Multicentre prospective validation of a urinary peptidome-based classifier for the diagnosis of type 2 diabetic nephropathy
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, multicentrická studie, randomizované kontrolované studie, práce podpořená grantem, validační studie
Grantová podpora
R01 HL061753
NHLBI NIH HHS - United States
R01 HL079611
NHLBI NIH HHS - United States
R01 HL113029
NHLBI NIH HHS - United States
UL1 TR001082
NCATS NIH HHS - United States
PubMed
24589724
PubMed Central
PMC4118140
DOI
10.1093/ndt/gfu039
PII: gfu039
Knihovny.cz E-zdroje
- Klíčová slova
- biomarkers, chronic kidney disease, diabetic nephropathy, diagnosis, urine proteomics,
- MeSH
- diabetes mellitus 2. typu komplikace diagnóza moč MeSH
- diabetické nefropatie diagnóza etiologie moč MeSH
- diferenciální diagnóza MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- následné studie MeSH
- peptidomimetika moč MeSH
- progrese nemoci MeSH
- prospektivní studie MeSH
- proteomika metody MeSH
- senioři MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- práce podpořená grantem MeSH
- randomizované kontrolované studie MeSH
- validační studie MeSH
- Názvy látek
- peptidomimetika MeSH
BACKGROUND: Diabetic nephropathy (DN) is one of the major late complications of diabetes. Treatment aimed at slowing down the progression of DN is available but methods for early and definitive detection of DN progression are currently lacking. The 'Proteomic prediction and Renin angiotensin aldosterone system Inhibition prevention Of early diabetic nephRopathy In TYpe 2 diabetic patients with normoalbuminuria trial' (PRIORITY) aims to evaluate the early detection of DN in patients with type 2 diabetes (T2D) using a urinary proteome-based classifier (CKD273). METHODS: In this ancillary study of the recently initiated PRIORITY trial we aimed to validate for the first time the CKD273 classifier in a multicentre (9 different institutions providing samples from 165 T2D patients) prospective setting. In addition we also investigated the influence of sample containers, age and gender on the CKD273 classifier. RESULTS: We observed a high consistency of the CKD273 classification scores across the different centres with areas under the curves ranging from 0.95 to 1.00. The classifier was independent of age (range tested 16-89 years) and gender. Furthermore, the use of different urine storage containers did not affect the classification scores. Analysis of the distribution of the individual peptides of the classifier over the nine different centres showed that fragments of blood-derived and extracellular matrix proteins were the most consistently found. CONCLUSION: We provide for the first time validation of this urinary proteome-based classifier in a multicentre prospective setting and show the suitability of the CKD273 classifier to be used in the PRIORITY trial.
2nd Department of Internal Medicine 3rd Faculty of Medicine Charles University Prague Czech Republic
Barbara Davis Center for Childhood Diabetes University of Colorado Denver Aurora CO USA
Charité Universitaetsmedizin Berlin Medizinische Klinik 4 Berlin Germany
Department of Nephrology and KfH Renal Unit Hospital St Georg Leipzig Germany
Department of Nephrology University of Skopje Skopje Macedonia
Diabetes Centre Institute for Clinical and Experimental Medicine Prague Czech Republic
Division of Nephrology University Hospital Zürich Switzerland
Hannover Clinical Trial Center Hannover Germany
HealthPlus Diabetes and Endocrinology Center Abu Dhabi UAE
IIS Fundacion Jimenez Diaz UAM IRSIN and REDIREN Madrid Spain
Institut für Klinische Chemie Medizinische Hochschule Hannover Hannover Germany
Mosaiques Diagnostics GmbH Hanover Germany
RD Néphrologie Montpellier France
Zobrazit více v PubMed
Danaei G, Finucane MM, Lu Y, et al. National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. Lancet. 2011;378:31–40. PubMed
Wild S, Roglic G, Green A, et al. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27:1047–1053. PubMed
Jha V, Garcia-Garcia G, Iseki K, et al. Chronic kidney disease: global dimension and perspectives. Lancet. 2013;382:260–272. PubMed
Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. UK Prospective Diabetes Study Group. BMJ. 1998;317:703–713. PubMed PMC
Lewis EJ, Hunsicker LG, Bain RP, et al. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N Engl J Med. 1993;329:1456–1462. PubMed
Brenner BM, Cooper ME, de Zeeuw D, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med. 2001;345:861–869. PubMed
Glassock RJ. Debate: CON position. Should microalbuminuria ever be considered as a renal endpoint in any clinical trial? Am J Nephrol. 2010;31:462–465. PubMed
Lambers Heerspink HJ, de Zeeuw D. Debate: PRO position. Should microalbuminuria ever be considered as a renal endpoint in any clinical trial? Am J Nephrol. 2010;31:458–461. PubMed
Perkins BA, Ficociello LH, Roshan B, et al. In patients with type 1 diabetes and new-onset microalbuminuria the development of advanced chronic kidney disease may not require progression to proteinuria. Kidney Int. 2010;77:57–64. PubMed PMC
Good DM, Zürbig P, Argiles A, et al. Naturally occurring human urinary peptides for use in diagnosis of chronic kidney disease. Mol Cell Proteomics. 2010;9:2424–2437. PubMed PMC
Roscioni SS, de Zeeuw D, Hellemons ME, et al. A urinary peptide biomarker set predicts worsening of albuminuria in type 2 diabetes mellitus. Diabetologia. 2012;56:259–267. PubMed
Zürbig P, Jerums G, Hovind P, et al. Urinary proteomics for early diagnosis in diabetic nephropathy. Diabetes. 2012;61:3304–3313. PubMed PMC
Argiles A, Siwy J, Duranton F, et al. CKD273, a new proteomics classifier assessing CKD and its prognosis. PLoS One. 2013;8:e62837. PubMed PMC
Levey AS, Coresh J, Greene T, et al. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med. 2006;145:247–254. PubMed
Theodorescu D, Schiffer E, Bauer HW, et al. Discovery and validation of urinary biomarkers for prostate cancer. Proteomics Clin Appl. 2008;2:556–570. PubMed PMC
Jantos-Siwy J, Schiffer E, Brand K, et al. Quantitative urinary proteome analysis for biomarker evaluation in chronic kidney disease. J Proteome Res. 2009;8:268–281. PubMed
Wittke S, Mischak H, Walden M, et al. Discovery of biomarkers in human urine and cerebrospinal fluid by capillary electrophoresis coupled to mass spectrometry: towards new diagnostic and therapeutic approaches. Electrophoresis. 2005;26:1476–1487. PubMed
Haubitz M, Good DM, Woywodt A, et al. Identification and validation of urinary biomarkers for differential diagnosis and dvaluation of therapeutic intervention in ANCA associated vasculitis. Mol Cell Proteomics. 2009;8:2296–2307. PubMed PMC
Neuhoff N, Kaiser T, Wittke S, et al. Mass spectrometry for the detection of differentially expressed proteins: a comparison of surface-enhanced laser desorption/ionization and capillary electrophoresis/mass spectrometry. Rapid Commun Mass Spectrom. 2004;18:149–156. PubMed
Coon JJ, Zürbig P, Dakna M, et al. CE-MS analysis of the human urinary proteome for biomarker discovery and disease diagnostics. Proteomics Clin Appl. 2008;2:964–973. PubMed PMC
Siwy J, Mullen W, Golovko I, et al. Human urinary peptide database for multiple disease biomarker discovery. Proteomics Clin Appl. 2011;5:367–374. PubMed
DeLeo JM, DeLeo JM. Receiver operating characteristic laboratory (ROCLAB): Software for developing decision strategies that account for uncertainty. 318–325. 1993. College Park, MD, USA, Second International Symposium on Uncertainty Modeling and Analysis. 4-25-1993.
Mischak H. How to get proteomics to the clinic? Issues in clinical proteomics, exemplified by CE-MS. Proteomics Clin Appl. 2012;6:437–442. PubMed
Mischak H, Ioannidis JP, Argiles A, et al. Implementation of proteomic biomarkers: making it work. Eur J Clin Invest. 2012;42:1027–1036. PubMed PMC
Dakna M, Harris K, Kalousis A, et al. Addressing the challenge of defining valid proteomic biomarkers and classifiers. BMC Bioinformatics. 2010;11:594. PubMed PMC
Mischak H, Allmaier G, Apweiler R, et al. Recommendations for biomarker identification and qualification in clinical proteomics. Sci Transl Med. 2010;2:46ps42. PubMed
Molin L, Seraglia R, Lapolla A, et al. A comparison between MALDI-MS and CE-MS data for biomarker assessment in chronic kidney diseases. J Proteomics. 2012;75:5888–5897. PubMed
Mischak H, Vlahou A, Ioannidis JP. Technical aspects and inter-laboratory variability in native peptide profiling: the CE-MS experience. Clin Biochem. 2013;46:432–443. PubMed
Argiles A, Mourad G, Mion C, et al. Two-dimensional gel electrophoresis of urinary proteins in kidney diseases. Contrib Nephrol. 1990;83:1–8. PubMed
Candiano G, Musante L, Bruschi M, et al. Repetitive fragmentation products of albumin and alpha1-antitrypsin in glomerular diseases associated with nephrotic syndrome. J Am Soc Nephrol. 2006;17:3139–3148. PubMed
Kwak NJ, Heo Y, Jin DC, et al. Proteomic analysis of alpha-1-antitrypsin in immunoglobulin A nephropathy. Proteomics Clin Appl. 2007;1:420–428. PubMed
Varghese SA, Powell TB, Budisavljevic MN, et al. Urine biomarkers predict the cause of glomerular disease. J Am Soc Nephrol. 2007;18:913–922. PubMed PMC
Rossing K, Mischak H, Rossing P, et al. The urinary proteome in diabetes and diabetes-associated complications: new ways to assess disease progression and evaluate therapy. Proteomics Clin Appl. 2008;2:997–1007. PubMed
Meguid El NA, Bello AK. Chronic kidney disease: the global challenge. Lancet. 2005;365:331–340. PubMed
Noone D, Licht C. Chronic kidney disease: a new look at pathogenetic mechanisms and treatment options. Pediatr Nephrol. 2013 Doi:10.1007/s00467-013-2436-5. PubMed DOI
Ruggenenti P, Cravedi P, Remuzzi G. Mechanisms and treatment of CKD. J Am Soc Nephrol. 2012;23:1917–1928. PubMed