Current applications of capillary electrophoresis-mass spectrometry for the analysis of biologically important analytes in urine (2017 to mid-2021): A review

. 2022 Jan ; 45 (1) : 305-324. [epub] 20211007

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34538010

Grantová podpora
TO1000232 EEA/Norway grants 2014 - 2021

Capillary electrophoresis coupled online with mass detection is a modern tool for analyzing wide ranges of compounds in complex samples, including urine. Capillary electrophoresis with mass spectrometry allows the separation and identification of various analytes spanning from small ions to high molecular weight protein complexes. Similarly to the much more common liquid chromatography-mass spectrometry techniques, the capillary electrophoresis separation reduces the complexity of the mixture of analytes entering the mass spectrometer resulting in reduced ion suppression and a more straightforward interpretation of the mass spectrometry data. This review summarizes capillary electrophoresis with mass spectrometry studies published between the years 2017 and 2021, aiming at the determination of various compounds excreted in urine. The properties of the urine, including its diagnostical and analytical features and chemical composition, are also discussed including general protocols for the urine sample preparation. The mechanism of the electrophoretic separation and the instrumentation for capillary electrophoresis with mass spectrometry coupling is also included. This review shows the potential of the capillary electrophoresis with mass spectrometry technique for the analyses of different kinds of analytes in a complex biological matrix. The discussed applications are divided into two main groups (capillary electrophoresis with mass spectrometry for the determination of drugs and drugs of abuse in urine and capillary electrophoresis with mass spectrometry for the studies of urinary metabolome).

Zobrazit více v PubMed

Khamis MM, Adamko DJ, El‐Aneed A. Mass spectrometric based approaches in urine metabolomics and biomarker discovery. Mass Spectrom Rev. 2017;36:115–34. PubMed

García A, Godzien J, López‐Gonzálvez Á, Barbas C. Capillary electrophoresis mass spectrometry as a tool for untargeted metabolomics. Bioanalysis 2017;9:99–130. PubMed

Wittke S, Fliser D, Haubitz M, Bartel S, Krebs R, Hausadel F, Hillmann M, Golovko I, Koester P, Haller H, Kaiser T, Mischak H, Weissinger EM. Determination of peptides and proteins in human urine with capillary electrophoresis–mass spectrometry, a suitable tool for the establishment of new diagnostic markers. J Chromatogr A. 2003;1013:173–81. PubMed

Ullsten S, Danielsson R, Bäckström D, Sjöberg P, Bergquist J. Urine profiling using capillary electrophoresis‐mass spectrometry and multivariate data analysis. J Chromatogr A. 2006;1117:87–93. PubMed

Bouatra S, Aziat F, Mandal R, Guo AC, Wilson MR, Knox C, Bjorndahl TC, Krishnamurthy R, Saleem F, Liu P, Dame ZT, Poelzer J, Huynh J, Yallou FS, Psychogios N, Dong E, Bogumil R, Roehring C, Wishart DS. The human urine metabolome. PLoS One. 2013;8:e73076. PubMed PMC

Decramer S, de Peredo AG, Breuil B, Mischak H, Monsarrat B, Bascands J‐L, Schanstra JP. Urine in clinical proteomics. Mol Cell Proteomics. 2008;7:1850–62. PubMed

Julian BA, Suzuki H, Suzuki Y, Tomino Y, Spasovski G, Novak J. Sources of urinary proteins and their analysis by urinary proteomics for the detection of biomarkers of disease. Proteomics Clin Appl. 2009;3:1029–43. PubMed PMC

Saude EJ, Sykes BD. Urine stability for metabolomic studies: effects of preparation and storage. Metabolomics 2007;3:19–27.

Kalantari S, Jafari A, Moradpoor R, Ghasemi E, Khalkhal E. Human urine proteomics: analytical techniques and clinical applications in renal diseases. Int J Proteomics. 2015;2015:1–17. PubMed PMC

Lenz EM, Bright J, Wilson ID, Hughes A, Morrisson J, Lindberg H, Lockton A. Metabonomics, dietary influences and cultural differences: a 1H NMR‐based study of urine samples obtained from healthy British and Swedish subjects. J Pharm Biomed Anal. 2004;36:841–9. PubMed

Ferreira L, Sánchez‐Juanes F, González‐Ávila M, Cembrero‐Fuciños D, Herrero‐Hernández A, González‐Buitrago JM, Muñoz‐Bellido JL. Direct identification of urinary tract pathogens from urine samples by matrix‐assisted laser desorption ionization‐time of flight mass spectrometry. J Clin Microbiol. 2010;48:2110–5. PubMed PMC

Premasiri WR, Clarke RH, Womble ME. Urine analysis by laser Raman spectroscopy. Lasers Surg Med. 2001;28:330–4. PubMed

Shaw RA, Kotowich S, Mantsch HH, Leroux M. Quantitation of protein, creatinine, and urea in urine by near‐infrared spectroscopy. Clin Biochem. 1996;29:11–19. PubMed

Yilmaz B, Arslan S. Determination of atenolol in human urine by using HPLC. Sep Sci PLUS. 2018;1:4–10.

Woźniak MK, Wiergowski M, Aszyk J, Kubica P, Namieśnik J, Biziuk M. Application of gas chromatography–tandem mass spectrometry for the determination of amphetamine‐type stimulants in blood and urine. J Pharm Biomed Anal. 2018;148:58–64. PubMed

Ryan D, Robards K, Prenzler PD, Kendall M. Recent and potential developments in the analysis of urine: a review. Anal Chim Acta. 2011;684:17–29. PubMed

Rose C, Parker A, Jefferson B, Cartmell E. The Characterization of feces and urine: a review of the literature to inform advanced treatment technology. Crit Rev Environ Sci Technol. 2015;45:1827–79. PubMed PMC

NASA Technical Reports Server (NTRS) . [cited 2020. Dec 12]. Available from: https://ntrs.nasa.gov/citations/19710023044

Kanbara A, Miura Y, Hyogo H, Chayama K, Seyama I. Effect of urine pH changed by dietary intervention on uric acid clearance mechanism of pH‐dependent excretion of urinary uric acid. Nutr J. 2012;11:39. PubMed PMC

Ure A. & A dictionary of chemistry and mineralogy: with their applications. T. Tegg & Son; London, 1831.

Liu L, Mo H, Wei S, Raftery D. Quantitative analysis of urea in human urine and serum by 1H nuclear magnetic resonance. Analyst 2012;137:595–600. PubMed PMC

Shahbaz H, Gupta M. StatPearls. Treasure Island, FL: StatPearls Publishing; ; 2020. PubMed

Pundir CS, Kumar P, Jaiwal R. Biosensing methods for determination of creatinine: a review. Biosens Bioelectron. 2019;126: 707–24. PubMed

Kodani E, Inoue H, Atarashi H, Tomita H, Okumura K, Yamashita T, Origasa H. Predictive ability of creatinine clearance versus estimated glomerular filtration rate for outcomes in patients with non‐valvular atrial fibrillation: subanalysis of the J‐RHYTHM Registry. IJC Heart Vasc. 2020;29:100559. PubMed PMC

Wagner BD, Accurso FJ, Laguna TA. The applicability of urinary creatinine as a method of specimen normalization in the cystic fibrosis population. J Cyst Fibros. 2010;9:212–6. PubMed PMC

Beasley‐Green A. Urine proteomics in the era of mass spectrometry. Int Neurourol J. 2016;20:S70–5. PubMed PMC

Zhao M, Li M, Yang Y, Guo Z, Sun Y, Shao C, Li M, Sun W, Gao Y. A comprehensive analysis and annotation of human normal urinary proteome. Sci Rep. 2017;7:3024. PubMed PMC

Sarigul N, Korkmaz F, Kurultak İ. A new artificial urine protocol to better imitate human urine. Sci Rep. 2019;9:1–11. PubMed PMC

Werth MT, Halouska S, Shortridge MD, Zhang B, Powers R. Analysis of metabolomic PCA data using tree diagrams. Anal Biochem. 2010;399:58–63. PubMed PMC

Mahadevan S, Shah SL, Marrie TJ, Slupsky CM. Analysis of metabolomic data using support vector machines. Anal Chem. 2008;80:7562–70. PubMed

Cook NR. Methods for evaluating novel biomarkers—a new paradigm. Int J Clin Pract. 2010;64:1723–7. PubMed PMC

Gas B. In: Worsfold P, Townshend A, Poole C, editors. Electrophoresis Principles. Encyclopedia of analytical science (2nd ed.). Oxford: Elsevier; 2005. pp. 363–370.

Foret F, Krivankova L, Bocek P. Capillary zone electrophoresis. Weinheim; New York: VCH Publishing; 1993.

Niessen WMA, Tjaden UR, van der Greef J. Capillary electrophoresis—mass spectrometry. J Chromatogr A. 1993;636:3–19.

Olivares JA, Nguyen NT, Yonker CR, Smith RD. On‐line mass spectrometric detection for capillary zone electrophoresis. Anal Chem. 1987;59:1230–2.

Holtkamp H, Grabmann G, Hartinger CG. Electrophoretic separation techniques and their hyphenation to mass spectrometry in biological inorganic chemistry. Electrophoresis 2016;37:959–72. PubMed

Foret F, Preisler J. Liquid phase interfacing and miniaturization in matrix‐assisted laser desorption/ionization mass spectrometry. Proteomics 2002;2:360–72. PubMed

Hommerson P, Khan AM, de Jong GJ, Somsen GW. Ionization techniques in capillary electrophoresis‐mass spectrometry: principles, design, and application. Mass Spectrom Rev. 2011;30:1096–120. PubMed

Banks JF. Recent advances in capillary electrophoresis/electrospray/mass spectrometry. Electrophoresis 1997;18:2255–66. PubMed

Smith RD, Barinaga CJ, Udseth HR. Improved electrospray ionization interface for capillary zone electrophoresis‐mass spectrometry. Anal Chem. 1988;60:1948–52.

Lee ED, Mück W, Henion JD, Covey TR. Liquid junction coupling for capillary zone electrophoresis/ion spray mass spectrometry. Biomed Environ Mass Spectrom. 1989;18:844–50.

Krenkova J, Kleparnik K, Luksch J, Foret F. Microfabricated liquid junction hybrid capillary electrophoresis‐mass spectrometry interface for fully automated operation. Electrophoresis 2019;40:2263–70. PubMed

Klepárník K, Otevřel M. Analyte transport in liquid junction nano‐electrospray interface between capillary electrophoresis and mass spectrometry. Electrophoresis 2010;31:879–85. PubMed

Issaq HJ, Janini GM, Chan KC, Veenstra TD. Sheathless electrospray ionization interfaces for capillary electrophoresis–mass spectrometric detection: advantages and limitations. J Chromatogr A. 2004;1053:37–42. PubMed

Wahl JH, Gale DC, Smith RD. Sheathless capillary electrophoresis‐electrospray ionization mass spectrometry using 10 μm I.D. capillaries: analyses of tryptic digests of cytochrome c. J Chromatogr A. 1994;659:217–22. PubMed

Maxwell EJ, Chen DDY. Twenty years of interface development for capillary electrophoresis–electrospray ionization–mass spectrometry. Anal Chim Acta. 2008;627:25–33. PubMed

Janini GM, Conrads TP, Wilkens KL, Issaq HJ, Veenstra TD. A sheathless nanoflow electrospray interface for on‐line capillary electrophoresis mass spectrometry. Anal Chem. 2003;75:1615–9. PubMed

Tycova A, Vido M, Kovarikova P, Foret F. Interface‐free capillary electrophoresis‐mass spectrometry system with nanospray ionization—analysis of dexrazoxane in blood plasma. J Chromatogr A. 2016;1466:173–9. PubMed

Řemínek R, Foret F, Chung DS. Application of capillary electrophoresis‐nano‐electrospray ionization‐mass spectrometry for the determination of N‐nitrosodimethylamine in pharmaceuticals. Electrophoresis 2021;42:334–41. PubMed

Heemskerk AAM, Deelder AM, Mayboroda OA. CE–ESI‐MS for bottom‐up proteomics: advances in separation, interfacing and applications. Mass Spectrom Rev. 2016;35:259–71. PubMed

Liu CC, Zhang J, Dovichi NJ. A sheath‐flow nanospray interface for capillary electrophoresis/mass spectrometry. Rapid Commun Mass Spectrom. 2005;19:187–92. PubMed

Wojcik R, Dada OO, Sadilek M, Dovichi NJ. Simplified capillary electrophoresis nanospray sheath‐flow interface for high efficiency and sensitive peptide analysis. Rapid Commun Mass Spectrom. 2010;24:2554–60. PubMed

Liu J‐X, Zhang Y‐W, Yuan F, Chen H‐X, Zhang X‐X. Differential detection of Rhizoma coptidis by capillary electrophoresis electrospray ionization mass spectrometry with a nanospray interface. Electrophoresis 2014;35:3258–63. PubMed

Ramautar R, Somsen GW, de Jong GJ. CE‐MS for metabolomics: developments and applications in the period 2016–2018. Electrophoresis 2019;40:165–79. PubMed PMC

van Mever M, Hankemeier T, Ramautar R. CE–MS for anionic metabolic profiling: an overview of methodological developments. Electrophoresis 2019;40:2349–59. PubMed PMC

Týčová A, Ledvina V, Klepárník K. Recent advances in CE‐MS coupling: instrumentation, methodology, and applications. Electrophoresis 2017;38:115–34. PubMed

Zhang W, Ramautar R. CE‐MS for metabolomics: developments and applications in the period 2018–2020. Electrophoresis 2020;42. Available from: https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/full/10.1002/elps.202000203. PubMed DOI PMC

Coon JJ, Zürbig P, Dakna M, Dominiczak AF, Decramer S, Fliser D, Frommberger M, Golovko I, Good DM, Herget‐Rosenthal S, Jankowski J, Julian BA, Kellmann M, Kolch W, Massy Z, Novak J, Rossing K, Schanstra JP, Schiffer E, Theodorescu D, Vanholder R, Weissinger EM, Mischak H, Schmitt‐Kopplin P. CE‐MS analysis of the human urinary proteome for biomarker discovery and disease diagnostics. PROTEOMICS – Clin Appl. 2008;2:964–73. PubMed PMC

Julian BA, Wittke S, Novak J, Good DM, Coon JJ, Kellmann M, Zürbig P, Schiffer E, Haubitz M, Moldoveanu Z, Calcatera SM, Wyatt RJ, Sýkora J, Sládková E, Hes O, Mischak H, McGuire BM. Electrophoretic methods for analysis of urinary polypeptides in IgA‐associated renal diseases. Electrophoresis 2007;28:4469–83. PubMed

Fernández‐Peralbo MA, Luque de Castro MD. Preparation of urine samples prior to targeted or untargeted metabolomics mass‐spectrometry analysis. TrAC Trends Anal Chem. 2012;41:75–85.

Susa ST, Preuss CV. Drug metabolism. Treasure Island, FL: StatPearls Publishing; 2020. PubMed

Hernández‐Mesa M, Cruces‐Blanco C, García‐Campaña AM. Capillary electrophoresis‐tandem mass spectrometry combined with molecularly imprinted solid phase extraction as useful tool for the monitoring of 5‐nitroimidazoles and their metabolites in urine samples. Talanta 2017;163:111–20. PubMed

Lecoeur M, Rabenirina G, Schifano N, Odou P, Ethgen S, Lebuffe G, Foulon C. Determination of acetaminophen and its main metabolites in urine by capillary electrophoresis hyphenated to mass spectrometry. Talanta 2019;205:120108. PubMed

Khan H, Gallant RC, Zamzam A, Jain S, Afxentiou S, Syed M, Kroezen Z, Shanmuganathan M, Britz‐McKibbin P, Rand ML, Ni H, Al‐Omran M, Qadura M. Personalization of aspirin therapy ex vivo in patients with atherosclerosis using light transmission aggregometry. Diagnostics 2020;10:871. PubMed PMC

Šebestová A, Baron D, Pechancová R, Pluháček T, Petr J. Determination of oxaliplatin enantiomers at attomolar levels by capillary electrophoresis connected with inductively coupled plasma mass spectrometry. Talanta 2019;205:120151. PubMed

Piešťanský J, Maráková K, Galba J, Kováč A, Mikuš P. Comparison of hydrodynamically closed two‐dimensional capillary electrophoresis coupled with ultraviolet detection and hydrodynamically open capillary electrophoresis hyphenated with mass spectrometry in the bioanalysis of varenicline. J Sep Sci. 2017;40:2292–303. PubMed

Camperi J, De Cock B, Pichon V, Combes A, Guibourdenche J, Fournier T, Vander Heyden Y, Mangelings D, Delaunay N. First characterizations by capillary electrophoresis of human chorionic gonadotropin at the intact level. Talanta 2019;193:77–86. PubMed

Maráková K, Piešťanský J, Zelinková Z, Mikuš P. Capillary electrophoresis hyphenated with mass spectrometry for determination of inflammatory bowel disease drugs in clinical urine samples. Molecules 2017;22:1973. PubMed PMC

Shanmuganathan M, Macklai S, Cárdenas CB, Kroezen Z, Kim M, Zizek W, Lee H, Britz‐McKibbin P. High‐throughput and comprehensive drug surveillance using multisegment injection‐capillary electrophoresis‐mass spectrometry. JoVE J Vis Exp. 2019;146:e58986. PubMed

DiBattista A, Rampersaud D, Lee H, Kim M, Britz‐McKibbin P. High throughput screening method for systematic surveillance of drugs of abuse by multisegment injection–capillary electrophoresis–mass spectrometry. Anal Chem. 2017;89:11853–61. PubMed

Pérez‐Alcaraz A, Borrull F, Aguilar C, Calull M, Benavente F. Enantiodetermination of R,S‐3,4‐methylenedioxypyrovalerone in urine samples by high pressure in‐line solid‐phase extraction capillary electrophoresis‐mass spectrometry. Talanta 2021;225:121994. PubMed

Ramautar R, Somsen GW, de Jong GJ. CE‐MS in metabolomics. Electrophoresis 2009;30:276–91. PubMed

Ishibashi Y, Harada S, Takeuchi A, Iida M, Kurihara A, Kato S, Kuwabara K, Hirata A, Shibuki T, Okamura T, Sugiyama D, Sato A, Amano K, Hirayama A, Sugimoto M, Soga T, Tomita M, Takebayashi T. Reliability of urinary charged metabolite concentrations in a large‐scale cohort study using capillary electrophoresis‐mass spectrometry. Sci Rep. 2021;11:7407. PubMed PMC

Saito R, Sugimoto M, Hirayama A, Soga T, Tomita M, Takebayashi T. Quality assessment of untargeted analytical data in a large‐scale metabolomic study. J Clin Med. 2021;10:1826. PubMed PMC

Drouin N, van Mever M, Zhang W, Tobolkina E, Ferre S, Servais A‐C, Gou M‐J, Nyssen L, Fillet M, Lageveen‐Kammeijer GSM, Nouta J, Chetwynd AJ, Lynch I, Thorn JA, Meixner J, Lößner C, Taverna M, Liu S, Tran NT, Francois Y, Lechner A, Nehmé R, Al Hamoui Dit Banni G, Nasreddine R, Colas C, Lindner HH, Faserl K, Neusüß C, Nelke M, Lämmerer S, Perrin C, Bich‐Muracciole C, Barbas C, Gonzálvez ÁL, Guttman A, Szigeti M, Britz‐McKibbin P, Kroezen Z, Shanmuganathan M, Nemes P, Portero EP, Hankemeier T, Codesido S, González‐Ruiz V, Rudaz S, Ramautar R. Capillary electrophoresis‐mass spectrometry at trial by metabo‐ring: effective electrophoretic mobility for reproducible and robust compound annotation. Anal Chem. 2020;92:14103–12. PubMed PMC

Mamani‐Huanca M, de la Fuente AG, Otero A, Gradillas A, Godzien J, Barbas C, López‐Gonzálvez Á. Enhancing confidence of metabolite annotation in capillary electrophoresis‐mass spectrometry untargeted metabolomics with relative migration time and in‐source fragmentation. J Chromatogr A. 2021;635:461758. PubMed

Wild J, Shanmuganathan M, Hayashi M, Potter M, Britz‐McKibbin P. Metabolomics for improved treatment monitoring of phenylketonuria: urinary biomarkers for non‐invasive assessment of dietary adherence and nutritional deficiencies. Analyst 2019;144,:6595–608. PubMed

Sasaki C, Hiraishi T, Oku T, Okuma K, Suzumura K, Hashimoto M, Ito H, Aramori I, Hirayama Y. Metabolomic approach to the exploration of biomarkers associated with disease activity in rheumatoid arthritis. PLoS One. 2019;14:e0219400. PubMed PMC

Pejchinovski M, Siwy J, Mullen W, Mischak H, Petri MA, Burkly LC, Wei R. Urine peptidomic biomarkers for diagnosis of patients with systematic lupus erythematosus. Lupus 2018;27:6–16. PubMed PMC

Tailliar M, Schanstra JP, Dierckx T, Breuil B, Hanouna G, Charles N, Bascands J‐L, Dussol B, Vazi A, Chiche L, Siwy J, Faguer S, Daniel L, Daugas E, Jourde‐Chiche N. Urinary peptides as potential non‐invasive biomarkers for lupus nephritis: results of the peptidu‐LUP study. J Clin Med. 2021;10:1690. PubMed PMC

Carleo A, Chorostowska‐Wynimko J, Koeck T, Mischak H, Czajkowska‐Malinowska M, Rozy A, Welte T, Janciauskiene S. Does urinary peptide content differ between COPD patients with and without inherited alpha‐1 antitrypsin deficiency? Int J Chron Obstruct Pulmon Dis. 2017;12:829–37. PubMed PMC

Weissinger EM, Human C, Metzger J, Hambach L, Wolf D, Greinix HT, Dickinson AM, Mullen W, Jonigk D, Kuzmina Z, Kreipe H, Schweier P, Böhm O, Türüchanow I, Ihlenburg‐Schwarz D, Raad J, Durban A, Schiemann M, Könecke C, Diedrich H, Holler E, Beutel G, Krauter J, Ganser A, Stadler M. The proteome pattern cGvHD_MS14 allows early and accurate prediction of chronic GvHD after allogeneic stem cell transplantation. Leukemia 2017;31:654–62. PubMed

Bannaga AS, Metzger J, Kyrou I, Voigtländer T, Book T, Melgarejo J, Latosinska A, Pejchinovski M, Staessen JA, Mischak H, Manns MP, Arasaradnam RP. Discovery, validation and sequencing of urinary peptides for diagnosis of liver fibrosis—a multicentre study. EBioMedicine. 2020;62:103083. PubMed PMC

Omar M, Windhagen H, Krettek C, Ettinger M. Noninvasive diagnostic of periprosthetic joint infection by urinary peptide markers: a preliminary study. J Orthop Res. 2021;39:339–47. PubMed

Nkuipou‐Kenfack E, Schanstra JP, Bajwa S, Pejchinovski M, Vinel C, Dray C, Valet P, Bascands J‐L, Vlahou A, Koeck T, Borries M, Busch H, Bechtel‐Walz W, Huber TB, Rudolph KL, Pich A, Mischak H, Zürbig P. The use of urinary proteomics in the assessment of suitability of mouse models for ageing. PLoS One. 2017;12:e0166875. PubMed PMC

Zhang ZY, Nkuipou‐Kenfack E, Yang WY, Mujaj B, Thijs L, Latosinska A, Acloque E, Mischak H, Mebazaa A. P3506A novel urinary biomarker predicts 1 year mortality after discharge from Intensive Care. Eur Heart J. 2019;40. 10.1093/eurheartj/ehz745.0370. PubMed DOI PMC

Gill B, Jobst K, Britz‐McKibbin P. Rapid screening of urinary 1‐hydroxypyrene glucuronide by multisegment injection–capillary electrophoresis–tandem mass spectrometry: a high‐throughput method for biomonitoring of recent smoke exposures. Anal Chem. 2020;92:13558–64. PubMed

Pontillo C, Mischak H. Urinary peptide‐based classifier CKD273: towards clinical application in chronic kidney disease. Clin Kidney J. 2017;10:192–201. PubMed PMC

Levey AS, Coresh J. Chronic kidney disease. The Lancet. 2012;379:165–80. PubMed

Good DM, Zürbig P, Argilés À, Bauer HW, Behrens G, Coon JJ, Dakna M, Decramer S, Delles C, Dominiczak AF, Ehrich JHH, Eitner F, Fliser D, Frommberger M, Ganser A, Girolami MA, Golovko I, Gwinner W, Haubitz M, Herget‐Rosenthal S, Jankowski J, Jahn H, Jerums G, Julian BA, Kellmann M, Kliem V, Kolch W, Krolewski AS, Luppi M, Massy Z, Melter M, Neusüss C, Novak J, Peter K, Rossing K, Rupprecht H, Schanstra JP, Schiffer E, Stolzenburg J‐U, Tarnow L, Theodorescu D, Thongboonkerd V, Vanholder R, Weissinger EM, Mischak H, Schmitt‐Kopplin P. Naturally occurring human urinary peptides for use in diagnosis of chronic kidney disease. Mol Cell Proteomics. 2010;9:2424–37. PubMed PMC

Lindhardt M, Persson F, Oxlund C, Jacobsen IA, Zürbig P, Mischak H, Rossing P, Heerspink HJL. Predicting albuminuria response to spironolactone treatment with urinary proteomics in patients with type 2 diabetes and hypertension. Nephrol Dial Transplant Off Publ Eur Dial Transpl Assoc ‐ Eur Ren Assoc. 2018;33:296–303. PubMed

Currie GE, von Scholten BJ, Mary S, Flores Guerrero J‐L, Lindhardt M, Reinhard H, Jacobsen PK, Mullen W, Parving H‐H, Mischak H, Rossing P, Delles C. Urinary proteomics for prediction of mortality in patients with type 2 diabetes and microalbuminuria. Cardiovasc Diabetol. 2018;17:50. PubMed PMC

Magalhães P, Pejchinovski M, Markoska K, Banasik M, Klinger M, Švec‐Billá D, Rychlík I, Rroji M, Restivo A, Capasso G, Bob F, Schiller A, Ortiz A, Perez‐Gomez MV, Cannata P, Sanchez‐Niño MD, Naumovic R, Brkovic V, Polenakovic M, Mullen W, Vlahou A, Zürbig P, Pape L, Ferrario F, Denis C, Spasovski G, Mischak H, Schanstra JP. Association of kidney fibrosis with urinary peptides: a path towards non‐invasive liquid biopsies? Sci Rep. 2017;7:16915. PubMed PMC

Rodríguez‐Ortiz ME, Pontillo C, Rodríguez M, Zürbig P, Mischak H, Ortiz A. Novel urinary biomarkers for improved prediction of progressive eGFR loss in early chronic kidney disease stages and in high risk individuals without chronic kidney disease. Sci Rep. 2018;8:15940. PubMed PMC

He T, Pejchinovski M, Mullen W, Beige J, Mischak H, Jankowski V. Peptides in plasma, urine, and dialysate: toward unravelling renal peptide handling. PROTEOMICS – Clin Appl. 2021;15:2000029. PubMed

Magalhães P, Pontillo C, Pejchinovski M, Siwy J, Krochmal M, Makridakis M, Carrick E, Klein J, Mullen W, Jankowski J, Vlahou A, Mischak H, Schanstra JP, Zürbig P, Pape L. Comparison of urine and plasma peptidome indicates selectivity in renal peptide handling. PROTEOMICS ‐ Clin Appl. 2018;12:1700163. PubMed

Fédou C, Breuil B, Golovko I, Decramer S, Magalhães P, Muller F, Dreux S, Zürbig P, Klein J, Schanstra JP, Buffin‐Meyer B. Comparison of the amniotic fluid and fetal urine peptidome for biomarker discovery in renal developmental disease. Sci Rep. 2020;10:21706. PubMed PMC

Markoska K, Pejchinovski M, Pontillo C, Zürbig P, Jacobs L, Smith A, Masin‐Spasovska J, Stojceva‐Taneva O, Polenakovic M, Magni F, Mischak H, Spasovski G. Urinary peptide biomarker panel associated with an improvement in estimated glomerular filtration rate in chronic kidney disease patients. Nephrol Dial Transplant. 2018;33:751–9. PubMed

Pejchinovski M, Siwy J, Metzger J, Dakna M, Mischak H, Klein J, Jankowski V, Bae KT, Chapman AB, Kistler AD. Urine peptidome analysis predicts risk of end‐stage renal disease and reveals proteolytic pathways involved in autosomal dominant polycystic kidney disease progression. Nephrol Dial Transplant. 2017;32:487–97. PubMed

Kanzelmeyer NK, Zürbig P, Mischak H, Metzger J, Fichtner A, Ruszai KH, Seemann T, Hansen M, Wygoda S, Krupka K, Tönshoff B, Melk A, Pape L. Urinary proteomics to diagnose chronic active antibody‐mediated rejection in pediatric kidney transplantation—a pilot study. Transpl Int. 2019;32:28–37. PubMed

Siwy J, Zürbig P, Argiles A, Beige J, Haubitz M, Jankowski J, Julian BA, Linde PG, Marx D, Mischak H, Mullen W, Novak J, Ortiz A, Persson F, Pontillo C, Rossing P, Rupprecht H, Schanstra JP, Vlahou A, Vanholder R. Noninvasive diagnosis of chronic kidney diseases using urinary proteome analysis. Nephrol Dial Transplant. 2017;32: 2079–89. PubMed PMC

Ricci P, Magalhães P, Krochmal M, Pejchinovski M, Daina E, Caruso MR, Goea L, Belczacka I, Remuzzi G, Umbhauer M, Drube J, Pape L, Mischak H, Decramer S, Schaefer F, Schanstra JP, Cereghini S, Zürbig P. Urinary proteome signature of renal cysts and diabetes syndrome in children. Sci Rep. 2019;9:2225. PubMed PMC

Huang Z‐A, Scotland KB, Li Y, Tan J, Kung SHY, Chew BH, Chen DDY, Lange D. Determination of urinary prostaglandin E2 as a potential biomarker of ureteral stent associated inflammation. J Chromatogr B Analyt Technol Biomed Life Sci. 2020;1145:122107. PubMed

Han X, Sanderson P, Nesheiwat S, Lin L, Yu Y, Zhang F, Amster IJ, Linhardt RJ. Structural analysis of urinary glycosaminoglycans from healthy human subjects. Glycobiology 2020;30:143–51. PubMed PMC

Mishima E, Fukuda S, Mukawa C, Yuri A, Kanemitsu Y, Matsumoto Y, Akiyama Y, Fukuda NN, Tsukamoto H, Asaji K, Shima H, Kikuchi K, Suzuki C, Suzuki T, Tomioka Y, Soga T, Ito S, Abe T. Evaluation of the impact of gut microbiota on uremic solute accumulation by a CE‐TOFMS‐based metabolomics approach. Kidney Int. 2017;92: 634–45. PubMed

Pelander L, Brunchault V, Buffin‐Meyer B, Klein J, Breuil B, Zürbig P, Magalhães P, Mullen W, Elliott J, Syme H, Schanstra JP, Häggström J, Ljungvall I. Urinary peptidome analyses for the diagnosis of chronic kidney disease in dogs. Vet J. 2019;249: 73–79. PubMed

Baumgart DC, Carding SR. Inflammatory bowel disease: cause and immunobiology. Lancet. 2007;369:1627–40. PubMed

Maráková K, Piešťanský J, Zelinková Z, Mikuš P. Simultaneous determination of twelve biogenic amines in human urine as potential biomarkers of inflammatory bowel diseases by capillary electrophoresis‐tandem mass spectrometry. J Pharm Biomed Anal. 2020;186:113294. PubMed

Neurath MF. Cytokines in inflammatory bowel disease. Nat Rev Immunol. 2014;14:329–42. PubMed

Yamamoto M, Shanmuganathan M, Hart L, Pai N, Britz‐McKibbin P. Urinary metabolites enable differential diagnosis and therapeutic monitoring of pediatric inflammatory bowel disease. Metabolites 2021;11:245. PubMed PMC

Piestansky J, Matuskova M, Cizmarova I, Majerova P, Kovac A, Mikus P. Ultrasensitive determination of serotonin in human urine by a two dimensional capillary isotachophoresis‐capillary zone electrophoresis hyphenated with tandem mass spectrometry. J Chromatogr A. 2021;1648:462190. PubMed

Piestansky J, Olesova D, Galba J, Marakova K, Parrak V, Secnik P, Secnik P, Kovacech B, Kovac A, Zelinkova Z, Mikus P. Profiling of amino acids in urine samples of patients suffering from inflammatory bowel disease by capillary electrophoresis‐mass spectrometry. Mol Basel Switz. 2019;24:3345. 10.3390/molecules24183345. PubMed DOI PMC

Oedit A, Hankemeier T, Lindenburg PW. On‐line coupling of two‐phase microelectroextraction to capillary electrophoresis–mass spectrometry for metabolomics analyses. Microchem J. 2021;162:105741.

Yamamoto M, Pinto‐Sanchez MI, Bercik P, Britz‐McKibbin P. Metabolomics reveals elevated urinary excretion of collagen degradation and epithelial cell turnover products in irritable bowel syndrome patients. Metabolomics 2019;15:82. PubMed

Gaziano T, Reddy KS, Paccaud F, Horton S, Chaturvedi V. Cardiovascular disease. The International Bank for Reconstruction and Development/The World Bank 2006. PubMed

Campbell RT, Jasilek A, Mischak H, Nkuipou‐Kenfack E, Latosinska A, Welsh PI, Jackson CE, Cannon J, McConnachie A, Delles C, McMurray JJV. The novel urinary proteomic classifier HF1 has similar diagnostic and prognostic utility to BNP in heart failure. ESC Heart Fail. 2020;7:1595–604. PubMed PMC

Zhang Z‐Y, Nkuipou‐Kenfack E, Yang W‐Y, Wei F‐F, Cauwenberghs N, Thijs L, Huang Q‐F, Feng Y‐M, Schanstra JP, Kuznetsova T, Voigt J‐U, Verhamme P, Mischak H, Staessen JA. Epidemiologic observations guiding clinical application of a urinary peptidomic marker of diastolic left ventricular dysfunction. J Am Soc Hypertens. 2018;12:438–47. e4. PubMed PMC

Huang Q‐F, Keer JV, Zhang Z‐Y, Trenson S, Nkuipou‐Kenfack E, Aelst LNLV, Yang W‐Y, Thijs L, Wei F‐F, Ciarka A, Vanhaecke J, Janssens S, Cleemput JV, Mischak H, Staessen JA. Urinary proteomic signatures associated with β‐blockade and heart rate in heart transplant recipients. PLoS One. 2018;13:e0204439. PubMed PMC

He T, Siwy J, Metzger J, Mullen W, Mischak H, Schanstra JP, Zürbig P, Jankowski V. Associations of urinary polymeric immunoglobulin receptor peptides in the context of cardio‐renal syndrome. Sci Rep. 2020;10:8291. PubMed PMC

Cieslarova Z, Magaldi M, Barros LA, do Lago CL, Oliveira DR, Fonseca FAH, Izar MC, Lopes AS, Tavares MFM, Klassen A. Capillary electrophoresis with dual diode array detection and tandem mass spectrometry to access cardiovascular biomarkers candidates in human urine: trimethylamine‐N‐oxide and L‐carnitine. J Chromatogr A. 2019;1583:136–42. PubMed

Sheon M, Yvonne SH, Justyna S, William M, Ashok G. Christian D. Polymerization‐incompetent uromodulin in the pregnant stroke‐prone spontaneously hypertensive rat. Hypertension 2017;69:910–8. PubMed PMC

Ferley J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359–86. PubMed

Belczacka I, Latosinska A, Siwy J, Metzger J, Merseburger AS, Mischak H, Vlahou A, Frantzi M, Jankowski V. Urinary CE‐MS peptide marker pattern for detection of solid tumors. Sci Rep. 2018;8:5227. PubMed PMC

Frantzi M, van Kessel KE, Zwarthoff EC, Marquez M, Rava M, Malats N, Merseburger AS, Katafigiotis I, Stravodimos K, Mullen W, Zoidakis J, Makridakis M, Pejchinovski M, Critselis E, Lichtinghagen R, Brand K, Dakna M, Roubelakis MG, Theodorescu D, Vlahou A, Mischak H, Anagnou NP. Development and validation of urine‐based peptide biomarker panels for detecting bladder cancer in a multi‐center study. Clin Cancer Res. 2016;22:4077–86. PubMed

Theodorescu D, Schiffer E, Bauer HW, Douwes F, Eichhorn F, Polley R, Schmidt T, Schöfer W, Zürbig P, Good DM, Coon JJ, Mischak H. Discovery and validation of urinary biomarkers for prostate cancer. PROTEOMICS – Clin Appl. 2008;2:556–70. PubMed PMC

Voigtländer T, Metzger J, Schönemeier B, Jäger M, Mischak H, Manns MP, Lankisch TO. A combined bile and urine proteomic test for cholangiocarcinoma diagnosis in patients with biliary strictures of unknown origin. United Eur. Gastroenterol J. 2017;5:668–76, 10.1177/2050640616687836. PubMed DOI PMC

Voigtländer T, Metzger J, Husi H, Kirstein MM, Pejchinovski M, Latosinska A, Frantzi M, Mullen W, Book T, Mischak H, Manns MP. Bile and urine peptide marker profiles: access keys to molecular pathways and biological processes in cholangiocarcinoma. J Biomed Sci. 2020;27:13. PubMed PMC

Udo R, Katsumata K, Kuwabara H, Enomoto M, Ishizaki T, Sunamura M, Nagakawa Y, Soya R, Sugimoto M, Tsuchida A. Urinary charged metabolite profiling of colorectal cancer using capillary electrophoresis‐mass spectrometry. Sci Rep. 2020;10:21057. PubMed PMC

Frantzi M, Gomez EG, Pedregosa AB, Rosa JV, Latosinska A, Culig Z, Merseburger AS, Luque RM, Requena Tapia MJ, Mischak H, Carrasco Valiente J. CE–MS‐based urinary biomarkers to distinguish non‐significant from significant prostate cancer. Br J Cancer. 2019;120:1120–8. PubMed PMC

Moran AB, Domínguez‐Vega E, Nouta J, Pongracz T, de Reijke TM, Wuhrer M, Lageveen‐Kammeijer GSM. Profiling the proteoforms of urinary prostate‐specific antigen by capillary electrophoresis – mass spectrometry. J Proteomics. 2021;238:104148. PubMed

Kammeijer GSM, Nouta J, de la Rosette JJMCH, de Reijke TM, Wuhrer M. An in‐depth glycosylation assay for urinary prostate‐specific antigen. Anal Chem. 2018;90:4414–21. PubMed PMC

MacLennan MS, Kok MGM, Soliman L, So A, Hurtado‐Coll A, Chen DDY. Capillary electrophoresis‐mass spectrometry for targeted and untargeted analysis of the sub‐5 kDa urine metabolome of patients with prostate or bladder cancer: a feasibility study. J Chromatogr B. 2018;1074–1075:79–85. PubMed

Song W, Zhou X, Benktander JD, Gaunitz S, Zou G, Wang Z, Novotny MV, Jacobson SC. In‐depth compositional and structural characterization of n‐glycans derived from human urinary exosomes. Anal Chem. 2019;91:13528–37. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace