Association of kidney fibrosis with urinary peptides: a path towards non-invasive liquid biopsies?
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, multicentrická studie, práce podpořená grantem
PubMed
29208969
PubMed Central
PMC5717105
DOI
10.1038/s41598-017-17083-w
PII: 10.1038/s41598-017-17083-w
Knihovny.cz E-zdroje
- MeSH
- chronická renální insuficience patologie moč MeSH
- dospělí MeSH
- elektroforéza kapilární MeSH
- fibróza patologie moč MeSH
- hmotnostní spektrometrie MeSH
- kolagen moč MeSH
- ledviny patologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- peptidy moč MeSH
- tekutá biopsie metody MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kolagen MeSH
- peptidy MeSH
Chronic kidney disease (CKD) is a prevalent cause of morbidity and mortality worldwide. A hallmark of CKD progression is renal fibrosis characterized by excessive accumulation of extracellular matrix (ECM) proteins. In this study, we aimed to investigate the correlation of the urinary proteome classifier CKD273 and individual urinary peptides with the degree of fibrosis. In total, 42 kidney biopsies and urine samples were examined. The percentage of fibrosis per total tissue area was assessed in Masson trichrome stained kidney tissues. The urinary proteome was analysed by capillary electrophoresis coupled to mass spectrometry. CKD273 displayed a significant and positive correlation with the degree of fibrosis (Rho = 0.430, P = 0.0044), while the routinely used parameters (glomerular filtration rate, urine albumin-to-creatinine ratio and urine protein-to-creatinine ratio) did not (Rho = -0.222; -0.137; -0.070 and P = 0.16; 0.39; 0.66, respectively). We identified seven fibrosis-associated peptides displaying a significant and negative correlation with the degree of fibrosis. All peptides were collagen fragments, suggesting that these may be causally related to the observed accumulation of ECM in the kidneys. CKD273 and specific peptides are significantly associated with kidney fibrosis; such an association could not be detected by other biomarkers for CKD. These non-invasive fibrosis-related biomarkers can potentially be implemented in future trials.
1st Department of Medicine 3rd Faculty of Medicine Charles University Prague Czech Republic
Biotechnology Division Biomedical Research Foundation Academy of Athens Athens Greece
Clinic of Nephrology Clinical Center of Serbia Belgrade Serbia
Department of Nephrology and Transplantation Medicine Wroclaw Medical University Wroclaw Poland
Department of Nephrology Medical Faculty University of Skopje Skopje Macedonia
Department of Nephrology University Hospital Center Mother Teresa Tirana Albania
Department of Nephrology University of Campania Luigi Vanvitelli Naples Italy
Department of Pediatric Nephrology Hannover Medical School Hannover Germany
IIS Fundacion Jimenez Diaz UAM Madrid Spain
Institute of Cardiovascular and Medical Sciences University of Glasgow Glasgow UK
Macedonian Academy of Sciences and Arts Skopje Macedonia
Mosaiques Diagnostics GmbH Hannover Germany
Nephropathology Center San Gerardo Hospital Monza Italy
Zobrazit více v PubMed
Coresh J, et al. Prevalence of chronic kidney disease in the United States. JAMA. 2007;298(17):2038. doi: 10.1001/jama.298.17.2038. PubMed DOI
Eckardt, K. U. et al. Evolving importance of kidney disease: from subspecialty to global health burden. Lancet (2013). PubMed
Zhang L, et al. Prevalence of chronic kidney disease in China: a cross-sectional survey. Lancet. 2012;379(9818):815. doi: 10.1016/S0140-6736(12)60033-6. PubMed DOI
KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int. Suppl. 2013;3(1):1. doi: 10.1038/kisup.2012.73. PubMed DOI
Karopadi AN, et al. Cost of peritoneal dialysis and haemodialysis across the world. Nephrol. Dial. Transplant. 2013;28(10):2553. doi: 10.1093/ndt/gft214. PubMed DOI
Neovius M, et al. Mortality in chronic kidney disease and renal replacement therapy: a population-based cohort study. BMJ Open. 2014;4(2):e004251. doi: 10.1136/bmjopen-2013-004251. PubMed DOI PMC
Jha V, et al. Chronic kidney disease: global dimension and perspectives. Lancet. 2013;382(9888):260. doi: 10.1016/S0140-6736(13)60687-X. PubMed DOI
Genovese F, et al. The extracellular matrix in the kidney: a source of novel non-invasive biomarkers of kidney fibrosis? Fibrogenesis. Tissue Repair. 2014;7(1):4. doi: 10.1186/1755-1536-7-4. PubMed DOI PMC
Vanhove T, Goldschmeding R, Kuypers D. Kidney Fibrosis: Origins and Interventions. Transplantation. 2017;101(4):713. doi: 10.1097/TP.0000000000001608. PubMed DOI PMC
Wynn TA, Ramalingam TR. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat. Med. 2012;18(7):1028. doi: 10.1038/nm.2807. PubMed DOI PMC
Boor P, Ostendorf T, Floege J. Renal fibrosis: novel insights into mechanisms and therapeutic targets. Nat. Rev. Nephrol. 2010;6(11):643. doi: 10.1038/nrneph.2010.120. PubMed DOI
Falke LL, et al. Diverse origins of the myofibroblast-implications for kidney fibrosis. Nat. Rev. Nephrol. 2015;11(4):233. doi: 10.1038/nrneph.2014.246. PubMed DOI
Liu Y. Cellular and molecular mechanisms of renal fibrosis. Nat. Rev. Nephrol. 2011;7(12):684. doi: 10.1038/nrneph.2011.149. PubMed DOI PMC
Levey AS, et al. Definition and classification of chronic kidney disease: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO) Kidney Int. 2005;67(6):2089. doi: 10.1111/j.1523-1755.2005.00365.x. PubMed DOI
Farris AB, et al. Morphometric and visual evaluation of fibrosis in renal biopsies. J. Am. Soc. Nephrol. 2011;22(1):176. doi: 10.1681/ASN.2009091005. PubMed DOI PMC
Farris AB, Alpers CE. What is the best way to measure renal fibrosis?: A pathologist’s perspective. Kidney Int. Suppl (2011) 2014;4(1):9. doi: 10.1038/kisup.2014.3. PubMed DOI PMC
Mischak, H. Pro: Urine proteomics as a liquid kidney biopsy: no more kidney punctures! 30(4), 532 (2015). PubMed
Magalhães P, Mischak H, Zurbig P. Urinary proteomics using capillary electrophoresis coupled to mass spectrometry for diagnosis and prognosis in kidney diseases. Curr. Opin. Nephrol. Hypertens. 2016;25(6):494. doi: 10.1097/MNH.0000000000000278. PubMed DOI PMC
Mischak H, et al. Proteomic biomarkers in kidney disease: issues in development and implementation. Nat. Rev. Nephrol. 2015;11(4):221. doi: 10.1038/nrneph.2014.247. PubMed DOI
Klein J, et al. Urinary peptidomics provides a noninvasive humanized readout of diabetic nephropathy in mice. Kidney Int. 2016;90(5):1045. doi: 10.1016/j.kint.2016.06.023. PubMed DOI
Markoska, K. et al. Urinary peptide biomarker panel associated with an improvement in estimated glomerular filtration rate in chronic kidney disease patients. Nephrol. Dial. Transplant (2017). PubMed
Klein J, et al. The role of urinary peptidomics in kidney disease research. Kidney Int. 2016;89(3):539. doi: 10.1016/j.kint.2015.10.010. PubMed DOI
Siwy J, et al. Multicentre prospective validation of a urinary peptidome-based classifier for the diagnosis of type 2 diabetic nephropathy. Nephrol. Dial. Transplant. 2014;29(8):1563. doi: 10.1093/ndt/gfu039. PubMed DOI PMC
Zürbig, P., Mischak, H. & Conrads, S. Urinary proteome analysis for early diagnosis of diabetes and its complications. 18(6), 483 (2009).
Siwy, J. et al. Noninvasive diagnosis of chronic kidney diseases using urinary proteome analysis. Nephrol. Dial. Transplant (2016). PubMed PMC
Good DM, et al. Naturally occurring human urinary peptides for use in diagnosis of chronic kidney disease. Mol. Cell Proteomics. 2010;9(11):2424. doi: 10.1074/mcp.M110.001917. PubMed DOI PMC
Molin L, et al. A comparison between MALDI-MS and CE-MS data for biomarker assessment in chronic kidney diseases. J Proteomics. 2012;75(18):5888. doi: 10.1016/j.jprot.2012.07.024. PubMed DOI
Pontillo, C. et al. A urinary proteome-based classifier for the early detection of decline in glomerular filtration. Nephrol. Dial. Transplant (2016). PubMed
Pontillo, C. et al. Prediction of chronic kidney disease stage 3 by CKD273, a urinary proteomic biomarker. in press (2017). PubMed PMC
Critselis E, Heerspink HJ. Utility of the CKD273 peptide classifier in predicting chronic kidney disease progression: A systematic review of the current evidence. Nephrol. Dial. Transplant. 2014;31(2):249. PubMed
Schanstra JP, et al. Diagnosis and prediction of CKD progression by assessment of urinary peptides. J Am Soc. Nephrol. 2015;26:1999. doi: 10.1681/ASN.2014050423. PubMed DOI PMC
Pontillo C, Mischak H. Urinary peptide-based classifier CKD273: towards clinical application in chronic kidney disease, Clin. Kidney J. 2017;10(2):192. PubMed PMC
Nkuipou-Kenfack, E., Zurbig, P. and Mischak, H. The long path towards implementation of clinical proteomics: Exemplified based on CKD273. Proteomics. Clin. Appl. 11(5–6) (2017). PubMed
Lindhardt, M. et al. Predicting albuminuria response to spironolactone treatment with urinary proteomics in patients with type 2 diabetes and hypertension. Nephrol. Dial. Transplant (2017). PubMed
Lindhardt M, et al. Proteomic prediction and Renin angiotensin aldosterone system Inhibition prevention Of early diabetic nephRopathy in TYpe 2 diabetic patients with normoalbuminuria (PRIORITY): essential study design and rationale of a randomised clinical multicentre trial. BMJ Open. 2016;6(3):e010310. doi: 10.1136/bmjopen-2015-010310. PubMed DOI PMC
Roscioni SS, et al. A urinary peptide biomarker set predicts worsening of albuminuria in type 2 diabetes mellitus. Diabetologia. 2012;56(2):259. doi: 10.1007/s00125-012-2755-2. PubMed DOI
Zürbig P, et al. Urinary proteomics for early diagnosis in diabetic nephropathy. Diabetes. 2012;61(12):3304. doi: 10.2337/db12-0348. PubMed DOI PMC
Rossing K, et al. The urinary proteome in diabetes and diabetes-associated complications: new ways to assess disease progression and evaluate therapy. Proteomics Clin. Appl. 2008;2(7–8):997. doi: 10.1002/prca.200780166. PubMed DOI
Rozario T, DeSimone DW. The extracellular matrix in development and morphogenesis: a dynamic view. Dev. Biol. 2010;341(1):126. doi: 10.1016/j.ydbio.2009.10.026. PubMed DOI PMC
Drube J, et al. Urinary proteome analysis to exclude severe vesicoureteral reflux. Pediatrics. 2012;129(2):e356–e363. doi: 10.1542/peds.2010-3467. PubMed DOI
Pejchinovski M, et al. Urine peptidome analysis predicts risk of end-stage renal disease and reveals proteolytic pathways involved in autosomal dominant polycystic kidney disease progression. Nephrol. Dial. Transplant. 2017;32(3):487. PubMed
Wei R, et al. Alterations in urinary collagen peptides in lupus nephritis subjects correlate with renal dysfunction and renal histopathology. Nephrol. Dial. Transplant. 2017;32(9):1468. doi: 10.1093/ndt/gfw446. PubMed DOI
Stokes MB, et al. Expression of decorin, biglycan, and collagen type I in human renal fibrosing disease. Kidney Int. 2000;57(2):487. doi: 10.1046/j.1523-1755.2000.00868.x. PubMed DOI
Soylemezoglu O, et al. Urinary and serum type III collagen: markers of renal fibrosis. Nephrol. Dial. Transplant. 1997;12(9):1883. doi: 10.1093/ndt/12.9.1883. PubMed DOI
Kassner A, et al. Molecular structure and interaction of recombinant human type XVI collagen. J. Mol. Biol. 2004;339(4):835. doi: 10.1016/j.jmb.2004.03.042. PubMed DOI
Grassel S, Bauer RJ. Collagen XVI in health and disease. Matrix Biol. 2013;32(2):64. doi: 10.1016/j.matbio.2012.11.001. PubMed DOI
Eble JA, et al. Collagen XVI harbors an integrin alpha1 beta1 recognition site in its C-terminal domains. J. Biol. Chem. 2006;281(35):25745. doi: 10.1074/jbc.M509942200. PubMed DOI
Johnson TS, et al. Matrix metalloproteinases and their inhibitions in experimental renal scarring. Exp. Nephrol. 2002;10(3):182. doi: 10.1159/000058345. PubMed DOI
Gao L, et al. Advanced glycation end products inhibit production and activity of matrix metalloproteinase-2 in human umbilical vein endothelial cells. J. Int. Med. Res. 2007;35(5):709. doi: 10.1177/147323000703500517. PubMed DOI
Denic A, et al. Single-Nephron Glomerular Filtration Rate in Healthy Adults. N. Engl. J. Med. 2017;376(24):2349. doi: 10.1056/NEJMoa1614329. PubMed DOI PMC
Tsalamandris C, et al. Progressive decline in renal function in diabetic patients with and without albuminuria. Diabetes. 1994;43(5):649. doi: 10.2337/diab.43.5.649. PubMed DOI
Hodgkins KS, Schnaper HW. Tubulointerstitial injury and the progression of chronic kidney disease. Pediatr. Nephrol. 2012;27(6):901. doi: 10.1007/s00467-011-1992-9. PubMed DOI PMC
Argiles A, et al. CKD273, a new proteomics classifier assessing CKD and its prognosis. PLoS One. 2013;8(5):e62837. doi: 10.1371/journal.pone.0062837. PubMed DOI PMC
Nkuipou-Kenfack E, et al. Identification of ageing-associated naturally occurring peptides in human urine. Oncotarget. 2015;6(33):34106. PubMed PMC
Mischak H, Vlahou A, Ioannidis JP. Technical aspects and inter-laboratory variability in native peptide profiling: The CE-MS experience. Clin. Biochem. 2013;46(6):432. doi: 10.1016/j.clinbiochem.2012.09.025. PubMed DOI
Jantos-Siwy J, et al. Quantitative Urinary Proteome Analysis for Biomarker Evaluation in Chronic Kidney Disease. J. Proteome. Res. 2009;8(1):268. doi: 10.1021/pr800401m. PubMed DOI
Siwy J, et al. Human urinary peptide database for multiple disease biomarker discovery. Proteomics. Clin. Appl. 2011;5(5-6):367. doi: 10.1002/prca.201000155. PubMed DOI
Klein J, et al. Comparison of CE-MS/MS and LC-MS/MS sequencing demonstrates significant complementarity in natural peptide identification in human urine. Electrophoresis. 2014;35(7):1060. doi: 10.1002/elps.201300327. PubMed DOI
Pejchinovski M, et al. Comparison of higher energy collisional dissociation and collision-induced dissociation MS/MS sequencing methods for identification of naturally occurring peptides in human urine. Proteomics. Clin. Appl. 2015;9(5-6):531. doi: 10.1002/prca.201400163. PubMed DOI
Farris AB, et al. Banff fibrosis study: multicenter visual assessment and computerized analysis of interstitial fibrosis in kidney biopsies. Am. J. Transplant. 2014;14(4):897. doi: 10.1111/ajt.12641. PubMed DOI
Urine proteomics for prediction of disease progression in patients with IgA nephropathy