometry data. Proteomics 2020;20:2000107. PubMed PMC
Renuse S, Vanderboom PM, Maus AD, et al. . A mass spectrometry-based targeted assay for detection of SARS-CoV-2 antigen from clinical specimens. EBioMedicine 2021;69:103465. PubMed PMC
Shi M, Jagger BW, Wise HM, et al. . Evolutionary conservation of the PA-X open reading frame in segment 3 of influenza A virus. J Virol 2012;86:12411–3. PubMed PMC
Veltri D, Wight MM, Crouch JA. SimpleSynteny: a web-based tool for visualization of microsynteny across multiple species. Nucleic Acids Res 2016;44:W41–5. PubMed PMC
Fuchs U, Rehkamp G, Haas OA, et al. . The human formin-binding protein 17 (FBP17) interacts with sorting nexin, SNX2, and is an MLL-fusion partner in acute myelogeneous leukemia. Proc Natl Acad Sci 2001;98:8756–61. PubMed PMC
Yang J, Anishchenko I, Park H, et al. . Improved protein structure prediction using predicted interresidue orientations. Proc Natl Acad Sci 2020;117:1496–503. PubMed PMC
Källberg M, Wang H, Wang S, et al. . Template-based protein structure modeling using the RaptorX web server. Nat Protoc 2012;7:1511–22. PubMed PMC
Sali A, Blundell TL. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 1993;234:779–815. PubMed
Webb B, Sali A. Protein structure modeling with MODELLER. Methods Mol Biol 2017;1654:39–54. PubMed
Krogh A, Larsson B, Heijne G, et al. . Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 2001;305:567–80. PubMed
Lomize MA, Pogozheva ID, Joo H, et al. . OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res 2012;40:D370–6. PubMed PMC
Gupta R, Brunak S. Prediction of glycosylation across the human proteome and the correlation to protein function. Pac Symp Biocomput 2001;7:310–22. PubMed
Steentoft C, Vakhrushev SY, Joshi HJ, et al. . Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. EMBO J 2013;32:1478–88. PubMed PMC
Park S-J, Lee J, Qi Y, et al. . CHARMM-GUI glycan modeler for modeling and simulation of carbohydrates and glycoconjugates. Glycobiology 2019;29:320–31. PubMed PMC
Reily C, Stewart TJ, Renfrow MB, et al. . Glycosylation in health and disease. Nat Rev Nephrol 2019;15:346–66. PubMed PMC
Gasteiger E, Hoogland C, Gattiker A, et al. . Protein identification and analysis tools on the ExPASy server. In: Walker J.M. (eds) The Proteomics Protocols Handbook. Springer Protocols Handbooks. Humana Press, 2005;571–607.
Komazin-Meredith G, Santos WL, Filman DJ, et al. . The positively charged surface of herpes simplex virus UL42 mediates DNA binding. J Biol Chem 2008;283:6154–61. PubMed PMC
Requião RD, Carneiro RL, Moreira MH, et al. . Viruses with different genome types adopt a similar strategy to pack nucleic acids based on positively charged protein domains. Sci Rep 2020;10:5470. PubMed PMC
Drayman N, Glick Y, Ben-nun-shaul O, et al. . Pathogens use structural mimicry of native host ligands as a mechanism for host receptor engagement. Cell Host Microbe 2013;14:63–73. PubMed
Beaudoin CA, Jamasb AR, Alsulami AF, et al. . Predicted structural mimicry of spike receptor-binding motifs from highly pathogenic human coronaviruses. Comput Struct Biotechnol J 2021;19:3938–53. PubMed PMC
Ayoub R, Lee Y. RUPEE: a fast and accurate purely geometric protein structure search. PLoS One 2019;14:e0213712. PubMed PMC
Guven-Maiorov E, Hakouz A, Valjevac S, et al. . HMI-PRED: a web server for structural prediction of host-microbe interactions based on interface mimicry. J Mol Biol 2020;432:3395–403. PubMed PMC
Zhang Y, Skolnick J. TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res 2005;33:2302–9. PubMed PMC
Miyazono K, Zhi Y, Takamura Y, et al. . Cooperative DNA-binding and sequence-recognition mechanism of aristaless and clawless. EMBO J 2010;29:1613–23. PubMed PMC
Thomas C, Moraga I, Levin D, et al. . Structural linkage between ligand discrimination and receptor activation by type I interferons. Cell 2011;146:621–32. PubMed PMC
Marchler-Bauer A, Derbyshire MK, Gonzales NR, et al. . CDD: NCBI’s conserved domain database. Nucleic Acids Res 2015;43:D222–6. PubMed PMC
Mistry J, Chuguransky S, Williams L, et al. . Pfam: the protein families database in 2021. Nucleic Acids Res 2021;49:D412–9. PubMed PMC
Letunic I, Khedkar S, Bork P. SMART: recent updates, new developments and status in 2020. Nucleic Acids Res 2021;49:D458–60. PubMed PMC
Xu D, Zhang Y. Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field. Prot Struct Funct Bioinform 2012;80:1715–35. PubMed PMC
Pettersen EF, Goddard TD, Huang CC, et al. . UCSF chimera—a visualization system for exploratory research and analysis. J Comput Chem 2004;25:1605–12. PubMed
Boeckmann B, Bairoch A, Apweiler R, et al. . The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res 2003;31:365–70. PubMed PMC
Consortium U . UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 2019;47:D506–15. PubMed PMC