QM calculations predict the energetics and infrared spectra of transient glutamine isomers in LOV photoreceptors
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články
PubMed
34142688
PubMed Central
PMC8246142
DOI
10.1039/d1cp00447f
Knihovny.cz E-zdroje
- MeSH
- cystein chemie MeSH
- flavinmononukleotid chemie MeSH
- fotochemické procesy MeSH
- fototropiny chemie MeSH
- glutamin chemie MeSH
- isomerie MeSH
- konformace proteinů MeSH
- molekulární modely MeSH
- normální rozdělení MeSH
- oves chemie MeSH
- sekvence aminokyselin MeSH
- spektrofotometrie infračervená MeSH
- Sphingomonadaceae chemie MeSH
- termodynamika MeSH
- vazba proteinů MeSH
- vodíková vazba MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cystein MeSH
- flavinmononukleotid MeSH
- fototropiny MeSH
- glutamin MeSH
Photosensory receptors containing the flavin-binding light-oxygen-voltage (LOV) domain are modular proteins that fulfil a variety of biological functions ranging from gene expression to phototropism. The LOV photocycle is initiated by blue-light and involves a cascade of intermediate species, including an electronically excited triplet state, that leads to covalent bond formation between the flavin mononucleotide (FMN) chromophore and a nearby cysteine residue. Subsequent conformational changes in the polypeptide chain arise due to the remodelling of the hydrogen bond network in the cofactor binding pocket, whereby a conserved glutamine residue plays a key role in coupling FMN photochemistry with LOV photobiology. Although the dark-to-light transition of LOV photosensors has been previously addressed by spectroscopy and computational approaches, the mechanistic basis of the underlying reactions is still not well understood. Here we present a detailed computational study of three distinct LOV domains: EL222 from Erythrobacter litoralis, AsLOV2 from the second LOV domain of Avena sativa phototropin 1, and RsLOV from Rhodobacter sphaeroides LOV protein. Extended protein-chromophore models containing all known crucial residues involved in the initial steps (femtosecond-to-microsecond) of the photocycle were employed. Energies and rotational barriers were calculated for possible rotamers and tautomers of the critical glutamine side chain, which allowed us to postulate the most energetically favoured glutamine orientation for each LOV domain along the assumed reaction path. In turn, for each evolving species, infrared difference spectra were constructed and compared to experimental EL222 and AsLOV2 transient infrared spectra, the former from original work presented here and the latter from the literature. The good agreement between theory and experiment permitted the assignment of the majority of observed bands, notably the ∼1635 cm-1 transient of the adduct state to the carbonyl of the glutamine side chain after rotation. Moreover, both the energetic and spectroscopic approaches converge in suggesting a facile glutamine flip at the adduct intermediate for EL222 and more so for AsLOV2, while for RsLOV the glutamine keeps its initial configuration. Additionally, the computed infrared shifts of the glutamine and interacting residues could guide experimental research addressing early events of signal transduction in LOV proteins.
Zobrazit více v PubMed
Strickland D. Lin Y. Wagner E. Hope C. M. Zayner J. Antoniou C. Sosnick T. R. Weiss E. L. Glotzer M. Nat. Methods. 2012;9:379–384. PubMed PMC
Losi A. Gardner K. H. Möglich A. Chem. Rev. 2018;118:10659–10709. PubMed PMC
Losi A. Gärtner W. Photochem. Photobiol. 2017;93:141–158. PubMed
Glantz S. T. Carpenter E. J. Melkonian M. Gardner K. H. Boyden E. S. Wong G. K.-S. Chow B. Y. Proc. Natl. Acad. Sci. U. S. A. 2016;113:E1442. PubMed PMC
Nash A. I. Ko W.-H. Harper S. M. Gardner K. H. Biochemistry. 2008;47:13842–13849. PubMed PMC
Ganguly A. Thiel W. Crane B. R. J. Am. Chem. Soc. 2017;139:2972–2980. PubMed PMC
Iuliano J. N. Collado J. T. Gil A. A. Ravindran P. T. Lukacs A. Shin S. Woroniecka H. A. Adamczyk K. Aramini J. M. Edupuganti U. R. Hall C. R. Greetham G. M. Sazanovich I. V. Clark I. P. Daryaee T. Toettcher J. E. French J. B. Gardner K. H. Simmerling C. L. Meech S. R. Tonge P. J. ACS Chem. Biol. 2020;15:2752–2765. PubMed PMC
Henry L. Berntsson O. Panman M. R. Cellini A. Hughes A. J. Kosheleva I. Henning R. Westenhoff S. Biochemistry. 2020;59:3206–3215. PubMed PMC
Polverini E. Schackert F. K. Losi A. Photochem. Photobiol. Sci. 2020;19:892–904. PubMed
Kalvaitis M. E. Johnson L. A. Mart R. J. Rizkallah P. Allemann R. K. Biochemistry. 2019;58:2608–2616. PubMed PMC
Crosson S. Moffat K. Plant Cell. 2002;14:1067. PubMed PMC
Nozaki D. Iwata T. Ishikawa T. Todo T. Tokutomi S. Kandori H. Biochemistry. 2004;43:8373–8379. PubMed
Chang X. P. Gao Y. J. Fang W. H. Cui G. Thiel W. Angew. Chem., Int. Ed. 2017;56:9341–9345. PubMed
Nakagawa S. Weingart O. Marian C. M. J. Phys. Chem. B. 2017;121:9583–9596. PubMed
Swartz T. E. Corchnoy S. B. Christie J. M. Lewis J. W. Szundi I. Briggs W. R. Bogomolni R. A. J. Biol. Chem. 2001;276:36493–36500. PubMed
Corchnoy S. B. Swartz T. E. Lewis J. W. Szundi I. Briggs W. R. Bogomolni R. A. J. Biol. Chem. 2003;278:724–731. PubMed
Zhu J. Mathes T. Hontani Y. Alexandre M. T. A. Toh K. C. Hegemann P. Kennis J. T. M. J. Phys. Chem. Lett. 2016;7:4380–4384. PubMed
Kennis J. T. Crosson S. Gauden M. van Stokkum I. H. Moffat K. van Grondelle R. Biochemistry. 2003;42:3385–3392. PubMed
Kopka B. Magerl K. Savitsky A. Davari M. D. Rollen K. Bocola M. Dick B. Schwaneberg U. Jaeger K. E. Krauss U. Sci. Rep. 2017;7:13346. PubMed PMC
Yee E. F. Diensthuber R. P. Vaidya A. T. Borbat P. P. Engelhard C. Freed J. H. Bittl R. Moglich A. Crane B. R. Nat. Commun. 2015;6:10079. PubMed PMC
Nash A. I. McNulty R. Shillito M. E. Swartz T. E. Bogomolni R. A. Luecke H. Gardner K. H. Proc. Natl. Acad. Sci. U. S. A. 2011;108:9449–9454. PubMed PMC
Takakado A. Nakasone Y. Terazima M. Biochemistry. 2018;57:1603–1610. PubMed
Conrad K. S. Bilwes A. M. Crane B. R. Biochemistry. 2013;52:378–391. PubMed PMC
Magerl K. Dick B. Photochem. Photobiol. Sci. 2020;19:159–170. PubMed
Halavaty A. S. Moffat K. Biochemistry. 2007;46:14001–14009. PubMed
Harper S. M. Neil L. C. Gardner K. H. Science. 2003;301:1541. PubMed
Pudasaini A. El-Arab K. K. Zoltowski B. D. Front. Mol. Biosci. 2015;2:18. PubMed PMC
Konold P. E. Mathes T. Weiβenborn J. Groot M. L. Hegemann P. Kennis J. T. M. J. Phys. Chem. Lett. 2016;7:3472–3476. PubMed
Pfeifer A. Majerus T. Zikihara K. Matsuoka D. Tokutomi S. Heberle J. Kottke T. Biophys. J. 2009;96:1462–1470. PubMed PMC
Brust R. Lukacs A. Haigney A. Addison K. Gil A. Towrie M. Clark I. P. Greetham G. M. Tonge P. J. Meech S. R. J. Am. Chem. Soc. 2013;135:16168–16174. PubMed PMC
Haigney A. Lukacs A. Zhao R.-K. Stelling A. L. Brust R. Kim R.-R. Kondo M. Clark I. Towrie M. Greetham G. M. Illarionov B. Bacher A. Römisch-Margl W. Fischer M. Meech S. R. Tonge P. J. Biochemistry. 2011;50:1321–1328. PubMed
Iuliano J. N. Gil A. A. Laptenok S. P. Hall C. R. Tolentino Collado J. Lukacs A. Hag Ahmed S. A. Abyad J. Daryaee T. Greetham G. M. Sazanovich I. V. Illarionov B. Bacher A. Fischer M. Towrie M. French J. B. Meech S. R. Tonge P. J. Biochemistry. 2018;57:620–630. PubMed PMC
Gil A. A. Laptenok S. P. French J. B. Iuliano J. N. Lukacs A. Hall C. R. Sazanovich I. V. Greetham G. M. Bacher A. Illarionov B. Fischer M. Tonge P. J. Meech S. R. J. Phys. Chem. B. 2017;121:1010–1019. PubMed PMC
Goett-Zink L. Klocke J. L. Bögeholz L. A. K. Kottke T. J. Biol. Chem. 2020;295:11729–11741. PubMed PMC
Andrikopoulos P. C. Liu Y. Picchiotti A. Lenngren N. Kloz M. Chaudhari A. S. Precek M. Rebarz M. Andreasson J. Hajdu J. Schneider B. Fuertes G. Phys. Chem. Chem. Phys. 2020;22:6538–6552. PubMed
Weigel A. Dobryakov A. Klaumunzer B. Sajadi M. Saalfrank P. Ernsting N. P. J. Phys. Chem. B. 2011;115:3656–3680. PubMed
Domratcheva T. Hartmann E. Schlichting I. Kottke T. Sci. Rep. 2016;6:22669. PubMed PMC
Iwata T. Nozaki D. Yamamoto A. Koyama T. Nishina Y. Shiga K. Tokutomi S. Unno M. Kandori H. Biochemistry. 2017;56:3099–3108. PubMed
Bednarz T. Losi A. Gärtner W. Hegemann P. Heberle J. Photochem. Photobiol. Sci. 2004;3:575–579. PubMed
Yamamoto A. Iwata T. Tokutomi S. Kandori H. Biochemistry. 2008;47:922–928. PubMed
Hall C. R. Tolentino Collado J. Iuliano J. N. Adamczyk K. Lukacs A. Greetham G. M. Sazanovich I. V. Tonge P. J. Meech S. R. J. Phys. Chem. B. 2019;123:9592–9597. PubMed
Hall C. R. Heisler I. A. Jones G. A. Frost J. E. Gil A. A. Tonge P. J. Meech S. R. Chem. Phys. Lett. 2017;683:365–369.
Iuliano J. N. Hall C. R. Green D. Jones G. A. Lukacs A. Illarionov B. Bacher A. Fischer M. French J. B. Tonge P. J. Meech S. R. J. Phys. Chem. B. 2020;124:7152–7165. PubMed PMC
Peter E. Dick B. Baeurle S. A. J. Mol. Model. 2012;18:1375–1388. PubMed
Peter E. Dick B. Baeurle S. A. Proteins. 2012;80:471–481. PubMed
Peter E. Dick B. Baeurle S. A. Nat. Commun. 2010;1:122. PubMed
Freddolino P. L. Dittrich M. Schulten K. Biophys. J. 2006;91:3630–3639. PubMed PMC
Freddolino P. L. Gardner K. H. Schulten K. Photochem. Photobiol. Sci. 2013;12:1158–1170. PubMed PMC
Bocola M. Schwaneberg U. Jaeger K.-E. Krauss U. Front. Mol. Biosci. 2015;2:55. PubMed PMC
Khrenova M. G. Domratcheva T. Nemukhin A. V. Chem. Phys. Lett. 2017;676:25–31.
Rieff B. Bauer S. Mathias G. Tavan P. J. Phys. Chem. B. 2011;115:11239–11253. PubMed
Kikuchi S. Unno M. Zikihara K. Tokutomi S. Yamauchi S. J. Phys. Chem. B. 2009;113:2913–2921. PubMed
Goings J. J. Li P. Zhu Q. Hammes-Schiffer S. Proc. Natl. Acad. Sci. U. S. A. 2020;117:26626. PubMed PMC
Alexandre M. T. A. Domratcheva T. Bonetti C. van Wilderen L. J. G. W. van Grondelle R. Groot M.-L. Hellingwerf K. J. Kennis J. T. M. Biophys. J. 2009;97:227–237. PubMed PMC
Kondo M. Nappa J. Ronayne K. L. Stelling A. L. Tonge P. J. Meech S. R. J. Phys. Chem. B. 2006;110:20107–20110. PubMed
Lorenz-Fonfria V. A. Chem. Rev. 2020;120:3466–3576. PubMed
Zayner J. P. Mathes T. Sosnick T. R. Kennis J. T. M. ACS Omega. 2019;4:1238–1243. PubMed PMC
Domratcheva T. Grigorenko B. L. Schlichting I. Nemukhin A. V. Biophys. J. 2008;94:3872–3879. PubMed PMC
Iwata T. Nagai T. Ito S. Osoegawa S. Iseki M. Watanabe M. Unno M. Kitagawa S. Kandori H. J. Am. Chem. Soc. 2018;140:11982–11991. PubMed
Sadeghian K. Bocola M. Schütz M. J. Am. Chem. Soc. 2008;130:12501–12513. PubMed
Goings J. J. Hammes-Schiffer S. J. Am. Chem. Soc. 2019;141:20470–20479. PubMed
Kutta R. J. Magerl K. Kensy U. Dick B. Photochem. Photobiol. Sci. 2015;14:288–299. PubMed
Bauer C. Rabl C.-R. Heberle J. Kottke T. Photochem. Photobiol. 2011;87:548–553. PubMed
Thöing C. Pfeifer A. Kakorin S. Kottke T. Phys. Chem. Chem. Phys. 2013;15:5916–5926. PubMed
Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Petersson G. A., Nakatsuji H., Li X., Caricato M., Marenich A. V., Bloino J., Janesko B. G., Gomperts R., Mennucci B., Hratchian H. P., Ortiz J. V., Izmaylov A. F., Sonnenberg J. L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V. G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery, Jr. J. A., Peralta J. E., Ogliaro F., Bearpark M. J., Heyd J. J., Brothers E. N., Kudin K. N., Staroverov V. N., Keith T. A., Kobayashi R., Normand J., Raghavachari K., Rendell A. P., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Millam J. M., Klene M., Adamo C., Cammi R., Ochterski J. W., Martin R. L., Morokuma K., Farkas O., Foresman J. B. and Fox D. J., Gaussian 16, Revision B.01, Gaussian, Inc., Wallingford CT, 2016
Becke A. D. Phys. Rev. A: At., Mol., Opt. Phys. 1988;38:3098–3100. PubMed
Lee C. Yang W. Parr R. G. Phys. Rev. B: Condens. Matter Mater. Phys. 1988;37:785–789. PubMed
Dunning T. H. J. Chem. Phys. 1989;90:1007–1023.
Woon D. E. Dunning T. H. J. Chem. Phys. 1993;98:1358–1371.
Davidson E. R. Chem. Phys. Lett. 1996;260:514–518.
Grimme S. Ehrlich S. Goerigk L. J. Comput. Chem. 2011;32:1456–1465. PubMed
Siegbahn P. E. M. Himo F. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2011;1:323–336.
Tomasi J. Mennucci B. Cammi R. Chem. Rev. 2005;105:2999–3093. PubMed
Scalmani G. Frisch M. J. J. Chem. Phys. 2010;132:114110. PubMed
Cossi M. Barone V. Cammi R. Tomasi J. Chem. Phys. Lett. 1996;255:327–335.
Scalmani G. Frisch M. J. Mennucci B. Tomasi J. Cammi R. Barone V. J. Chem. Phys. 2006;124:94107. PubMed
Connolly M. L. Science. 1983;221:709–713. PubMed
Kesharwani M. K. Brauer B. Martin J. M. J. Phys. Chem. A. 2015;119:1701–1714. PubMed
Konold P. E. van Stokkum I. H. M. Muzzopappa F. Wilson A. Groot M.-L. Kirilovsky D. Kennis J. T. M. J. Am. Chem. Soc. 2019;141:520–530. PubMed PMC
Groot M. L. van Wilderen L. J. G. W. Di Donato M. Photochem. Photobiol. Sci. 2007;6:501–507. PubMed
Konold P. E. Arik E. Weißenborn J. Arents J. C. Hellingwerf K. J. van Stokkum I. H. M. Kennis J. T. M. Groot M. L. Nat. Commun. 2020;11:4248. PubMed PMC
van Stokkum I. H. M. Larsen D. S. van Grondelle R. Biochim. Biophys. Acta, Bioenerg. 2004;1657:82–104. PubMed
Snellenburg J. J. Laptenok S. P. Seger R. Mullen K. M. Stokkum I. H. M. v. J. Stat. Softw. 2012;49:1–22.
Mullen K. M. van Stokkum I. H. M. J. Stat. Softw. 2007;1(3):2007.
van Stokkum I. H. Gauden M. Crosson S. van Grondelle R. Moffat K. Kennis J. T. Photochem. Photobiol. 2011;87:534–541. PubMed PMC
Domratcheva T. Fedorov R. Schlichting I. J. Chem. Theory Comput. 2006;2:1565–1574. PubMed
Dittrich M. Freddolino P. L. Schulten K. J. Phys. Chem. B. 2005;109:13006–13013. PubMed PMC
Alexandre M. T. A. van Grondelle R. Hellingwerf K. J. Kennis J. T. M. Biophys. J. 2009;97:238–247. PubMed PMC
Klaumunzer B. Kroner D. Saalfrank P. J. Phys. Chem. B. 2010;114:10826–10834. PubMed
Herman E. Kottke T. Biochemistry. 2015;54:1484–1492. PubMed
Herman E. Sachse M. Kroth P. G. Kottke T. Biochemistry. 2013;52:3094–3101. PubMed
Iwata T. Nozaki D. Sato Y. Sato K. Nishina Y. Shiga K. Tokutomi S. Kandori H. Biochemistry. 2006;45:15384–15391. PubMed
Ataka K. Hegemann P. Heberle J. Biophys. J. 2003;84:466–474. PubMed PMC
Barth A. Zscherp C. Q. Rev. Biophys. 2002;35:369–430. PubMed
Wu H. Saltzberg D. J. Kratochvil H. T. Jo H. Sali A. DeGrado W. F. J. Am. Chem. Soc. 2019;141:7320–7326. PubMed PMC
Urbanek A. Morató A. Allemand F. Delaforge E. Fournet A. Popovic M. Delbecq S. Sibille N. Bernadó P. Angew. Chem., Int. Ed. 2018;57:3598–3601. PubMed PMC