Light-dependent flavin redox and adduct states control the conformation and DNA-binding activity of the transcription factor EL222
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články
Grantová podpora
24-11819S
Czech Science Foundation
RVO86652036
Czech Academy of Sciences
LM2023042
MEYS
CZ.02.1.01/0.0/0.0/18_046/0015974
UP CIISB
871037
iNEXT-Discovery
Horizon 2020
FR2054
IR INFRANALYTICS
UAR 3518 CNRS-CEA-UGA-EMBL
Grenoble Instruct-ERIC
ANR-10-INBS-0005-02
FRISBI
ANR-17-EURE-0003
CBH-EUR-GS
90254
e-Infrastruktura CZ
LM2023055
ELIXIR CZ Research Infrastructure
PubMed
40119733
PubMed Central
PMC11928941
DOI
10.1093/nar/gkaf215
PII: 8090313
Knihovny.cz E-zdroje
- MeSH
- bakteriální proteiny chemie metabolismus MeSH
- DNA vazebné proteiny chemie metabolismus MeSH
- DNA * chemie metabolismus MeSH
- flavinmononukleotid * chemie metabolismus MeSH
- flaviny chemie metabolismus MeSH
- kinetika MeSH
- konformace proteinů MeSH
- krystalografie rentgenová MeSH
- oxidace-redukce * MeSH
- simulace molekulární dynamiky MeSH
- světlo * MeSH
- Thermosynechococcus metabolismus MeSH
- transkripční faktory metabolismus chemie MeSH
- vazba proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bakteriální proteiny MeSH
- DNA vazebné proteiny MeSH
- DNA * MeSH
- flavinmononukleotid * MeSH
- flaviny MeSH
- transkripční faktory MeSH
The activity of the light-oxygen-voltage/helix-turn-helix (LOV-HTH) photoreceptor EL222 is regulated through protein-protein and protein-DNA interactions, both triggered by photo-excitation of its flavin mononucleotide (FMN) cofactor. To gain molecular-level insight into the photocycle of EL222, we applied complementary methods: macromolecular X-ray crystallography (MX), nuclear magnetic resonance (NMR) spectroscopy, optical spectroscopies (infrared and UV-visible), molecular dynamics/metadynamics (MD/metaD) simulations, and protein engineering using noncanonical amino acids. Kinetic experiments provided evidence for two distinct EL222 conformations (lit1 and lit2) that become sequentially populated under illumination. These two lit states were assigned to covalently bound N5 protonated, and noncovalently bound hydroquinone forms of FMN, respectively. Only subtle structural differences were observed between the monomeric forms of all three EL222 species (dark, lit1, and lit2). While the dark state is largely monomeric, both lit states undergo monomer-dimer exchange. Furthermore, molecular modeling revealed differential dynamics and interdomain separation times arising from the three FMN states (oxidized, adduct, and reduced). Unexpectedly, all three EL222 species can associate with DNA, but only upon blue-light irradiation, a high population of stable complexes is obtained. Overall, we propose a model of EL222 activation where photoinduced changes in the FMN moiety shift the population equilibrium toward an open conformation that favors self-association and DNA-binding.
Department of Cell and Molecular Biology Uppsala University Uppsala 75124 Sweden
Faculty of Science Charles University Prague 11636 Czech Republic
Université Grenoble Alpes CEA CNRS Institut de Biologie Structurale Grenoble Cedex 9 38044 France
Zobrazit více v PubMed
Briggs WR The LOV domain: a chromophore module servicing multiple photoreceptors. J Biomed Sci. 2007; 14:499–504.10.1007/s11373-007-9162-6. PubMed DOI
Demarsy E, Fankhauser C Higher plants use LOV to perceive blue light. Curr Opin Plant Biol. 2009; 12:69–74.10.1016/j.pbi.2008.09.002. PubMed DOI
Herrou J, Crosson S Function, structure and mechanism of bacterial photosensory LOV proteins. Nat Rev Micro. 2011; 9:713–23.10.1038/nrmicro2622. PubMed DOI PMC
Losi A, Gärtner W Solving blue light riddles: new lessons from flavin-binding LOV photoreceptors. Photochem Photobiol. 2017; 93:141–58.10.1111/php.12674. PubMed DOI
Flores-Ibarra A, Maia RNA, Olasz B et al. . Light-oxygen-voltage (LOV)-sensing domains: activation mechanism and optogenetic stimulation. J Mol Biol. 2024; 436:168356.10.1016/j.jmb.2023.168356. PubMed DOI
Nash AI, McNulty R, Shillito ME et al. . Structural basis of photosensitivity in a bacterial light-oxygen-voltage/helix-turn-helix (LOV-HTH) DNA-binding protein. 2011; 108:9449–54.10.1073/pnas.1100262108. PubMed DOI PMC
Rivera-Cancel G, Motta-Mena LB, Gardner KH Identification of natural and artificial DNA substrates for light-activated LOV-HTH transcription factor EL222. Biochemistry. 2012; 51:10024–34.10.1021/bi301306t. PubMed DOI PMC
Motta-Mena LB, Reade A, Mallory MJ et al. . An optogenetic gene expression system with rapid activation and deactivation kinetics. Nat Chem Biol. 2014; 10:196–202.10.1038/nchembio.1430. PubMed DOI PMC
Reade A, Motta-Mena LB, Gardner KH et al. . TAEL: a zebrafish-optimized optogenetic gene expression system with fine spatial and temporal control. Development. 2016; 144:345–55.10.1242/dev.139238. PubMed DOI PMC
Wang Z, Yan Y, Zhang H Design and characterization of an optogenetic system in Pichia pastoris. ACS Synth Biol. 2022; 11:297–307.10.1021/acssynbio.1c00422. PubMed DOI
Ochoa-Fernandez R, Abel NB, Wieland F-G et al. . Optogenetic control of gene expression in plants in the presence of ambient white light. Nat Methods. 2020; 17:717–25.10.1038/s41592-020-0868-y. PubMed DOI
Jayaraman P, Devarajan K, Chua TK et al. . Blue light-mediated transcriptional activation and repression of gene expression in bacteria. Nucleic Acids Res. 2016; 44:6994–7005.10.1093/nar/gkw548. PubMed DOI PMC
Gligorovski V, Sadeghi A, Rahi SJ Multidimensional characterization of inducible promoters and a highly light-sensitive LOV-transcription factor. Nat Commun. 2023; 14:3810.10.1038/s41467-023-38959-8. PubMed DOI PMC
Cleere MM, Gardner KH Optogenetic control of phosphate-responsive genes using single component fusion proteins in Saccharomyces cerevisiae. ACS Synth Biol. 2024; 13:4085–98.10.1021/acssynbio.4c00529. PubMed DOI
Chaudhari AS, Chatterjee A, Domingos CAO et al. . Genetically encoded non-canonical amino acids reveal asynchronous dark reversion of chromophore, backbone, and side-chains in EL222. Protein Sci. 2023; 32:e4590.10.1002/pro.4590. PubMed DOI PMC
Takakado A, Nakasone Y, Terazima M Sequential DNA binding and dimerization processes of the photosensory protein EL222. Biochemistry. 2018; 57:1603–10.10.1021/acs.biochem.7b01206. PubMed DOI
Takakado A, Nakasone Y, Terazima M Photoinduced dimerization of a photosensory DNA-binding protein EL222 and its LOV domain. Phys Chem Chem Phys. 2017; 19:24855–65.10.1039/C7CP03686H. PubMed DOI
Zoltowski BD, Motta-Mena LB, Gardner KH Blue light-induced dimerization of a bacterial LOV–HTH DNA-binding protein. Biochemistry. 2013; 52:6653–61.10.1021/bi401040m. PubMed DOI PMC
Zoltowski BD, Nash AI, Gardner KH Variations in protein–Flavin hydrogen bonding in a light, oxygen, voltage domain produce non-arrhenius kinetics of adduct decay. Biochemistry. 2011; 50:8771–9.10.1021/bi200976a. PubMed DOI PMC
Liu Y, Chaudhari AS, Chatterjee A et al. . Sub-millisecond photoinduced dynamics of free and EL222-bound FMN by stimulated raman and visible absorption spectroscopies. Biomolecules. 2023; 13:161.10.3390/biom13010161. PubMed DOI PMC
Favier A, Brutscher B Recovering lost magnetization: polarization enhancement in biomolecular NMR. J Biomol NMR. 2011; 49:9–15.10.1007/s10858-010-9461-5. PubMed DOI
Favier A, Brutscher B NMRlib: user-friendly pulse sequence tools for Bruker NMR spectrometers. J Biomol NMR. 2019; 73:199–211.10.1007/s10858-019-00249-1. PubMed DOI
Johnson CS Diffusion ordered nuclear magnetic resonance spectroscopy: principles and applications. Prog Nucl Magn Reson Spectrosc. 1999; 34:203–56.10.1016/S0079-6565(99)00003-5. DOI
Farrow NA, Muhandiram R, Singer AU et al. . Backbone dynamics of a free and a phosphopeptide-complexed src homology 2 domain studied by 15N NMR relaxation. Biochemistry. 1994; 33:5984–6003.10.1021/bi00185a040. PubMed DOI
Lee D, Hilty C, Wider G et al. . Effective rotational correlation times of proteins from NMR relaxation interference. J Magn Reson. 2006; 178:72–6.10.1016/j.jmr.2005.08.014. PubMed DOI
Christou N-E, Ayala I, Giandoreggio-Barranco K et al. . NMR reveals light-induced changes in the dynamics of a photoswitchable fluorescent protein. Biophys J. 2019; 117:2087–100.10.1016/j.bpj.2019.10.035. PubMed DOI PMC
Wang J, Cieplak P, Kollman PA How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules?. J Comput Chem. 2000; 21:1049–74.10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F. DOI
Bayly CI, Cieplak P, Cornell W et al. . A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J Phys Chem. 1993; 97:10269–80.10.1021/j100142a004. DOI
Darden T, York D, Pedersen L Particle mesh Ewald: an N⋅log(N) method for Ewald sums in large systems. J Chem Phys. 1993; 98:10089–92.10.1063/1.464397. DOI
Essmann U, Perera L, Berkowitz ML et al. . A smooth particle mesh Ewald method. J Chem Phys. 1995; 103:8577–93.10.1063/1.470117. DOI
Van Der Spoel D, Lindahl E, Hess B et al. . GROMACS: fast, flexible, and free. J Comput Chem. 2005; 26:1701–18.10.1002/jcc.20291. PubMed DOI
Abraham MJ, Murtola T, Schulz R et al. . GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015; 1-2:19–25.10.1016/j.softx.2015.06.001. DOI
Tribello GA, Bonomi M, Branduardi D et al. . PLUMED 2: new feathers for an old bird. Comput Phys Commun. 2014; 185:604–13.10.1016/j.cpc.2013.09.018. DOI
PLUMED Consortium Promoting transparency and reproducibility in enhanced molecular simulations. Nat Methods. 2019; 16:670–3.10.1038/s41592-019-0506-8. PubMed DOI
Muller F, Müller F Chemistry and Biochemistry of Flavoenzymes. 2018; Boca Raton, FL, USA: CRC Press.
Moonen CTW, Vervoort J, Mueller F Reinvestigation of the structure of oxidized and reduced flavin: carbon-13 and nitrogen-15 nuclear magnetic resonance study. Biochemistry. 1984; 23:4859–67.10.1021/bi00316a007. PubMed DOI
Salomon M, Eisenreich W, Dürr H et al. . An optomechanical transducer in the blue light receptor phototropin from Avena sativa. 2001; 98:12357–61.10.1073/pnas.221455298. PubMed DOI PMC
Eisenreich W, Kemter K, Bacher A et al. . 13C-, 15N- and 31P-NMR studies of oxidized and reduced low molecular mass thioredoxin reductase and some mutant proteins. Eur J Biochem. 2004; 271:1437–52.10.1111/j.1432-1033.2004.04043.x. PubMed DOI
Barth A The infrared absorption of amino acid side chains. Prog Biophys Mol Biol. 2000; 74:141–73.10.1016/S0079-6107(00)00021-3. PubMed DOI
Deniz E, Schmidt-Engler JM, Ulrich K et al. . SH—It happens: S–H bonds as intrinsic 2D-IR labels in proteins. J Chem Phys. 2022; 157:135102.10.1063/5.0107057. PubMed DOI
Hemmer S, Siedhoff NE, Werner S et al. . Machine learning-assisted engineering of light, oxygen, voltage photoreceptor adduct lifetime. JACS Au. 2023; 3:3311–23.10.1021/jacsau.3c00440. PubMed DOI PMC
Yee EF, Diensthuber RP, Vaidya AT et al. . Signal transduction in light–oxygen–voltage receptors lacking the adduct-forming cysteine residue. Nat Commun. 2015; 6:10079.10.1038/ncomms10079. PubMed DOI PMC
Spera S, Bax A Empirical correlation between protein backbone conformation and C.alpha. And C.beta. 13C nuclear magnetic resonance chemical shifts. J Am Chem Soc. 1991; 113:5490–2.10.1021/ja00014a071. DOI
Eliezer D, Yao J, Dyson HJ et al. . Structural and dynamic characterization of partially folded states of apomyoglobin and implications for protein folding. Nat Struct Mol Biol. 1998; 18:148–55.10.1038/nsb0298-148. PubMed DOI
Shen Y, Delaglio F, Cornilescu G et al. . TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR. 2009; 44:213–23.10.1007/s10858-009-9333-z. PubMed DOI PMC
Cornilescu G, Delaglio F, Bax A Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR. 1999; 13:289–302.10.1023/A:1008392405740. PubMed DOI
Lorenz-Fonfria VA Infrared difference spectroscopy of proteins: from bands to bonds. Chem Rev. 2020; 120:3466–576.10.1021/acs.chemrev.9b00449. PubMed DOI
Chaudhari AS, Semanat EC, Martel A et al. . Light-induced oligomerization of the transcription factor EL222. Acta Crystallogr A Found Adv. 2021; 77:C868.10.1107/S0108767321088309. DOI
Xiao S, Ibrahim MT, Verkhivker GM et al. . β-sheets mediate the conformational change and allosteric signal transmission between the AsLOV2 termini. J Comput Chem. 2024; 45:1493–1504.10.1002/jcc.27344. PubMed DOI PMC
Bonomi M, Branduardi D, Bussi G et al. . PLUMED: a portable plugin for free-energy calculations with molecular dynamics. Comput Phys Commun. 2009; 180:1961–72.10.1016/j.cpc.2009.05.011. DOI
Bernardi RC, Melo MCR, Schulten K Enhanced sampling techniques in molecular dynamics simulations of biological systems. Biochim Biophys Gen Sub. 2015; 1850:872–7.10.1016/j.bbagen.2014.10.019. PubMed DOI PMC
Nash AI, Ko W-H, Harper SM et al. . A conserved glutamine plays a Central role in LOV domain signal transmission and its duration. Biochemistry. 2008; 47:13842–9.10.1021/bi801430e. PubMed DOI PMC
Pudasaini A, Green R, Song YH et al. . Steric and electronic interactions at Gln154 in ZEITLUPE induce reorganization of the LOV domain dimer interface. Biochemistry. 2021; 60:95–103.10.1021/acs.biochem.0c00819. PubMed DOI PMC
García de Fuentes A, Möglich A Reduction midpoint potential of a paradigm light–oxygen–voltage receptor and its modulation by methionine residues. RSC Chem Biol. 2024; 4:530–43.10.1039/D4CB00056K. PubMed DOI PMC
Iuliano JN, Gil AA, Laptenok SP et al. . Variation in LOV photoreceptor activation dynamics probed by time-resolved infrared spectroscopy. Biochemistry. 2018; 57:620–30.10.1021/acs.biochem.7b01040. PubMed DOI PMC
Arinkin V, Granzin J, Krauss U et al. . Structural determinants underlying the adduct lifetime in the LOV proteins of Pseudomonas putida. FEBS J. 2021; 288:4955–72.10.1111/febs.15785. PubMed DOI
Kennis JTM, van Stokkum IHM, Crosson S et al. . The LOV2 domain of phototropin: a reversible photochromic switch. J Am Chem Soc. 2004; 126:4512–3.10.1021/ja031840r. PubMed DOI
Petrenčáková M, Filandr F, Hovan A et al. . Photoinduced damage of AsLOV2 domain is accompanied by increased singlet oxygen production due to flavin dissociation. Sci Rep. 2020; 10:4119.10.1038/s41598-020-60861-2. PubMed DOI PMC
Gasset M, Hernández-Candia CN, Casas-Flores S et al. . Light induces oxidative damage and protein stability in the fungal photoreceptor Vivid. PLoS One. 2018; 13:e0201028.10.1371/journal.pone.0201028. PubMed DOI PMC
Gutiérrez-Medina B, Hernández-Candia CN Aggregation kinetics of the protein photoreceptor vivid. Biochim Biophys Acta. 2021; 1869:140620.10.1016/j.bbapap.2021.140620. PubMed DOI
Endres S, Wingen M, Torra J et al. . An optogenetic toolbox of LOV-based photosensitizers for light-driven killing of bacteria. Sci Rep. 2018; 8:15021.10.1038/s41598-018-33291-4. PubMed DOI PMC
Torra J, Lafaye C, Signor L et al. . Tailing miniSOG: structural bases of the complex photophysics of a flavin-binding singlet oxygen photosensitizing protein. Sci Rep. 2019; 9:2428.10.1038/s41598-019-38955-3. PubMed DOI PMC
Pal AA, Benman W, Mumford TR et al. . Optogenetic clustering and membrane translocation of the BcLOV4 photoreceptor. Proc Natl Acad Sci USA. 2023; 120:e2221615120.10.1073/pnas.2221615120. PubMed DOI PMC
Conrad KS, Bilwes AM, Crane BR Light-induced subunit dissociation by a light–oxygen–voltage domain photoreceptor from Rhodobacter sphaeroides. Biochemistry. 2013; 52:378–91.10.1021/bi3015373. PubMed DOI PMC
Nakasone Y, Zikihara K, Tokutomi S et al. . Photochemistry of arabidopsis phototropin 1 LOV1: transient tetramerization. Photochem Photobiol Sci. 2013; 12:1171–9.10.1039/C3PP50047K. PubMed DOI
Vaidya AT, Chen C-H, Dunlap JC et al. . Structure of a light-activated LOV protein dimer that regulates transcription. Sci Signal. 2011; 4:ra50.10.1126/scisignal.2001945. PubMed DOI PMC
Hisatomi O, Nakatani Y, Takeuchi K et al. . Blue light-induced dimerization of monomeric aureochrome-1 enhances its affinity for the target sequence. J Biol Chem. 2014; 289:17379–91.10.1074/jbc.M114.554618. PubMed DOI PMC
Conrad KS, Manahan CC, Crane BR Photochemistry of flavoprotein light sensors. Nat Chem Biol. 2014; 10:801–9.10.1038/nchembio.1633. PubMed DOI PMC
Andrikopoulos PC, Chaudhari AS, Liu Y et al. . QM calculations predict the energetics and infrared spectra of transient glutamine isomers in LOV photoreceptors. Phys Chem Chem Phys. 2021; 23:13934–50.10.1039/D1CP00447F. PubMed DOI PMC
Song SH, Dick B, Penzkofer A et al. . Photo-reduction of flavin mononucleotide to semiquinone form in LOV domain mutants of blue-light receptor phot from Chlamydomonas reinhardtii. J Photochem Photobiol, B. 2007; 87:37–48.10.1016/j.jphotobiol.2006.12.007. PubMed DOI
Becker DF, Zhu W, Moxley MA Flavin redox switching of protein functions. Antioxid Redox Signal. 2011; 14:1079–91.10.1089/ars.2010.3417. PubMed DOI PMC
Senda T, Senda M, Kimura S et al. . Redox control of protein conformation in flavoproteins. Antioxid Redox Signal. 2009; 11:1741–66.10.1089/ars.2008.2348. PubMed DOI
Purcell EB, McDonald CA, Palfey BA et al. . An analysis of the solution structure and signaling mechanism of LovK, a sensor histidine kinase integrating light and redox signals. Biochemistry. 2010; 49:6761–70.10.1021/bi1006404. PubMed DOI PMC
Bury A, Hellingwerf KJ. Weber S, Schleicher E On the In Vivo Redox State of Flavin-Containing Photosensory Receptor Proteins. Flavins and FlavoproteinsMethods in Molecular Biology. 2014; 1146:New York, NY: Humana Press; 177–90.10.1007/978-1-4939-0452-5_9. PubMed DOI
Eitoku T, Nakasone Y, Zikihara K et al. . Photochemical intermediates of arabidopsis phototropin 2 LOV domains associated with conformational changes. J Mol Biol. 2007; 371:1290–303.10.1016/j.jmb.2007.06.035. PubMed DOI
Jurk M, Dorn M, Kikhney A et al. . The switch that does not flip: the blue-light receptor YtvA from Bacillus subtilis adopts an elongated dimer conformation independent of the activation State as revealed by a combined AUC and SAXS study. J Mol Biol. 2010; 403:78–87.10.1016/j.jmb.2010.08.036. PubMed DOI
Herman E, Kottke T Allosterically regulated unfolding of the A′α helix exposes the dimerization site of the blue-light-sensing aureochrome-LOV domain. Biochemistry. 2015; 54:1484–92.10.1021/bi501509z. PubMed DOI
Herman E, Sachse M, Kroth PG et al. . Blue-light-induced unfolding of the Jα helix allows for the dimerization of aureochrome-LOV from the Diatom phaeodactylum tricornutum. Biochemistry. 2013; 52:3094–101.10.1021/bi400197u. PubMed DOI
Konold PE, Mathes T, Weiβenborn J et al. . Unfolding of the C-terminal jα helix in the LOV2 photoreceptor domain observed by time-resolved vibrational spectroscopy. J Phys Chem Lett. 2016; 7:3472–6.10.1021/acs.jpclett.6b01484. PubMed DOI
Iuliano JN, Collado JT, Gil AA et al. . Unraveling the mechanism of a LOV domain optogenetic sensor: a glutamine lever induces unfolding of the Jα helix. ACS Chem Biol. 2020; 15:2752–65.10.1021/acschembio.0c00543. PubMed DOI PMC
Kim C, Yun SR, Lee SJ et al. . Structural dynamics of protein-protein association involved in the light-induced transition of Avena sativa LOV2 protein. Nat Commun. 2024; 15:6991.10.1038/s41467-024-51461-z. PubMed DOI PMC
Kopka B, Magerl K, Savitsky A et al. . Electron transfer pathways in a light, oxygen, voltage (LOV) protein devoid of the photoactive cysteine. Sci Rep. 2017; 7:13346.10.1038/s41598-017-13420-1. PubMed DOI PMC
Ganguly A, Thiel W, Crane BR Glutamine amide flip elicits long distance allosteric responses in the LOV protein vivid. J Am Chem Soc. 2017; 139:2972–80.10.1021/jacs.6b10701. PubMed DOI PMC
Dietler J, Gelfert R, Kaiser J et al. . Signal transduction in light-oxygen-voltage receptors lacking the active-site glutamine. Nat Commun. 2022; 13:2618.10.1038/s41467-022-30252-4. PubMed DOI PMC
Morgunova E, Taipale J Structural perspective of cooperative transcription factor binding. Curr Opin Struct Biol. 2017; 47:1–8.10.1016/j.sbi.2017.03.006. PubMed DOI
Ibarra IL, Hollmann NM, Klaus B et al. . Mechanistic insights into transcription factor cooperativity and its impact on protein–phenotype interactions. Nat Commun. 2020; 11:124.10.1038/s41467-019-13888-7. PubMed DOI PMC
Gotthard G, Mous S, Weinert T et al. . Capturing the blue-light activated state of the phot-LOV1 domain from Chlamydomonas reinhardtii using time-resolved serial synchrotron crystallography. IUCrJ. 2024; 11:792–808.10.1107/S2052252524005608. PubMed DOI PMC
Alderson TR, Kay LE NMR spectroscopy captures the essential role of dynamics in regulating biomolecular function. Cell. 2021; 184:577–95.10.1016/j.cell.2020.12.034. PubMed DOI