QM calculations predict the energetics and infrared spectra of transient glutamine isomers in LOV photoreceptors

. 2021 Jun 30 ; 23 (25) : 13934-13950.

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34142688

Photosensory receptors containing the flavin-binding light-oxygen-voltage (LOV) domain are modular proteins that fulfil a variety of biological functions ranging from gene expression to phototropism. The LOV photocycle is initiated by blue-light and involves a cascade of intermediate species, including an electronically excited triplet state, that leads to covalent bond formation between the flavin mononucleotide (FMN) chromophore and a nearby cysteine residue. Subsequent conformational changes in the polypeptide chain arise due to the remodelling of the hydrogen bond network in the cofactor binding pocket, whereby a conserved glutamine residue plays a key role in coupling FMN photochemistry with LOV photobiology. Although the dark-to-light transition of LOV photosensors has been previously addressed by spectroscopy and computational approaches, the mechanistic basis of the underlying reactions is still not well understood. Here we present a detailed computational study of three distinct LOV domains: EL222 from Erythrobacter litoralis, AsLOV2 from the second LOV domain of Avena sativa phototropin 1, and RsLOV from Rhodobacter sphaeroides LOV protein. Extended protein-chromophore models containing all known crucial residues involved in the initial steps (femtosecond-to-microsecond) of the photocycle were employed. Energies and rotational barriers were calculated for possible rotamers and tautomers of the critical glutamine side chain, which allowed us to postulate the most energetically favoured glutamine orientation for each LOV domain along the assumed reaction path. In turn, for each evolving species, infrared difference spectra were constructed and compared to experimental EL222 and AsLOV2 transient infrared spectra, the former from original work presented here and the latter from the literature. The good agreement between theory and experiment permitted the assignment of the majority of observed bands, notably the ∼1635 cm-1 transient of the adduct state to the carbonyl of the glutamine side chain after rotation. Moreover, both the energetic and spectroscopic approaches converge in suggesting a facile glutamine flip at the adduct intermediate for EL222 and more so for AsLOV2, while for RsLOV the glutamine keeps its initial configuration. Additionally, the computed infrared shifts of the glutamine and interacting residues could guide experimental research addressing early events of signal transduction in LOV proteins.

Zobrazit více v PubMed

Strickland D. Lin Y. Wagner E. Hope C. M. Zayner J. Antoniou C. Sosnick T. R. Weiss E. L. Glotzer M. Nat. Methods. 2012;9:379–384. PubMed PMC

Losi A. Gardner K. H. Möglich A. Chem. Rev. 2018;118:10659–10709. PubMed PMC

Losi A. Gärtner W. Photochem. Photobiol. 2017;93:141–158. PubMed

Glantz S. T. Carpenter E. J. Melkonian M. Gardner K. H. Boyden E. S. Wong G. K.-S. Chow B. Y. Proc. Natl. Acad. Sci. U. S. A. 2016;113:E1442. PubMed PMC

Nash A. I. Ko W.-H. Harper S. M. Gardner K. H. Biochemistry. 2008;47:13842–13849. PubMed PMC

Ganguly A. Thiel W. Crane B. R. J. Am. Chem. Soc. 2017;139:2972–2980. PubMed PMC

Iuliano J. N. Collado J. T. Gil A. A. Ravindran P. T. Lukacs A. Shin S. Woroniecka H. A. Adamczyk K. Aramini J. M. Edupuganti U. R. Hall C. R. Greetham G. M. Sazanovich I. V. Clark I. P. Daryaee T. Toettcher J. E. French J. B. Gardner K. H. Simmerling C. L. Meech S. R. Tonge P. J. ACS Chem. Biol. 2020;15:2752–2765. PubMed PMC

Henry L. Berntsson O. Panman M. R. Cellini A. Hughes A. J. Kosheleva I. Henning R. Westenhoff S. Biochemistry. 2020;59:3206–3215. PubMed PMC

Polverini E. Schackert F. K. Losi A. Photochem. Photobiol. Sci. 2020;19:892–904. PubMed

Kalvaitis M. E. Johnson L. A. Mart R. J. Rizkallah P. Allemann R. K. Biochemistry. 2019;58:2608–2616. PubMed PMC

Crosson S. Moffat K. Plant Cell. 2002;14:1067. PubMed PMC

Nozaki D. Iwata T. Ishikawa T. Todo T. Tokutomi S. Kandori H. Biochemistry. 2004;43:8373–8379. PubMed

Chang X. P. Gao Y. J. Fang W. H. Cui G. Thiel W. Angew. Chem., Int. Ed. 2017;56:9341–9345. PubMed

Nakagawa S. Weingart O. Marian C. M. J. Phys. Chem. B. 2017;121:9583–9596. PubMed

Swartz T. E. Corchnoy S. B. Christie J. M. Lewis J. W. Szundi I. Briggs W. R. Bogomolni R. A. J. Biol. Chem. 2001;276:36493–36500. PubMed

Corchnoy S. B. Swartz T. E. Lewis J. W. Szundi I. Briggs W. R. Bogomolni R. A. J. Biol. Chem. 2003;278:724–731. PubMed

Zhu J. Mathes T. Hontani Y. Alexandre M. T. A. Toh K. C. Hegemann P. Kennis J. T. M. J. Phys. Chem. Lett. 2016;7:4380–4384. PubMed

Kennis J. T. Crosson S. Gauden M. van Stokkum I. H. Moffat K. van Grondelle R. Biochemistry. 2003;42:3385–3392. PubMed

Kopka B. Magerl K. Savitsky A. Davari M. D. Rollen K. Bocola M. Dick B. Schwaneberg U. Jaeger K. E. Krauss U. Sci. Rep. 2017;7:13346. PubMed PMC

Yee E. F. Diensthuber R. P. Vaidya A. T. Borbat P. P. Engelhard C. Freed J. H. Bittl R. Moglich A. Crane B. R. Nat. Commun. 2015;6:10079. PubMed PMC

Nash A. I. McNulty R. Shillito M. E. Swartz T. E. Bogomolni R. A. Luecke H. Gardner K. H. Proc. Natl. Acad. Sci. U. S. A. 2011;108:9449–9454. PubMed PMC

Takakado A. Nakasone Y. Terazima M. Biochemistry. 2018;57:1603–1610. PubMed

Conrad K. S. Bilwes A. M. Crane B. R. Biochemistry. 2013;52:378–391. PubMed PMC

Magerl K. Dick B. Photochem. Photobiol. Sci. 2020;19:159–170. PubMed

Halavaty A. S. Moffat K. Biochemistry. 2007;46:14001–14009. PubMed

Harper S. M. Neil L. C. Gardner K. H. Science. 2003;301:1541. PubMed

Pudasaini A. El-Arab K. K. Zoltowski B. D. Front. Mol. Biosci. 2015;2:18. PubMed PMC

Konold P. E. Mathes T. Weiβenborn J. Groot M. L. Hegemann P. Kennis J. T. M. J. Phys. Chem. Lett. 2016;7:3472–3476. PubMed

Pfeifer A. Majerus T. Zikihara K. Matsuoka D. Tokutomi S. Heberle J. Kottke T. Biophys. J. 2009;96:1462–1470. PubMed PMC

Brust R. Lukacs A. Haigney A. Addison K. Gil A. Towrie M. Clark I. P. Greetham G. M. Tonge P. J. Meech S. R. J. Am. Chem. Soc. 2013;135:16168–16174. PubMed PMC

Haigney A. Lukacs A. Zhao R.-K. Stelling A. L. Brust R. Kim R.-R. Kondo M. Clark I. Towrie M. Greetham G. M. Illarionov B. Bacher A. Römisch-Margl W. Fischer M. Meech S. R. Tonge P. J. Biochemistry. 2011;50:1321–1328. PubMed

Iuliano J. N. Gil A. A. Laptenok S. P. Hall C. R. Tolentino Collado J. Lukacs A. Hag Ahmed S. A. Abyad J. Daryaee T. Greetham G. M. Sazanovich I. V. Illarionov B. Bacher A. Fischer M. Towrie M. French J. B. Meech S. R. Tonge P. J. Biochemistry. 2018;57:620–630. PubMed PMC

Gil A. A. Laptenok S. P. French J. B. Iuliano J. N. Lukacs A. Hall C. R. Sazanovich I. V. Greetham G. M. Bacher A. Illarionov B. Fischer M. Tonge P. J. Meech S. R. J. Phys. Chem. B. 2017;121:1010–1019. PubMed PMC

Goett-Zink L. Klocke J. L. Bögeholz L. A. K. Kottke T. J. Biol. Chem. 2020;295:11729–11741. PubMed PMC

Andrikopoulos P. C. Liu Y. Picchiotti A. Lenngren N. Kloz M. Chaudhari A. S. Precek M. Rebarz M. Andreasson J. Hajdu J. Schneider B. Fuertes G. Phys. Chem. Chem. Phys. 2020;22:6538–6552. PubMed

Weigel A. Dobryakov A. Klaumunzer B. Sajadi M. Saalfrank P. Ernsting N. P. J. Phys. Chem. B. 2011;115:3656–3680. PubMed

Domratcheva T. Hartmann E. Schlichting I. Kottke T. Sci. Rep. 2016;6:22669. PubMed PMC

Iwata T. Nozaki D. Yamamoto A. Koyama T. Nishina Y. Shiga K. Tokutomi S. Unno M. Kandori H. Biochemistry. 2017;56:3099–3108. PubMed

Bednarz T. Losi A. Gärtner W. Hegemann P. Heberle J. Photochem. Photobiol. Sci. 2004;3:575–579. PubMed

Yamamoto A. Iwata T. Tokutomi S. Kandori H. Biochemistry. 2008;47:922–928. PubMed

Hall C. R. Tolentino Collado J. Iuliano J. N. Adamczyk K. Lukacs A. Greetham G. M. Sazanovich I. V. Tonge P. J. Meech S. R. J. Phys. Chem. B. 2019;123:9592–9597. PubMed

Hall C. R. Heisler I. A. Jones G. A. Frost J. E. Gil A. A. Tonge P. J. Meech S. R. Chem. Phys. Lett. 2017;683:365–369.

Iuliano J. N. Hall C. R. Green D. Jones G. A. Lukacs A. Illarionov B. Bacher A. Fischer M. French J. B. Tonge P. J. Meech S. R. J. Phys. Chem. B. 2020;124:7152–7165. PubMed PMC

Peter E. Dick B. Baeurle S. A. J. Mol. Model. 2012;18:1375–1388. PubMed

Peter E. Dick B. Baeurle S. A. Proteins. 2012;80:471–481. PubMed

Peter E. Dick B. Baeurle S. A. Nat. Commun. 2010;1:122. PubMed

Freddolino P. L. Dittrich M. Schulten K. Biophys. J. 2006;91:3630–3639. PubMed PMC

Freddolino P. L. Gardner K. H. Schulten K. Photochem. Photobiol. Sci. 2013;12:1158–1170. PubMed PMC

Bocola M. Schwaneberg U. Jaeger K.-E. Krauss U. Front. Mol. Biosci. 2015;2:55. PubMed PMC

Khrenova M. G. Domratcheva T. Nemukhin A. V. Chem. Phys. Lett. 2017;676:25–31.

Rieff B. Bauer S. Mathias G. Tavan P. J. Phys. Chem. B. 2011;115:11239–11253. PubMed

Kikuchi S. Unno M. Zikihara K. Tokutomi S. Yamauchi S. J. Phys. Chem. B. 2009;113:2913–2921. PubMed

Goings J. J. Li P. Zhu Q. Hammes-Schiffer S. Proc. Natl. Acad. Sci. U. S. A. 2020;117:26626. PubMed PMC

Alexandre M. T. A. Domratcheva T. Bonetti C. van Wilderen L. J. G. W. van Grondelle R. Groot M.-L. Hellingwerf K. J. Kennis J. T. M. Biophys. J. 2009;97:227–237. PubMed PMC

Kondo M. Nappa J. Ronayne K. L. Stelling A. L. Tonge P. J. Meech S. R. J. Phys. Chem. B. 2006;110:20107–20110. PubMed

Lorenz-Fonfria V. A. Chem. Rev. 2020;120:3466–3576. PubMed

Zayner J. P. Mathes T. Sosnick T. R. Kennis J. T. M. ACS Omega. 2019;4:1238–1243. PubMed PMC

Domratcheva T. Grigorenko B. L. Schlichting I. Nemukhin A. V. Biophys. J. 2008;94:3872–3879. PubMed PMC

Iwata T. Nagai T. Ito S. Osoegawa S. Iseki M. Watanabe M. Unno M. Kitagawa S. Kandori H. J. Am. Chem. Soc. 2018;140:11982–11991. PubMed

Sadeghian K. Bocola M. Schütz M. J. Am. Chem. Soc. 2008;130:12501–12513. PubMed

Goings J. J. Hammes-Schiffer S. J. Am. Chem. Soc. 2019;141:20470–20479. PubMed

Kutta R. J. Magerl K. Kensy U. Dick B. Photochem. Photobiol. Sci. 2015;14:288–299. PubMed

Bauer C. Rabl C.-R. Heberle J. Kottke T. Photochem. Photobiol. 2011;87:548–553. PubMed

Thöing C. Pfeifer A. Kakorin S. Kottke T. Phys. Chem. Chem. Phys. 2013;15:5916–5926. PubMed

Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Petersson G. A., Nakatsuji H., Li X., Caricato M., Marenich A. V., Bloino J., Janesko B. G., Gomperts R., Mennucci B., Hratchian H. P., Ortiz J. V., Izmaylov A. F., Sonnenberg J. L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V. G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery, Jr. J. A., Peralta J. E., Ogliaro F., Bearpark M. J., Heyd J. J., Brothers E. N., Kudin K. N., Staroverov V. N., Keith T. A., Kobayashi R., Normand J., Raghavachari K., Rendell A. P., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Millam J. M., Klene M., Adamo C., Cammi R., Ochterski J. W., Martin R. L., Morokuma K., Farkas O., Foresman J. B. and Fox D. J., Gaussian 16, Revision B.01, Gaussian, Inc., Wallingford CT, 2016

Becke A. D. Phys. Rev. A: At., Mol., Opt. Phys. 1988;38:3098–3100. PubMed

Lee C. Yang W. Parr R. G. Phys. Rev. B: Condens. Matter Mater. Phys. 1988;37:785–789. PubMed

Dunning T. H. J. Chem. Phys. 1989;90:1007–1023.

Woon D. E. Dunning T. H. J. Chem. Phys. 1993;98:1358–1371.

Davidson E. R. Chem. Phys. Lett. 1996;260:514–518.

Grimme S. Ehrlich S. Goerigk L. J. Comput. Chem. 2011;32:1456–1465. PubMed

Siegbahn P. E. M. Himo F. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2011;1:323–336.

Tomasi J. Mennucci B. Cammi R. Chem. Rev. 2005;105:2999–3093. PubMed

Scalmani G. Frisch M. J. J. Chem. Phys. 2010;132:114110. PubMed

Cossi M. Barone V. Cammi R. Tomasi J. Chem. Phys. Lett. 1996;255:327–335.

Scalmani G. Frisch M. J. Mennucci B. Tomasi J. Cammi R. Barone V. J. Chem. Phys. 2006;124:94107. PubMed

Connolly M. L. Science. 1983;221:709–713. PubMed

Kesharwani M. K. Brauer B. Martin J. M. J. Phys. Chem. A. 2015;119:1701–1714. PubMed

Konold P. E. van Stokkum I. H. M. Muzzopappa F. Wilson A. Groot M.-L. Kirilovsky D. Kennis J. T. M. J. Am. Chem. Soc. 2019;141:520–530. PubMed PMC

Groot M. L. van Wilderen L. J. G. W. Di Donato M. Photochem. Photobiol. Sci. 2007;6:501–507. PubMed

Konold P. E. Arik E. Weißenborn J. Arents J. C. Hellingwerf K. J. van Stokkum I. H. M. Kennis J. T. M. Groot M. L. Nat. Commun. 2020;11:4248. PubMed PMC

van Stokkum I. H. M. Larsen D. S. van Grondelle R. Biochim. Biophys. Acta, Bioenerg. 2004;1657:82–104. PubMed

Snellenburg J. J. Laptenok S. P. Seger R. Mullen K. M. Stokkum I. H. M. v. J. Stat. Softw. 2012;49:1–22.

Mullen K. M. van Stokkum I. H. M. J. Stat. Softw. 2007;1(3):2007.

van Stokkum I. H. Gauden M. Crosson S. van Grondelle R. Moffat K. Kennis J. T. Photochem. Photobiol. 2011;87:534–541. PubMed PMC

Domratcheva T. Fedorov R. Schlichting I. J. Chem. Theory Comput. 2006;2:1565–1574. PubMed

Dittrich M. Freddolino P. L. Schulten K. J. Phys. Chem. B. 2005;109:13006–13013. PubMed PMC

Alexandre M. T. A. van Grondelle R. Hellingwerf K. J. Kennis J. T. M. Biophys. J. 2009;97:238–247. PubMed PMC

Klaumunzer B. Kroner D. Saalfrank P. J. Phys. Chem. B. 2010;114:10826–10834. PubMed

Herman E. Kottke T. Biochemistry. 2015;54:1484–1492. PubMed

Herman E. Sachse M. Kroth P. G. Kottke T. Biochemistry. 2013;52:3094–3101. PubMed

Iwata T. Nozaki D. Sato Y. Sato K. Nishina Y. Shiga K. Tokutomi S. Kandori H. Biochemistry. 2006;45:15384–15391. PubMed

Ataka K. Hegemann P. Heberle J. Biophys. J. 2003;84:466–474. PubMed PMC

Barth A. Zscherp C. Q. Rev. Biophys. 2002;35:369–430. PubMed

Wu H. Saltzberg D. J. Kratochvil H. T. Jo H. Sali A. DeGrado W. F. J. Am. Chem. Soc. 2019;141:7320–7326. PubMed PMC

Urbanek A. Morató A. Allemand F. Delaforge E. Fournet A. Popovic M. Delbecq S. Sibille N. Bernadó P. Angew. Chem., Int. Ed. 2018;57:3598–3601. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace