Diagnosis and Prediction of CKD Progression by Assessment of Urinary Peptides
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu klinické zkoušky, časopisecké články, multicentrická studie, práce podpořená grantem
Grantová podpora
294713
European Research Council - International
R01 HL113029
NHLBI NIH HHS - United States
PubMed
25589610
PubMed Central
PMC4520165
DOI
10.1681/asn.2014050423
PII: ASN.2014050423
Knihovny.cz E-zdroje
- Klíčová slova
- CKD, albuminuria, biomarker, extracellular matrix, fibrosis, renal progression,
- MeSH
- biologické markery moč MeSH
- chronická renální insuficience moč MeSH
- dospělí MeSH
- hodnoty glomerulární filtrace MeSH
- kohortové studie MeSH
- lidé středního věku MeSH
- lidé MeSH
- peptidy moč MeSH
- progrese nemoci MeSH
- senioři MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- klinické zkoušky MeSH
- multicentrická studie MeSH
- práce podpořená grantem MeSH
- Názvy látek
- biologické markery MeSH
- peptidy MeSH
Progressive CKD is generally detected at a late stage by a sustained decline in eGFR and/or the presence of significant albuminuria. With the aim of early and improved risk stratification of patients with CKD, we studied urinary peptides in a large cross-sectional multicenter cohort of 1990 individuals, including 522 with follow-up data, using proteome analysis. We validated that a previously established multipeptide urinary biomarker classifier performed significantly better in detecting and predicting progression of CKD than the current clinical standard, urinary albumin. The classifier was also more sensitive for identifying patients with rapidly progressing CKD. Compared with the combination of baseline eGFR and albuminuria (area under the curve [AUC]=0.758), the addition of the multipeptide biomarker classifier significantly improved CKD risk prediction (AUC=0.831) as assessed by the net reclassification index (0.303±-0.065; P<0.001) and integrated discrimination improvement (0.058±0.014; P<0.001). Correlation of individual urinary peptides with CKD stage and progression showed that the peptides that associated with CKD, irrespective of CKD stage or CKD progression, were either fragments of the major circulating proteins, suggesting failure of the glomerular filtration barrier sieving properties, or different collagen fragments, suggesting accumulation of intrarenal extracellular matrix. Furthermore, protein fragments associated with progression of CKD originated mostly from proteins related to inflammation and tissue repair. Results of this study suggest that urinary proteome analysis might significantly improve the current state of the art of CKD detection and outcome prediction and that identification of the urinary peptides allows insight into various ongoing pathophysiologic processes in CKD.
Austin Health University of Melbourne Heidelberg Australia;
Barbara Davis Center for Childhood Diabetes University of Colorado Denver Aurora Colorado;
Department of Nephrology and Hypertension Medical School of Hanover Hanover Germany;
Department of Nephrology and Hypertension University Hospital of Magdeburg Magdeburg Germany;
Department of Nephrology Klinikum Fulda gAG Fulda Germany;
Faculty of Health University of Copenhagen Copenhagen Denmark;
KfH Renal Unit Department Nephrology Leipzig and Martin Luther University Halle Wittenberg Germany;
Mario Negri Institute of Pharmacology Research Bergamo Italy;
mosaiques diagnostics GmbH Hanover Germany;
Nephrology Section Department of Internal Medicine Ghent University Hospital Ghent Belgium
RD Néphrologie Montpellier France;
Steno Diabetes Center Gentofte Denmark;
University Department of Nephrology Medical Faculty University of Skopje Skopje Macedonia;
University Medical Center Groningen and University of Groningen Groningen The Netherlands;
Zobrazit více v PubMed
Jha V, Garcia-Garcia G, Iseki K, Li Z, Naicker S, Plattner B, Saran R, Wang AY, Yang CW: Chronic kidney disease: Global dimension and perspectives. Lancet 382: 260–272, 2013 PubMed
O’Hare AM, Choi AI, Bertenthal D, Bacchetti P, Garg AX, Kaufman JS, Walter LC, Mehta KM, Steinman MA, Allon M, McClellan WM, Landefeld CS: Age affects outcomes in chronic kidney disease. J Am Soc Nephrol 18: 2758–2765, 2007 PubMed
Tonelli M, Wiebe N, Culleton B, House A, Rabbat C, Fok M, McAlister F, Garg AX: Chronic kidney disease and mortality risk: A systematic review. J Am Soc Nephrol 17: 2034–2047, 2006 PubMed
Levey AS, Atkins R, Coresh J, Cohen EP, Collins AJ, Eckardt KU, Nahas ME, Jaber BL, Jadoul M, Levin A, Powe NR, Rossert J, Wheeler DC, Lameire N, Eknoyan G: Chronic kidney disease as a global public health problem: Approaches and initiatives - A position statement from Kidney Disease Improving Global Outcomes. Kidney Int 72: 247–259, 2007 PubMed
Levey AS, Eckardt KU, Tsukamoto Y, Levin A, Coresh J, Rossert J, De Zeeuw D, Hostetter TH, Lameire N, Eknoyan G: Definition and classification of chronic kidney disease: A position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int 67: 2089–2100, 2005 PubMed
Miller WG, Bruns DE, Hortin GL, Sandberg S, Aakre KM, McQueen MJ, Itoh Y, Lieske JC, Seccombe DW, Jones G, Bunk DM, Curhan GC, Narva AS, National Kidney Disease Education Program-IFCC Working Group on Standardization of Albumin in Urine : Current issues in measurement and reporting of urinary albumin excretion. Clin Chem 55: 24–38, 2009 PubMed
Rossing P: Prediction, progression and prevention of diabetic nephropathy. The Minkowski Lecture 2005. Diabetologia 49: 11–19, 2006 PubMed
MacIsaac RJ, Ekinci EI, Jerums G: ‘Progressive diabetic nephropathy. How useful is microalbuminuria?: Contra’. Kidney Int 86: 50–57, 2014 PubMed
Brenner BM, Cooper ME, de Zeeuw D, Keane WF, Mitch WE, Parving HH, Remuzzi G, Snapinn SM, Zhang Z, Shahinfar S, RENAAL Study Investigators : Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med 345: 861–869, 2001 PubMed
Matheson A, Willcox MD, Flanagan J, Walsh BJ: Urinary biomarkers involved in type 2 diabetes: A review. Diabetes Metab Res Rev 26: 150–171, 2010 PubMed
Jerums G, Premaratne E, Panagiotopoulos S, Clarke S, Power DA, MacIsaac RJ: New and old markers of progression of diabetic nephropathy. Diabetes Res Clin Pract 82[Suppl 1]: S30–S37, 2008 PubMed
Steinke JM: The natural progression of kidney injury in young type 1 diabetic patients. Curr Diab Rep 9: 473–479, 2009 PubMed
Mischak H, Coon JJ, Novak J, Weissinger EM, Schanstra JP, Dominiczak AF: Capillary electrophoresis-mass spectrometry as a powerful tool in biomarker discovery and clinical diagnosis: An update of recent developments. Mass Spectrom Rev 28: 703–724, 2009 PubMed PMC
Mischak H, Schanstra JP: CE-MS in biomarker discovery, validation, and clinical application. Proteomics Clin Appl 5: 9–23, 2011 PubMed
Rossing K, Mischak H, Dakna M, Zürbig P, Novak J, Julian BA, Good DM, Coon JJ, Tarnow L, Rossing P, PREDICTIONS Network : Urinary proteomics in diabetes and CKD. J Am Soc Nephrol 19: 1283–1290, 2008 PubMed PMC
Good DM, Zürbig P, Argilés A, Bauer HW, Behrens G, Coon JJ, Dakna M, Decramer S, Delles C, Dominiczak AF, Ehrich JH, Eitner F, Fliser D, Frommberger M, Ganser A, Girolami MA, Golovko I, Gwinner W, Haubitz M, Herget-Rosenthal S, Jankowski J, Jahn H, Jerums G, Julian BA, Kellmann M, Kliem V, Kolch W, Krolewski AS, Luppi M, Massy Z, Melter M, Neusüss C, Novak J, Peter K, Rossing K, Rupprecht H, Schanstra JP, Schiffer E, Stolzenburg JU, Tarnow L, Theodorescu D, Thongboonkerd V, Vanholder R, Weissinger EM, Mischak H, Schmitt-Kopplin P: Naturally occurring human urinary peptides for use in diagnosis of chronic kidney disease. Mol Cell Proteomics 9: 2424–2437, 2010 PubMed PMC
Alkhalaf A, Zürbig P, Bakker SJ, Bilo HJ, Cerna M, Fischer C, Fuchs S, Janssen B, Medek K, Mischak H, Roob JM, Rossing K, Rossing P, Rychlík I, Sourij H, Tiran B, Winklhofer-Roob BM, Navis GJ, PREDICTIONS Group : Multicentric validation of proteomic biomarkers in urine specific for diabetic nephropathy. PLoS ONE 5: e13421, 2010 PubMed PMC
Molin L, Seraglia R, Lapolla A, Ragazzi E, Gonzalez J, Vlahou A, Schanstra JP, Albalat A, Dakna M, Siwy J, Jankowski J, Bitsika V, Mischak H, Zürbig P, Traldi P: A comparison between MALDI-MS and CE-MS data for biomarker assessment in chronic kidney diseases. J Proteomics 75: 5888–5897, 2012 PubMed
Roscioni SS, de Zeeuw D, Hellemons ME, Mischak H, Zürbig P, Bakker SJ, Gansevoort RT, Reinhard H, Persson F, Lajer M, Rossing P, Lambers Heerspink HJ: A urinary peptide biomarker set predicts worsening of albuminuria in type 2 diabetes mellitus. Diabetologia 56: 259–267, 2013 PubMed
Zürbig P, Jerums G, Hovind P, Macisaac RJ, Mischak H, Nielsen SE, Panagiotopoulos S, Persson F, Rossing P: Urinary proteomics for early diagnosis in diabetic nephropathy. Diabetes 61: 3304–3313, 2012 PubMed PMC
Chou KM, Lee CC, Chen CH, Sun CY: Clinical value of NGAL, L-FABP and albuminuria in predicting GFR decline in type 2 diabetes mellitus patients. PLoS ONE 8: e54863, 2013 PubMed PMC
Spasovski G, Ortiz A, Vanholder R, El Nahas M: Proteomics in chronic kidney disease: The issues clinical nephrologists need an answer for. Proteomics Clin Appl 5: 233–240, 2011 PubMed
Taal MW, Brenner BM: Predicting initiation and progression of chronic kidney disease: Developing renal risk scores. Kidney Int 70: 1694–1705, 2006 PubMed
Caramori ML, Fioretto P, Mauer M: The need for early predictors of diabetic nephropathy risk: Is albumin excretion rate sufficient? Diabetes 49: 1399–1408, 2000 PubMed
Macisaac RJ, Jerums G: Diabetic kidney disease with and without albuminuria. Curr Opin Nephrol Hypertens 20: 246–257, 2011 PubMed
Perkins BA, Ficociello LH, Roshan B, Warram JH, Krolewski AS: In patients with type 1 diabetes and new-onset microalbuminuria the development of advanced chronic kidney disease may not require progression to proteinuria. Kidney Int 77: 57–64, 2010 PubMed PMC
Liu KD, Yang W, Anderson AH, Feldman HI, Demirjian S, Hamano T, He J, Lash J, Lustigova E, Rosas SE, Simonson MS, Tao K, Hsu CY, Chronic Renal Insufficiency Cohort (CRIC) study investigators : Urine neutrophil gelatinase-associated lipocalin levels do not improve risk prediction of progressive chronic kidney disease. Kidney Int 83: 909–914, 2013 PubMed PMC
Argilés Á, Siwy J, Duranton F, Gayrard N, Dakna M, Lundin U, Osaba L, Delles C, Mourad G, Weinberger KM, Mischak H: CKD273, a new proteomics classifier assessing CKD and its prognosis. PLoS ONE 8: e62837, 2013 PubMed PMC
Suh JH, Miner JH: The glomerular basement membrane as a barrier to albumin. Nat Rev Nephrol 9: 470–477, 2013 PubMed PMC
Rossing K, Mischak H, Rossing P, Schanstra JP, Wiseman A, Maahs DM: The urinary proteome in diabetes and diabetes-associated complications: New ways to assess disease progression and evaluate therapy. Proteomics Clin Appl 2: 997–1007, 2008 PubMed
Murri M, Insenser M, Bernal-Lopez MR, Perez-Martinez P, Escobar-Morreale HF, Tinahones FJ: Proteomic analysis of visceral adipose tissue in pre-obese patients with type 2 diabetes. Mol Cell Endocrinol 376: 99–106, 2013 PubMed
Awartani F: Serum immunoglobulin levels in type 2 diabetes patients with chronic periodontitis. J Contemp Dent Pract 11:001-008, 2010 PubMed
Bellei E, Rossi E, Lucchi L, Uggeri S, Albertazzi A, Tomasi A, Iannone A: Proteomic analysis of early urinary biomarkers of renal changes in type 2 diabetic patients. Proteomics Clin Appl 2: 478–491, 2008 PubMed
Caseiro A, Ferreira R, Padrão A, Quintaneiro C, Pereira A, Marinheiro R, Vitorino R, Amado F: Salivary proteome and peptidome profiling in type 1 diabetes mellitus using a quantitative approach. J Proteome Res 12: 1700–1709, 2013 PubMed
Shamsara J, Behravan J, Falsoleiman H, Mohammadpour AH, Rendeirs J, Ramezani M: Pentoxifylline administration changes protein expression profile of coronary artery disease patients. Gene 487: 107–111, 2011 PubMed
Navarro JF, Mora C, Muros M, García J: Additive antiproteinuric effect of pentoxifylline in patients with type 2 diabetes under angiotensin II receptor blockade: A short-term, randomized, controlled trial. J Am Soc Nephrol 16: 2119–2126, 2005 PubMed
Jung GS, Kim MK, Jung YA, Kim HS, Park IS, Min BH, Lee KU, Kim JG, Park KG, Lee IK: Clusterin attenuates the development of renal fibrosis. J Am Soc Nephrol 23: 73–85, 2012 PubMed PMC
Chen K, Li Y, Dai Y, Li J, Qin Y, Zhu Y, Zeng T, Ban X, Fu L, Guan XY: Characterization of tumor suppressive function of cornulin in esophageal squamous cell carcinoma. PLoS ONE 8: e68838, 2013 PubMed PMC
Yang L, Besschetnova TY, Brooks CR, Shah JV, Bonventre JV: Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nat Med 16:535–543, 2010 PubMed PMC
Marek CJ, Wallace K, Durward E, Koruth M, Leel V, Leiper LJ, Wright MC: Low affinity glucocorticoid binding site ligands as potential anti-fibrogenics. Comp Hepatol 8: 1, 2009 PubMed PMC
Facio FN, Jr, Sena AA, Araújo LP, Mendes GE, Castro I, Luz MA, Yu L, Oliani SM, Burdmann EA: Annexin 1 mimetic peptide protects against renal ischemia/reperfusion injury in rats. J Mol Med (Berl) 89: 51–63, 2011 PubMed
Choi YH, McNally BT, Igarashi P: Zyxin regulates migration of renal epithelial cells through activation of hepatocyte nuclear factor-1β. Am J Physiol Renal Physiol 305: F100–F110, 2013 PubMed PMC
Decramer S, Parant O, Beaufils S, Clauin S, Guillou C, Kessler S, Aziza J, Bandin F, Schanstra JP, Bellanné-Chantelot C: Anomalies of the TCF2 gene are the main cause of fetal bilateral hyperechogenic kidneys. J Am Soc Nephrol 18: 923–933, 2007 PubMed
Faguer S, Mayeur N, Casemayou A, Pageaud AL, Courtellemont C, Cartery C, Fournie GJ, Schanstra JP, Tack I, Bascands JL, Chauveau D: Hnf-1β transcription factor is an early hif-1α-independent marker of epithelial hypoxia and controls renal repair. PLoS ONE 8: e63585, 2013 PubMed PMC
Levin A, Stevens PE: Summary of KDIGO 2012 CKD Guideline: Behind the scenes, need for guidance, and a framework for moving forward. Kidney Int 85: 49–61, 2014 PubMed
Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF, 3rd, Feldman HI, Kusek JW, Eggers P, Van Lente F, Greene T, Coresh J, CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) : A new equation to estimate glomerular filtration rate. Ann Intern Med 150: 604–612, 2009 PubMed PMC
Eckardt KU, Coresh J, Devuyst O, Johnson RJ, Köttgen A, Levey AS, Levin A: Evolving importance of kidney disease: From subspecialty to global health burden. Lancet 382: 158–169, 2013 PubMed
Haubitz M, Good DM, Woywodt A, Haller H, Rupprecht H, Theodorescu D, Dakna M, Coon JJ, Mischak H: Identification and validation of urinary biomarkers for differential diagnosis and evaluation of therapeutic intervention in anti-neutrophil cytoplasmic antibody-associated vasculitis. Mol Cell Proteomics 8: 2296–2307, 2009 PubMed PMC
Theodorescu D, Wittke S, Ross MM, Walden M, Conaway M, Just I, Mischak H, Frierson HF: Discovery and validation of new protein biomarkers for urothelial cancer: A prospective analysis. Lancet Oncol 7: f230–240, 2006 PubMed
Neuhoff N, Kaiser T, Wittke S, Krebs R, Pitt A, Burchard A, Sundmacher A, Schlegelberger B, Kolch W, Mischak H: Mass spectrometry for the detection of differentially expressed proteins: A comparison of surface-enhanced laser desorption/ionization and capillary electrophoresis/mass spectrometry. Rapid Commun Mass Spectrom 18: 149–156, 2004 PubMed
Jantos-Siwy J, Schiffer E, Brand K, Schumann G, Rossing K, Delles C, Mischak H, Metzger J: Quantitative urinary proteome analysis for biomarker evaluation in chronic kidney disease. J Proteome Res 8: 268–281, 2009 PubMed
DeLeo JM: Receiver operating characteristic laboratory (ROCLAB): Software for developing decision strategies that account for uncertainty. In: Proceedings of the Second International Symposium on Uncertainty Modeling and Analysis, College Park, MD, IEEE, 1993, pp 318–325
Pencina MJ, D’Agostino RB, Sr, D’Agostino RB, Jr, Vasan RS: Evaluating the added predictive ability of a new marker: From area under the ROC curve to reclassification and beyond. Stat Med 27: 157–172, discussion 207–212, 2008 PubMed