Light-dependent flavin redox and adduct states control the conformation and DNA-binding activity of the transcription factor EL222

. 2025 Mar 20 ; 53 (6) : .

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40119733

Grantová podpora
24-11819S Czech Science Foundation
RVO86652036 Czech Academy of Sciences
LM2023042 MEYS
CZ.02.1.01/0.0/0.0/18_046/0015974 UP CIISB
871037 iNEXT-Discovery
Horizon 2020
FR2054 IR INFRANALYTICS
UAR 3518 CNRS-CEA-UGA-EMBL Grenoble Instruct-ERIC
ANR-10-INBS-0005-02 FRISBI
ANR-17-EURE-0003 CBH-EUR-GS
90254 e-Infrastruktura CZ
LM2023055 ELIXIR CZ Research Infrastructure

The activity of the light-oxygen-voltage/helix-turn-helix (LOV-HTH) photoreceptor EL222 is regulated through protein-protein and protein-DNA interactions, both triggered by photo-excitation of its flavin mononucleotide (FMN) cofactor. To gain molecular-level insight into the photocycle of EL222, we applied complementary methods: macromolecular X-ray crystallography (MX), nuclear magnetic resonance (NMR) spectroscopy, optical spectroscopies (infrared and UV-visible), molecular dynamics/metadynamics (MD/metaD) simulations, and protein engineering using noncanonical amino acids. Kinetic experiments provided evidence for two distinct EL222 conformations (lit1 and lit2) that become sequentially populated under illumination. These two lit states were assigned to covalently bound N5 protonated, and noncovalently bound hydroquinone forms of FMN, respectively. Only subtle structural differences were observed between the monomeric forms of all three EL222 species (dark, lit1, and lit2). While the dark state is largely monomeric, both lit states undergo monomer-dimer exchange. Furthermore, molecular modeling revealed differential dynamics and interdomain separation times arising from the three FMN states (oxidized, adduct, and reduced). Unexpectedly, all three EL222 species can associate with DNA, but only upon blue-light irradiation, a high population of stable complexes is obtained. Overall, we propose a model of EL222 activation where photoinduced changes in the FMN moiety shift the population equilibrium toward an open conformation that favors self-association and DNA-binding.

Zobrazit více v PubMed

Briggs  WR  The LOV domain: a chromophore module servicing multiple photoreceptors. J Biomed Sci. 2007; 14:499–504.10.1007/s11373-007-9162-6. PubMed DOI

Demarsy  E, Fankhauser  C  Higher plants use LOV to perceive blue light. Curr Opin Plant Biol. 2009; 12:69–74.10.1016/j.pbi.2008.09.002. PubMed DOI

Herrou  J, Crosson  S  Function, structure and mechanism of bacterial photosensory LOV proteins. Nat Rev Micro. 2011; 9:713–23.10.1038/nrmicro2622. PubMed DOI PMC

Losi  A, Gärtner  W  Solving blue light riddles: new lessons from flavin-binding LOV photoreceptors. Photochem Photobiol. 2017; 93:141–58.10.1111/php.12674. PubMed DOI

Flores-Ibarra  A, Maia  RNA, Olasz  B  et al. .  Light-oxygen-voltage (LOV)-sensing domains: activation mechanism and optogenetic stimulation. J Mol Biol. 2024; 436:168356.10.1016/j.jmb.2023.168356. PubMed DOI

Nash  AI, McNulty  R, Shillito  ME  et al. .  Structural basis of photosensitivity in a bacterial light-oxygen-voltage/helix-turn-helix (LOV-HTH) DNA-binding protein. 2011; 108:9449–54.10.1073/pnas.1100262108. PubMed DOI PMC

Rivera-Cancel  G, Motta-Mena  LB, Gardner  KH  Identification of natural and artificial DNA substrates for light-activated LOV-HTH transcription factor EL222. Biochemistry. 2012; 51:10024–34.10.1021/bi301306t. PubMed DOI PMC

Motta-Mena  LB, Reade  A, Mallory  MJ  et al. .  An optogenetic gene expression system with rapid activation and deactivation kinetics. Nat Chem Biol. 2014; 10:196–202.10.1038/nchembio.1430. PubMed DOI PMC

Reade  A, Motta-Mena  LB, Gardner  KH  et al. .  TAEL: a zebrafish-optimized optogenetic gene expression system with fine spatial and temporal control. Development. 2016; 144:345–55.10.1242/dev.139238. PubMed DOI PMC

Wang  Z, Yan  Y, Zhang  H  Design and characterization of an optogenetic system in Pichia pastoris. ACS Synth Biol. 2022; 11:297–307.10.1021/acssynbio.1c00422. PubMed DOI

Ochoa-Fernandez  R, Abel  NB, Wieland  F-G  et al. .  Optogenetic control of gene expression in plants in the presence of ambient white light. Nat Methods. 2020; 17:717–25.10.1038/s41592-020-0868-y. PubMed DOI

Jayaraman  P, Devarajan  K, Chua  TK  et al. .  Blue light-mediated transcriptional activation and repression of gene expression in bacteria. Nucleic Acids Res. 2016; 44:6994–7005.10.1093/nar/gkw548. PubMed DOI PMC

Gligorovski  V, Sadeghi  A, Rahi  SJ  Multidimensional characterization of inducible promoters and a highly light-sensitive LOV-transcription factor. Nat Commun. 2023; 14:3810.10.1038/s41467-023-38959-8. PubMed DOI PMC

Cleere  MM, Gardner  KH  Optogenetic control of phosphate-responsive genes using single component fusion proteins in Saccharomyces cerevisiae. ACS Synth Biol. 2024; 13:4085–98.10.1021/acssynbio.4c00529. PubMed DOI

Chaudhari  AS, Chatterjee  A, Domingos  CAO  et al. .  Genetically encoded non-canonical amino acids reveal asynchronous dark reversion of chromophore, backbone, and side-chains in EL222. Protein Sci. 2023; 32:e4590.10.1002/pro.4590. PubMed DOI PMC

Takakado  A, Nakasone  Y, Terazima  M  Sequential DNA binding and dimerization processes of the photosensory protein EL222. Biochemistry. 2018; 57:1603–10.10.1021/acs.biochem.7b01206. PubMed DOI

Takakado  A, Nakasone  Y, Terazima  M  Photoinduced dimerization of a photosensory DNA-binding protein EL222 and its LOV domain. Phys Chem Chem Phys. 2017; 19:24855–65.10.1039/C7CP03686H. PubMed DOI

Zoltowski  BD, Motta-Mena  LB, Gardner  KH  Blue light-induced dimerization of a bacterial LOV–HTH DNA-binding protein. Biochemistry. 2013; 52:6653–61.10.1021/bi401040m. PubMed DOI PMC

Zoltowski  BD, Nash  AI, Gardner  KH  Variations in protein–Flavin hydrogen bonding in a light, oxygen, voltage domain produce non-arrhenius kinetics of adduct decay. Biochemistry. 2011; 50:8771–9.10.1021/bi200976a. PubMed DOI PMC

Liu  Y, Chaudhari  AS, Chatterjee  A  et al. .  Sub-millisecond photoinduced dynamics of free and EL222-bound FMN by stimulated raman and visible absorption spectroscopies. Biomolecules. 2023; 13:161.10.3390/biom13010161. PubMed DOI PMC

Favier  A, Brutscher  B  Recovering lost magnetization: polarization enhancement in biomolecular NMR. J Biomol NMR. 2011; 49:9–15.10.1007/s10858-010-9461-5. PubMed DOI

Favier  A, Brutscher  B  NMRlib: user-friendly pulse sequence tools for Bruker NMR spectrometers. J Biomol NMR. 2019; 73:199–211.10.1007/s10858-019-00249-1. PubMed DOI

Johnson  CS  Diffusion ordered nuclear magnetic resonance spectroscopy: principles and applications. Prog Nucl Magn Reson Spectrosc. 1999; 34:203–56.10.1016/S0079-6565(99)00003-5. DOI

Farrow  NA, Muhandiram  R, Singer  AU  et al. .  Backbone dynamics of a free and a phosphopeptide-complexed src homology 2 domain studied by 15N NMR relaxation. Biochemistry. 1994; 33:5984–6003.10.1021/bi00185a040. PubMed DOI

Lee  D, Hilty  C, Wider  G  et al. .  Effective rotational correlation times of proteins from NMR relaxation interference. J Magn Reson. 2006; 178:72–6.10.1016/j.jmr.2005.08.014. PubMed DOI

Christou  N-E, Ayala  I, Giandoreggio-Barranco  K  et al. .  NMR reveals light-induced changes in the dynamics of a photoswitchable fluorescent protein. Biophys J. 2019; 117:2087–100.10.1016/j.bpj.2019.10.035. PubMed DOI PMC

Wang  J, Cieplak  P, Kollman  PA  How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules?. J Comput Chem. 2000; 21:1049–74.10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F. DOI

Bayly  CI, Cieplak  P, Cornell  W  et al. .  A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J Phys Chem. 1993; 97:10269–80.10.1021/j100142a004. DOI

Darden  T, York  D, Pedersen  L  Particle mesh Ewald: an N⋅log(N) method for Ewald sums in large systems. J Chem Phys. 1993; 98:10089–92.10.1063/1.464397. DOI

Essmann  U, Perera  L, Berkowitz  ML  et al. .  A smooth particle mesh Ewald method. J Chem Phys. 1995; 103:8577–93.10.1063/1.470117. DOI

Van  Der Spoel D, Lindahl  E, Hess  B  et al. .  GROMACS: fast, flexible, and free. J Comput Chem. 2005; 26:1701–18.10.1002/jcc.20291. PubMed DOI

Abraham  MJ, Murtola  T, Schulz  R  et al. .  GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015; 1-2:19–25.10.1016/j.softx.2015.06.001. DOI

Tribello  GA, Bonomi  M, Branduardi  D  et al. .  PLUMED 2: new feathers for an old bird. Comput Phys Commun. 2014; 185:604–13.10.1016/j.cpc.2013.09.018. DOI

PLUMED Consortium  Promoting transparency and reproducibility in enhanced molecular simulations. Nat Methods. 2019; 16:670–3.10.1038/s41592-019-0506-8. PubMed DOI

Muller  F, Müller  F  Chemistry and Biochemistry of Flavoenzymes. 2018; Boca Raton, FL, USA: CRC Press.

Moonen  CTW, Vervoort  J, Mueller  F  Reinvestigation of the structure of oxidized and reduced flavin: carbon-13 and nitrogen-15 nuclear magnetic resonance study. Biochemistry. 1984; 23:4859–67.10.1021/bi00316a007. PubMed DOI

Salomon  M, Eisenreich  W, Dürr  H  et al. .  An optomechanical transducer in the blue light receptor phototropin from Avena sativa. 2001; 98:12357–61.10.1073/pnas.221455298. PubMed DOI PMC

Eisenreich  W, Kemter  K, Bacher  A  et al. .  13C-, 15N- and 31P-NMR studies of oxidized and reduced low molecular mass thioredoxin reductase and some mutant proteins. Eur J Biochem. 2004; 271:1437–52.10.1111/j.1432-1033.2004.04043.x. PubMed DOI

Barth  A  The infrared absorption of amino acid side chains. Prog Biophys Mol Biol. 2000; 74:141–73.10.1016/S0079-6107(00)00021-3. PubMed DOI

Deniz  E, Schmidt-Engler  JM, Ulrich  K  et al. .  SH—It happens: S–H bonds as intrinsic 2D-IR labels in proteins. J Chem Phys. 2022; 157:135102.10.1063/5.0107057. PubMed DOI

Hemmer  S, Siedhoff  NE, Werner  S  et al. .  Machine learning-assisted engineering of light, oxygen, voltage photoreceptor adduct lifetime. JACS Au. 2023; 3:3311–23.10.1021/jacsau.3c00440. PubMed DOI PMC

Yee  EF, Diensthuber  RP, Vaidya  AT  et al. .  Signal transduction in light–oxygen–voltage receptors lacking the adduct-forming cysteine residue. Nat Commun. 2015; 6:10079.10.1038/ncomms10079. PubMed DOI PMC

Spera  S, Bax  A  Empirical correlation between protein backbone conformation and C.alpha. And C.beta. 13C nuclear magnetic resonance chemical shifts. J Am Chem Soc. 1991; 113:5490–2.10.1021/ja00014a071. DOI

Eliezer  D, Yao  J, Dyson  HJ  et al. .  Structural and dynamic characterization of partially folded states of apomyoglobin and implications for protein folding. Nat Struct Mol Biol. 1998; 18:148–55.10.1038/nsb0298-148. PubMed DOI

Shen  Y, Delaglio  F, Cornilescu  G  et al. .  TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR. 2009; 44:213–23.10.1007/s10858-009-9333-z. PubMed DOI PMC

Cornilescu  G, Delaglio  F, Bax  A  Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR. 1999; 13:289–302.10.1023/A:1008392405740. PubMed DOI

Lorenz-Fonfria  VA  Infrared difference spectroscopy of proteins: from bands to bonds. Chem Rev. 2020; 120:3466–576.10.1021/acs.chemrev.9b00449. PubMed DOI

Chaudhari  AS, Semanat  EC, Martel  A  et al. .  Light-induced oligomerization of the transcription factor EL222. Acta Crystallogr A Found Adv. 2021; 77:C868.10.1107/S0108767321088309. DOI

Xiao  S, Ibrahim  MT, Verkhivker  GM  et al. .  β-sheets mediate the conformational change and allosteric signal transmission between the AsLOV2 termini. J Comput Chem. 2024; 45:1493–1504.10.1002/jcc.27344. PubMed DOI PMC

Bonomi  M, Branduardi  D, Bussi  G  et al. .  PLUMED: a portable plugin for free-energy calculations with molecular dynamics. Comput Phys Commun. 2009; 180:1961–72.10.1016/j.cpc.2009.05.011. DOI

Bernardi  RC, Melo  MCR, Schulten  K  Enhanced sampling techniques in molecular dynamics simulations of biological systems. Biochim Biophys Gen Sub. 2015; 1850:872–7.10.1016/j.bbagen.2014.10.019. PubMed DOI PMC

Nash  AI, Ko  W-H, Harper  SM  et al. .  A conserved glutamine plays a Central role in LOV domain signal transmission and its duration. Biochemistry. 2008; 47:13842–9.10.1021/bi801430e. PubMed DOI PMC

Pudasaini  A, Green  R, Song  YH  et al. .  Steric and electronic interactions at Gln154 in ZEITLUPE induce reorganization of the LOV domain dimer interface. Biochemistry. 2021; 60:95–103.10.1021/acs.biochem.0c00819. PubMed DOI PMC

García de Fuentes  A, Möglich  A  Reduction midpoint potential of a paradigm light–oxygen–voltage receptor and its modulation by methionine residues. RSC Chem Biol. 2024; 4:530–43.10.1039/D4CB00056K. PubMed DOI PMC

Iuliano  JN, Gil  AA, Laptenok  SP  et al. .  Variation in LOV photoreceptor activation dynamics probed by time-resolved infrared spectroscopy. Biochemistry. 2018; 57:620–30.10.1021/acs.biochem.7b01040. PubMed DOI PMC

Arinkin  V, Granzin  J, Krauss  U  et al. .  Structural determinants underlying the adduct lifetime in the LOV proteins of Pseudomonas putida. FEBS J. 2021; 288:4955–72.10.1111/febs.15785. PubMed DOI

Kennis  JTM, van Stokkum  IHM, Crosson  S  et al. .  The LOV2 domain of phototropin:  a reversible photochromic switch. J Am Chem Soc. 2004; 126:4512–3.10.1021/ja031840r. PubMed DOI

Petrenčáková  M, Filandr  F, Hovan  A  et al. .  Photoinduced damage of AsLOV2 domain is accompanied by increased singlet oxygen production due to flavin dissociation. Sci Rep. 2020; 10:4119.10.1038/s41598-020-60861-2. PubMed DOI PMC

Gasset  M, Hernández-Candia  CN, Casas-Flores  S  et al. .  Light induces oxidative damage and protein stability in the fungal photoreceptor Vivid. PLoS One. 2018; 13:e0201028.10.1371/journal.pone.0201028. PubMed DOI PMC

Gutiérrez-Medina  B, Hernández-Candia  CN  Aggregation kinetics of the protein photoreceptor vivid. Biochim Biophys Acta. 2021; 1869:140620.10.1016/j.bbapap.2021.140620. PubMed DOI

Endres  S, Wingen  M, Torra  J  et al. .  An optogenetic toolbox of LOV-based photosensitizers for light-driven killing of bacteria. Sci Rep. 2018; 8:15021.10.1038/s41598-018-33291-4. PubMed DOI PMC

Torra  J, Lafaye  C, Signor  L  et al. .  Tailing miniSOG: structural bases of the complex photophysics of a flavin-binding singlet oxygen photosensitizing protein. Sci Rep. 2019; 9:2428.10.1038/s41598-019-38955-3. PubMed DOI PMC

Pal  AA, Benman  W, Mumford  TR  et al. .  Optogenetic clustering and membrane translocation of the BcLOV4 photoreceptor. Proc Natl Acad Sci USA. 2023; 120:e2221615120.10.1073/pnas.2221615120. PubMed DOI PMC

Conrad  KS, Bilwes  AM, Crane  BR  Light-induced subunit dissociation by a light–oxygen–voltage domain photoreceptor from Rhodobacter sphaeroides. Biochemistry. 2013; 52:378–91.10.1021/bi3015373. PubMed DOI PMC

Nakasone  Y, Zikihara  K, Tokutomi  S  et al. .  Photochemistry of arabidopsis phototropin 1 LOV1: transient tetramerization. Photochem Photobiol Sci. 2013; 12:1171–9.10.1039/C3PP50047K. PubMed DOI

Vaidya  AT, Chen  C-H, Dunlap  JC  et al. .  Structure of a light-activated LOV protein dimer that regulates transcription. Sci Signal. 2011; 4:ra50.10.1126/scisignal.2001945. PubMed DOI PMC

Hisatomi  O, Nakatani  Y, Takeuchi  K  et al. .  Blue light-induced dimerization of monomeric aureochrome-1 enhances its affinity for the target sequence. J Biol Chem. 2014; 289:17379–91.10.1074/jbc.M114.554618. PubMed DOI PMC

Conrad  KS, Manahan  CC, Crane  BR  Photochemistry of flavoprotein light sensors. Nat Chem Biol. 2014; 10:801–9.10.1038/nchembio.1633. PubMed DOI PMC

Andrikopoulos  PC, Chaudhari  AS, Liu  Y  et al. .  QM calculations predict the energetics and infrared spectra of transient glutamine isomers in LOV photoreceptors. Phys Chem Chem Phys. 2021; 23:13934–50.10.1039/D1CP00447F. PubMed DOI PMC

Song  SH, Dick  B, Penzkofer  A  et al. .  Photo-reduction of flavin mononucleotide to semiquinone form in LOV domain mutants of blue-light receptor phot from Chlamydomonas reinhardtii. J Photochem Photobiol, B. 2007; 87:37–48.10.1016/j.jphotobiol.2006.12.007. PubMed DOI

Becker  DF, Zhu  W, Moxley  MA  Flavin redox switching of protein functions. Antioxid Redox Signal. 2011; 14:1079–91.10.1089/ars.2010.3417. PubMed DOI PMC

Senda  T, Senda  M, Kimura  S  et al. .  Redox control of protein conformation in flavoproteins. Antioxid Redox Signal. 2009; 11:1741–66.10.1089/ars.2008.2348. PubMed DOI

Purcell  EB, McDonald  CA, Palfey  BA  et al. .  An analysis of the solution structure and signaling mechanism of LovK, a sensor histidine kinase integrating light and redox signals. Biochemistry. 2010; 49:6761–70.10.1021/bi1006404. PubMed DOI PMC

Bury  A, Hellingwerf  KJ. Weber  S, Schleicher  E  On the In Vivo Redox State of Flavin-Containing Photosensory Receptor Proteins. Flavins and FlavoproteinsMethods in Molecular Biology. 2014; 1146:New York, NY: Humana Press; 177–90.10.1007/978-1-4939-0452-5_9. PubMed DOI

Eitoku  T, Nakasone  Y, Zikihara  K  et al. .  Photochemical intermediates of arabidopsis phototropin 2 LOV domains associated with conformational changes. J Mol Biol. 2007; 371:1290–303.10.1016/j.jmb.2007.06.035. PubMed DOI

Jurk  M, Dorn  M, Kikhney  A  et al. .  The switch that does not flip: the blue-light receptor YtvA from Bacillus subtilis adopts an elongated dimer conformation independent of the activation State as revealed by a combined AUC and SAXS study. J Mol Biol. 2010; 403:78–87.10.1016/j.jmb.2010.08.036. PubMed DOI

Herman  E, Kottke  T  Allosterically regulated unfolding of the A′α helix exposes the dimerization site of the blue-light-sensing aureochrome-LOV domain. Biochemistry. 2015; 54:1484–92.10.1021/bi501509z. PubMed DOI

Herman  E, Sachse  M, Kroth  PG  et al. .  Blue-light-induced unfolding of the Jα helix allows for the dimerization of aureochrome-LOV from the Diatom phaeodactylum tricornutum. Biochemistry. 2013; 52:3094–101.10.1021/bi400197u. PubMed DOI

Konold  PE, Mathes  T, Weiβenborn  J  et al. .  Unfolding of the C-terminal jα helix in the LOV2 photoreceptor domain observed by time-resolved vibrational spectroscopy. J Phys Chem Lett. 2016; 7:3472–6.10.1021/acs.jpclett.6b01484. PubMed DOI

Iuliano  JN, Collado  JT, Gil  AA  et al. .  Unraveling the mechanism of a LOV domain optogenetic sensor: a glutamine lever induces unfolding of the Jα helix. ACS Chem Biol. 2020; 15:2752–65.10.1021/acschembio.0c00543. PubMed DOI PMC

Kim  C, Yun  SR, Lee  SJ  et al. .  Structural dynamics of protein-protein association involved in the light-induced transition of Avena sativa LOV2 protein. Nat Commun. 2024; 15:6991.10.1038/s41467-024-51461-z. PubMed DOI PMC

Kopka  B, Magerl  K, Savitsky  A  et al. .  Electron transfer pathways in a light, oxygen, voltage (LOV) protein devoid of the photoactive cysteine. Sci Rep. 2017; 7:13346.10.1038/s41598-017-13420-1. PubMed DOI PMC

Ganguly  A, Thiel  W, Crane  BR  Glutamine amide flip elicits long distance allosteric responses in the LOV protein vivid. J Am Chem Soc. 2017; 139:2972–80.10.1021/jacs.6b10701. PubMed DOI PMC

Dietler  J, Gelfert  R, Kaiser  J  et al. .  Signal transduction in light-oxygen-voltage receptors lacking the active-site glutamine. Nat Commun. 2022; 13:2618.10.1038/s41467-022-30252-4. PubMed DOI PMC

Morgunova  E, Taipale  J  Structural perspective of cooperative transcription factor binding. Curr Opin Struct Biol. 2017; 47:1–8.10.1016/j.sbi.2017.03.006. PubMed DOI

Ibarra  IL, Hollmann  NM, Klaus  B  et al. .  Mechanistic insights into transcription factor cooperativity and its impact on protein–phenotype interactions. Nat Commun. 2020; 11:124.10.1038/s41467-019-13888-7. PubMed DOI PMC

Gotthard  G, Mous  S, Weinert  T  et al. .  Capturing the blue-light activated state of the phot-LOV1 domain from Chlamydomonas reinhardtii using time-resolved serial synchrotron crystallography. IUCrJ. 2024; 11:792–808.10.1107/S2052252524005608. PubMed DOI PMC

Alderson  TR, Kay  LE  NMR spectroscopy captures the essential role of dynamics in regulating biomolecular function. Cell. 2021; 184:577–95.10.1016/j.cell.2020.12.034. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace