Association of kidney fibrosis with urinary peptides: a path towards non-invasive liquid biopsies?

. 2017 Dec 05 ; 7 (1) : 16915. [epub] 20171205

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, multicentrická studie, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29208969
Odkazy

PubMed 29208969
PubMed Central PMC5717105
DOI 10.1038/s41598-017-17083-w
PII: 10.1038/s41598-017-17083-w
Knihovny.cz E-zdroje

Chronic kidney disease (CKD) is a prevalent cause of morbidity and mortality worldwide. A hallmark of CKD progression is renal fibrosis characterized by excessive accumulation of extracellular matrix (ECM) proteins. In this study, we aimed to investigate the correlation of the urinary proteome classifier CKD273 and individual urinary peptides with the degree of fibrosis. In total, 42 kidney biopsies and urine samples were examined. The percentage of fibrosis per total tissue area was assessed in Masson trichrome stained kidney tissues. The urinary proteome was analysed by capillary electrophoresis coupled to mass spectrometry. CKD273 displayed a significant and positive correlation with the degree of fibrosis (Rho = 0.430, P = 0.0044), while the routinely used parameters (glomerular filtration rate, urine albumin-to-creatinine ratio and urine protein-to-creatinine ratio) did not (Rho = -0.222; -0.137; -0.070 and P = 0.16; 0.39; 0.66, respectively). We identified seven fibrosis-associated peptides displaying a significant and negative correlation with the degree of fibrosis. All peptides were collagen fragments, suggesting that these may be causally related to the observed accumulation of ECM in the kidneys. CKD273 and specific peptides are significantly associated with kidney fibrosis; such an association could not be detected by other biomarkers for CKD. These non-invasive fibrosis-related biomarkers can potentially be implemented in future trials.

Zobrazit více v PubMed

Coresh J, et al. Prevalence of chronic kidney disease in the United States. JAMA. 2007;298(17):2038. doi: 10.1001/jama.298.17.2038. PubMed DOI

Eckardt, K. U. et al. Evolving importance of kidney disease: from subspecialty to global health burden. Lancet (2013). PubMed

Zhang L, et al. Prevalence of chronic kidney disease in China: a cross-sectional survey. Lancet. 2012;379(9818):815. doi: 10.1016/S0140-6736(12)60033-6. PubMed DOI

KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int. Suppl. 2013;3(1):1. doi: 10.1038/kisup.2012.73. PubMed DOI

Karopadi AN, et al. Cost of peritoneal dialysis and haemodialysis across the world. Nephrol. Dial. Transplant. 2013;28(10):2553. doi: 10.1093/ndt/gft214. PubMed DOI

Neovius M, et al. Mortality in chronic kidney disease and renal replacement therapy: a population-based cohort study. BMJ Open. 2014;4(2):e004251. doi: 10.1136/bmjopen-2013-004251. PubMed DOI PMC

Jha V, et al. Chronic kidney disease: global dimension and perspectives. Lancet. 2013;382(9888):260. doi: 10.1016/S0140-6736(13)60687-X. PubMed DOI

Genovese F, et al. The extracellular matrix in the kidney: a source of novel non-invasive biomarkers of kidney fibrosis? Fibrogenesis. Tissue Repair. 2014;7(1):4. doi: 10.1186/1755-1536-7-4. PubMed DOI PMC

Vanhove T, Goldschmeding R, Kuypers D. Kidney Fibrosis: Origins and Interventions. Transplantation. 2017;101(4):713. doi: 10.1097/TP.0000000000001608. PubMed DOI PMC

Wynn TA, Ramalingam TR. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat. Med. 2012;18(7):1028. doi: 10.1038/nm.2807. PubMed DOI PMC

Boor P, Ostendorf T, Floege J. Renal fibrosis: novel insights into mechanisms and therapeutic targets. Nat. Rev. Nephrol. 2010;6(11):643. doi: 10.1038/nrneph.2010.120. PubMed DOI

Falke LL, et al. Diverse origins of the myofibroblast-implications for kidney fibrosis. Nat. Rev. Nephrol. 2015;11(4):233. doi: 10.1038/nrneph.2014.246. PubMed DOI

Liu Y. Cellular and molecular mechanisms of renal fibrosis. Nat. Rev. Nephrol. 2011;7(12):684. doi: 10.1038/nrneph.2011.149. PubMed DOI PMC

Levey AS, et al. Definition and classification of chronic kidney disease: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO) Kidney Int. 2005;67(6):2089. doi: 10.1111/j.1523-1755.2005.00365.x. PubMed DOI

Farris AB, et al. Morphometric and visual evaluation of fibrosis in renal biopsies. J. Am. Soc. Nephrol. 2011;22(1):176. doi: 10.1681/ASN.2009091005. PubMed DOI PMC

Farris AB, Alpers CE. What is the best way to measure renal fibrosis?: A pathologist’s perspective. Kidney Int. Suppl (2011) 2014;4(1):9. doi: 10.1038/kisup.2014.3. PubMed DOI PMC

Mischak, H. Pro: Urine proteomics as a liquid kidney biopsy: no more kidney punctures! 30(4), 532 (2015). PubMed

Magalhães P, Mischak H, Zurbig P. Urinary proteomics using capillary electrophoresis coupled to mass spectrometry for diagnosis and prognosis in kidney diseases. Curr. Opin. Nephrol. Hypertens. 2016;25(6):494. doi: 10.1097/MNH.0000000000000278. PubMed DOI PMC

Mischak H, et al. Proteomic biomarkers in kidney disease: issues in development and implementation. Nat. Rev. Nephrol. 2015;11(4):221. doi: 10.1038/nrneph.2014.247. PubMed DOI

Klein J, et al. Urinary peptidomics provides a noninvasive humanized readout of diabetic nephropathy in mice. Kidney Int. 2016;90(5):1045. doi: 10.1016/j.kint.2016.06.023. PubMed DOI

Markoska, K. et al. Urinary peptide biomarker panel associated with an improvement in estimated glomerular filtration rate in chronic kidney disease patients. Nephrol. Dial. Transplant (2017). PubMed

Klein J, et al. The role of urinary peptidomics in kidney disease research. Kidney Int. 2016;89(3):539. doi: 10.1016/j.kint.2015.10.010. PubMed DOI

Siwy J, et al. Multicentre prospective validation of a urinary peptidome-based classifier for the diagnosis of type 2 diabetic nephropathy. Nephrol. Dial. Transplant. 2014;29(8):1563. doi: 10.1093/ndt/gfu039. PubMed DOI PMC

Zürbig, P., Mischak, H. & Conrads, S. Urinary proteome analysis for early diagnosis of diabetes and its complications. 18(6), 483 (2009).

Siwy, J. et al. Noninvasive diagnosis of chronic kidney diseases using urinary proteome analysis. Nephrol. Dial. Transplant (2016). PubMed PMC

Good DM, et al. Naturally occurring human urinary peptides for use in diagnosis of chronic kidney disease. Mol. Cell Proteomics. 2010;9(11):2424. doi: 10.1074/mcp.M110.001917. PubMed DOI PMC

Molin L, et al. A comparison between MALDI-MS and CE-MS data for biomarker assessment in chronic kidney diseases. J Proteomics. 2012;75(18):5888. doi: 10.1016/j.jprot.2012.07.024. PubMed DOI

Pontillo, C. et al. A urinary proteome-based classifier for the early detection of decline in glomerular filtration. Nephrol. Dial. Transplant (2016). PubMed

Pontillo, C. et al. Prediction of chronic kidney disease stage 3 by CKD273, a urinary proteomic biomarker. in press (2017). PubMed PMC

Critselis E, Heerspink HJ. Utility of the CKD273 peptide classifier in predicting chronic kidney disease progression: A systematic review of the current evidence. Nephrol. Dial. Transplant. 2014;31(2):249. PubMed

Schanstra JP, et al. Diagnosis and prediction of CKD progression by assessment of urinary peptides. J Am Soc. Nephrol. 2015;26:1999. doi: 10.1681/ASN.2014050423. PubMed DOI PMC

Pontillo C, Mischak H. Urinary peptide-based classifier CKD273: towards clinical application in chronic kidney disease, Clin. Kidney J. 2017;10(2):192. PubMed PMC

Nkuipou-Kenfack, E., Zurbig, P. and Mischak, H. The long path towards implementation of clinical proteomics: Exemplified based on CKD273. Proteomics. Clin. Appl. 11(5–6) (2017). PubMed

Lindhardt, M. et al. Predicting albuminuria response to spironolactone treatment with urinary proteomics in patients with type 2 diabetes and hypertension. Nephrol. Dial. Transplant (2017). PubMed

Lindhardt M, et al. Proteomic prediction and Renin angiotensin aldosterone system Inhibition prevention Of early diabetic nephRopathy in TYpe 2 diabetic patients with normoalbuminuria (PRIORITY): essential study design and rationale of a randomised clinical multicentre trial. BMJ Open. 2016;6(3):e010310. doi: 10.1136/bmjopen-2015-010310. PubMed DOI PMC

Roscioni SS, et al. A urinary peptide biomarker set predicts worsening of albuminuria in type 2 diabetes mellitus. Diabetologia. 2012;56(2):259. doi: 10.1007/s00125-012-2755-2. PubMed DOI

Zürbig P, et al. Urinary proteomics for early diagnosis in diabetic nephropathy. Diabetes. 2012;61(12):3304. doi: 10.2337/db12-0348. PubMed DOI PMC

Rossing K, et al. The urinary proteome in diabetes and diabetes-associated complications: new ways to assess disease progression and evaluate therapy. Proteomics Clin. Appl. 2008;2(7–8):997. doi: 10.1002/prca.200780166. PubMed DOI

Rozario T, DeSimone DW. The extracellular matrix in development and morphogenesis: a dynamic view. Dev. Biol. 2010;341(1):126. doi: 10.1016/j.ydbio.2009.10.026. PubMed DOI PMC

Drube J, et al. Urinary proteome analysis to exclude severe vesicoureteral reflux. Pediatrics. 2012;129(2):e356–e363. doi: 10.1542/peds.2010-3467. PubMed DOI

Pejchinovski M, et al. Urine peptidome analysis predicts risk of end-stage renal disease and reveals proteolytic pathways involved in autosomal dominant polycystic kidney disease progression. Nephrol. Dial. Transplant. 2017;32(3):487. PubMed

Wei R, et al. Alterations in urinary collagen peptides in lupus nephritis subjects correlate with renal dysfunction and renal histopathology. Nephrol. Dial. Transplant. 2017;32(9):1468. doi: 10.1093/ndt/gfw446. PubMed DOI

Stokes MB, et al. Expression of decorin, biglycan, and collagen type I in human renal fibrosing disease. Kidney Int. 2000;57(2):487. doi: 10.1046/j.1523-1755.2000.00868.x. PubMed DOI

Soylemezoglu O, et al. Urinary and serum type III collagen: markers of renal fibrosis. Nephrol. Dial. Transplant. 1997;12(9):1883. doi: 10.1093/ndt/12.9.1883. PubMed DOI

Kassner A, et al. Molecular structure and interaction of recombinant human type XVI collagen. J. Mol. Biol. 2004;339(4):835. doi: 10.1016/j.jmb.2004.03.042. PubMed DOI

Grassel S, Bauer RJ. Collagen XVI in health and disease. Matrix Biol. 2013;32(2):64. doi: 10.1016/j.matbio.2012.11.001. PubMed DOI

Eble JA, et al. Collagen XVI harbors an integrin alpha1 beta1 recognition site in its C-terminal domains. J. Biol. Chem. 2006;281(35):25745. doi: 10.1074/jbc.M509942200. PubMed DOI

Johnson TS, et al. Matrix metalloproteinases and their inhibitions in experimental renal scarring. Exp. Nephrol. 2002;10(3):182. doi: 10.1159/000058345. PubMed DOI

Gao L, et al. Advanced glycation end products inhibit production and activity of matrix metalloproteinase-2 in human umbilical vein endothelial cells. J. Int. Med. Res. 2007;35(5):709. doi: 10.1177/147323000703500517. PubMed DOI

Denic A, et al. Single-Nephron Glomerular Filtration Rate in Healthy Adults. N. Engl. J. Med. 2017;376(24):2349. doi: 10.1056/NEJMoa1614329. PubMed DOI PMC

Tsalamandris C, et al. Progressive decline in renal function in diabetic patients with and without albuminuria. Diabetes. 1994;43(5):649. doi: 10.2337/diab.43.5.649. PubMed DOI

Hodgkins KS, Schnaper HW. Tubulointerstitial injury and the progression of chronic kidney disease. Pediatr. Nephrol. 2012;27(6):901. doi: 10.1007/s00467-011-1992-9. PubMed DOI PMC

Argiles A, et al. CKD273, a new proteomics classifier assessing CKD and its prognosis. PLoS One. 2013;8(5):e62837. doi: 10.1371/journal.pone.0062837. PubMed DOI PMC

Nkuipou-Kenfack E, et al. Identification of ageing-associated naturally occurring peptides in human urine. Oncotarget. 2015;6(33):34106. PubMed PMC

Mischak H, Vlahou A, Ioannidis JP. Technical aspects and inter-laboratory variability in native peptide profiling: The CE-MS experience. Clin. Biochem. 2013;46(6):432. doi: 10.1016/j.clinbiochem.2012.09.025. PubMed DOI

Jantos-Siwy J, et al. Quantitative Urinary Proteome Analysis for Biomarker Evaluation in Chronic Kidney Disease. J. Proteome. Res. 2009;8(1):268. doi: 10.1021/pr800401m. PubMed DOI

Siwy J, et al. Human urinary peptide database for multiple disease biomarker discovery. Proteomics. Clin. Appl. 2011;5(5-6):367. doi: 10.1002/prca.201000155. PubMed DOI

Klein J, et al. Comparison of CE-MS/MS and LC-MS/MS sequencing demonstrates significant complementarity in natural peptide identification in human urine. Electrophoresis. 2014;35(7):1060. doi: 10.1002/elps.201300327. PubMed DOI

Pejchinovski M, et al. Comparison of higher energy collisional dissociation and collision-induced dissociation MS/MS sequencing methods for identification of naturally occurring peptides in human urine. Proteomics. Clin. Appl. 2015;9(5-6):531. doi: 10.1002/prca.201400163. PubMed DOI

Farris AB, et al. Banff fibrosis study: multicenter visual assessment and computerized analysis of interstitial fibrosis in kidney biopsies. Am. J. Transplant. 2014;14(4):897. doi: 10.1111/ajt.12641. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...