Multicentre prospective validation of a urinary peptidome-based classifier for the diagnosis of type 2 diabetic nephropathy

. 2014 Aug ; 29 (8) : 1563-70. [epub] 20140302

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, multicentrická studie, randomizované kontrolované studie, práce podpořená grantem, validační studie

Perzistentní odkaz   https://www.medvik.cz/link/pmid24589724

Grantová podpora
R01 HL061753 NHLBI NIH HHS - United States
R01 HL079611 NHLBI NIH HHS - United States
R01 HL113029 NHLBI NIH HHS - United States
UL1 TR001082 NCATS NIH HHS - United States

BACKGROUND: Diabetic nephropathy (DN) is one of the major late complications of diabetes. Treatment aimed at slowing down the progression of DN is available but methods for early and definitive detection of DN progression are currently lacking. The 'Proteomic prediction and Renin angiotensin aldosterone system Inhibition prevention Of early diabetic nephRopathy In TYpe 2 diabetic patients with normoalbuminuria trial' (PRIORITY) aims to evaluate the early detection of DN in patients with type 2 diabetes (T2D) using a urinary proteome-based classifier (CKD273). METHODS: In this ancillary study of the recently initiated PRIORITY trial we aimed to validate for the first time the CKD273 classifier in a multicentre (9 different institutions providing samples from 165 T2D patients) prospective setting. In addition we also investigated the influence of sample containers, age and gender on the CKD273 classifier. RESULTS: We observed a high consistency of the CKD273 classification scores across the different centres with areas under the curves ranging from 0.95 to 1.00. The classifier was independent of age (range tested 16-89 years) and gender. Furthermore, the use of different urine storage containers did not affect the classification scores. Analysis of the distribution of the individual peptides of the classifier over the nine different centres showed that fragments of blood-derived and extracellular matrix proteins were the most consistently found. CONCLUSION: We provide for the first time validation of this urinary proteome-based classifier in a multicentre prospective setting and show the suitability of the CKD273 classifier to be used in the PRIORITY trial.

2nd Department of Internal Medicine 3rd Faculty of Medicine Charles University Prague Czech Republic

Barbara Davis Center for Childhood Diabetes University of Colorado Denver Aurora CO USA

BHF Glasgow Cardiovascular Research Centre Institute of Cardiovascular and Medical Sciences University of Glasgow Glasgow UK

Charité Universitaetsmedizin Berlin Medizinische Klinik 4 Berlin Germany

Clinical Division of Nephrology Department of Internal Medicine Medical University of Graz Graz Austria

Department of Internal Medicine University Medical Center Groningen and University of Groningen Groningen The Netherlands

Department of Internal Medicine University Medical Center Groningen and University of Groningen Groningen The Netherlands Department of Clinical Pharmacology University Medical Center Groningen Groningen and University of Groningen The Netherlands

Department of Nephrology and KfH Renal Unit Hospital St Georg Leipzig Germany

Department of Nephrology University of Skopje Skopje Macedonia

Diabetes Center 2nd Department of Medicine Athens University Medical School Hippokration Hospital Athens Greece

Diabetes Centre Institute for Clinical and Experimental Medicine Prague Czech Republic

Division of Nephrology University Hospital Zürich Switzerland

Hannover Clinical Trial Center Hannover Germany

HealthPlus Diabetes and Endocrinology Center Abu Dhabi UAE

Human Nutrition and Metabolism Research and Training Center Institute of Molecular Biosciences Karl Franzens University of Graz Graz Austria

IIS Fundacion Jimenez Diaz UAM IRSIN and REDIREN Madrid Spain

Institut für Klinische Chemie Medizinische Hochschule Hannover Hannover Germany

IRCCS Istituto di Ricerche Farmacologiche Mario Negri Clinical Research Center for Rare Diseases 'Aldo e Cele Daccò' Bergamo Italy

IRCCS Istituto di Ricerche Farmacologiche Mario Negri Clinical Research Center for Rare Diseases 'Aldo e Cele Daccò' Bergamo Italy Unit of Nephrology and Dialysis Azienda Ospedaliera Papa Giovanni XXIII Bergamo Italy

Mosaiques Diagnostics GmbH Hanover Germany

Mosaiques Diagnostics GmbH Hanover Germany BHF Glasgow Cardiovascular Research Centre Institute of Cardiovascular and Medical Sciences University of Glasgow Glasgow UK

Mosaiques Diagnostics GmbH Hanover Germany Charité Universitaetsmedizin Berlin Medizinische Klinik 4 Berlin Germany

Mosaiques Diagnostics GmbH Hanover Germany Institut National de la Santé et de la Recherche Médicale U1048 Institut of Cardiovascular and Metabolic Disease Toulouse France Université Toulouse 3 Paul Sabatier Toulouse France

RD Néphrologie Montpellier France

RD Néphrologie Montpellier France Néphrologie Dialyse St Guilhem Sète France Service de Néphrologie Dialyse Péritonéale et Transplantation Montpellier France

Steno Diabetes Center Gentofte Denmark

Steno Diabetes Center Gentofte Denmark HEALTH University of Aarhus Aarhus Denmark Faculty of Health University of Copenhagen Copenhagen Denmark

Zobrazit více v PubMed

Danaei G, Finucane MM, Lu Y, et al. National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. Lancet. 2011;378:31–40. PubMed

Wild S, Roglic G, Green A, et al. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27:1047–1053. PubMed

Jha V, Garcia-Garcia G, Iseki K, et al. Chronic kidney disease: global dimension and perspectives. Lancet. 2013;382:260–272. PubMed

Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. UK Prospective Diabetes Study Group. BMJ. 1998;317:703–713. PubMed PMC

Lewis EJ, Hunsicker LG, Bain RP, et al. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N Engl J Med. 1993;329:1456–1462. PubMed

Brenner BM, Cooper ME, de Zeeuw D, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med. 2001;345:861–869. PubMed

Glassock RJ. Debate: CON position. Should microalbuminuria ever be considered as a renal endpoint in any clinical trial? Am J Nephrol. 2010;31:462–465. PubMed

Lambers Heerspink HJ, de Zeeuw D. Debate: PRO position. Should microalbuminuria ever be considered as a renal endpoint in any clinical trial? Am J Nephrol. 2010;31:458–461. PubMed

Perkins BA, Ficociello LH, Roshan B, et al. In patients with type 1 diabetes and new-onset microalbuminuria the development of advanced chronic kidney disease may not require progression to proteinuria. Kidney Int. 2010;77:57–64. PubMed PMC

Good DM, Zürbig P, Argiles A, et al. Naturally occurring human urinary peptides for use in diagnosis of chronic kidney disease. Mol Cell Proteomics. 2010;9:2424–2437. PubMed PMC

Roscioni SS, de Zeeuw D, Hellemons ME, et al. A urinary peptide biomarker set predicts worsening of albuminuria in type 2 diabetes mellitus. Diabetologia. 2012;56:259–267. PubMed

Zürbig P, Jerums G, Hovind P, et al. Urinary proteomics for early diagnosis in diabetic nephropathy. Diabetes. 2012;61:3304–3313. PubMed PMC

Argiles A, Siwy J, Duranton F, et al. CKD273, a new proteomics classifier assessing CKD and its prognosis. PLoS One. 2013;8:e62837. PubMed PMC

Levey AS, Coresh J, Greene T, et al. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med. 2006;145:247–254. PubMed

Theodorescu D, Schiffer E, Bauer HW, et al. Discovery and validation of urinary biomarkers for prostate cancer. Proteomics Clin Appl. 2008;2:556–570. PubMed PMC

Jantos-Siwy J, Schiffer E, Brand K, et al. Quantitative urinary proteome analysis for biomarker evaluation in chronic kidney disease. J Proteome Res. 2009;8:268–281. PubMed

Wittke S, Mischak H, Walden M, et al. Discovery of biomarkers in human urine and cerebrospinal fluid by capillary electrophoresis coupled to mass spectrometry: towards new diagnostic and therapeutic approaches. Electrophoresis. 2005;26:1476–1487. PubMed

Haubitz M, Good DM, Woywodt A, et al. Identification and validation of urinary biomarkers for differential diagnosis and dvaluation of therapeutic intervention in ANCA associated vasculitis. Mol Cell Proteomics. 2009;8:2296–2307. PubMed PMC

Neuhoff N, Kaiser T, Wittke S, et al. Mass spectrometry for the detection of differentially expressed proteins: a comparison of surface-enhanced laser desorption/ionization and capillary electrophoresis/mass spectrometry. Rapid Commun Mass Spectrom. 2004;18:149–156. PubMed

Coon JJ, Zürbig P, Dakna M, et al. CE-MS analysis of the human urinary proteome for biomarker discovery and disease diagnostics. Proteomics Clin Appl. 2008;2:964–973. PubMed PMC

Siwy J, Mullen W, Golovko I, et al. Human urinary peptide database for multiple disease biomarker discovery. Proteomics Clin Appl. 2011;5:367–374. PubMed

DeLeo JM, DeLeo JM. Receiver operating characteristic laboratory (ROCLAB): Software for developing decision strategies that account for uncertainty. 318–325. 1993. College Park, MD, USA, Second International Symposium on Uncertainty Modeling and Analysis. 4-25-1993.

Mischak H. How to get proteomics to the clinic? Issues in clinical proteomics, exemplified by CE-MS. Proteomics Clin Appl. 2012;6:437–442. PubMed

Mischak H, Ioannidis JP, Argiles A, et al. Implementation of proteomic biomarkers: making it work. Eur J Clin Invest. 2012;42:1027–1036. PubMed PMC

Dakna M, Harris K, Kalousis A, et al. Addressing the challenge of defining valid proteomic biomarkers and classifiers. BMC Bioinformatics. 2010;11:594. PubMed PMC

Mischak H, Allmaier G, Apweiler R, et al. Recommendations for biomarker identification and qualification in clinical proteomics. Sci Transl Med. 2010;2:46ps42. PubMed

Molin L, Seraglia R, Lapolla A, et al. A comparison between MALDI-MS and CE-MS data for biomarker assessment in chronic kidney diseases. J Proteomics. 2012;75:5888–5897. PubMed

Mischak H, Vlahou A, Ioannidis JP. Technical aspects and inter-laboratory variability in native peptide profiling: the CE-MS experience. Clin Biochem. 2013;46:432–443. PubMed

Argiles A, Mourad G, Mion C, et al. Two-dimensional gel electrophoresis of urinary proteins in kidney diseases. Contrib Nephrol. 1990;83:1–8. PubMed

Candiano G, Musante L, Bruschi M, et al. Repetitive fragmentation products of albumin and alpha1-antitrypsin in glomerular diseases associated with nephrotic syndrome. J Am Soc Nephrol. 2006;17:3139–3148. PubMed

Kwak NJ, Heo Y, Jin DC, et al. Proteomic analysis of alpha-1-antitrypsin in immunoglobulin A nephropathy. Proteomics Clin Appl. 2007;1:420–428. PubMed

Varghese SA, Powell TB, Budisavljevic MN, et al. Urine biomarkers predict the cause of glomerular disease. J Am Soc Nephrol. 2007;18:913–922. PubMed PMC

Rossing K, Mischak H, Rossing P, et al. The urinary proteome in diabetes and diabetes-associated complications: new ways to assess disease progression and evaluate therapy. Proteomics Clin Appl. 2008;2:997–1007. PubMed

Meguid El NA, Bello AK. Chronic kidney disease: the global challenge. Lancet. 2005;365:331–340. PubMed

Noone D, Licht C. Chronic kidney disease: a new look at pathogenetic mechanisms and treatment options. Pediatr Nephrol. 2013 Doi:10.1007/s00467-013-2436-5. PubMed DOI

Ruggenenti P, Cravedi P, Remuzzi G. Mechanisms and treatment of CKD. J Am Soc Nephrol. 2012;23:1917–1928. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...