Microbiomes of urban trees: unveiling contributions to atmospheric pollution mitigation
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39588101
PubMed Central
PMC11586189
DOI
10.3389/fmicb.2024.1470376
Knihovny.cz E-zdroje
- Klíčová slova
- air pollution mitigation, ecosystem services, hydrocarbon biodegradation, phyllosphere, tree cavity organic soil, tree-related microhabitats, urban trees,
- Publikační typ
- časopisecké články MeSH
Urban trees are crucial in delivering essential ecosystem services, including air pollution mitigation. This service is influenced by plant associated microbiomes, which can degrade hydrocarbons, support tree health, and influence ecological processes. Yet, our understanding of tree microbiomes remains limited, thus affecting our ability to assess and quantify the ecosystem services provided by trees as complex systems. The main hypothesis of this work was that tree microbiomes concur to hydrocarbon biodegradation, and was tested through three case studies, which collectively investigated two tree micro-habitats (phyllosphere and tree cavity organic soil-TCOS) under various conditions representing diverse ecological scenarios, by applying different culture-based and molecular techniques and at different scales. The integration of all results provided a more comprehensive understanding of the role of microbiomes in urban trees. Firstly, bacterial strains isolated from the phyllosphere of Quercus ilex were characterized, indicating the presence of Plant-Growth Promoting bacteria and strains able to catabolize PAHs, particularly naphthalene and phenanthrene. Secondly, naphthalene biodegradation on artificially spiked Hedera helix leaves was quantified in greenhouse experiments on inoculated and untreated plants. The persistence of the inoculated strain and community structure of epiphytic bacteria were assessed by Illumina sequencing of V5-V6 hypervariable regions of 16S rRNA gene. Results showed that naphthalene degradation was initially faster on inoculated plants but later the degradation rates became similar, probably because bacterial populations with hydrocarbon-degrading abilities gradually developed also on non-inoculated plants. Finally, we explored bacterial and fungal biodiversity hosted by TCOS samples, collected from six large trees located in an urban park and belonging to different species. Microbial communities were characterized by Illumina sequencing of V5-V6 hypervariable regions of bacterial gene 16S rRNA and of fungal ITS1. Results indicated TCOS as a distinct substrate, whose microbiome is determined both by the host tree and by canopy environmental conditions and has a pronounced aerobic hydrocarbon degradation potential. Overall, a better assessment of biodiversity associated with trees and the subsequent provision of ecosystem services constitute a first step toward developing future new microbe-driven sustainable solutions, especially in terms of support for urban green planning and management policy.
Departamento de Microbiología y Genética Universidad de Salamanca Salamanca Spain
Department of Chemistry Biology and Biotechnology University of Perugia Perugia Italy
Department of Earth and Environmental Sciences University of Milano Bicocca Milan Italy
Department of Environmental Science and Policy University of Milan Milan Italy
Institute of Microbiology of the Czech Academy of Sciences Prague Czechia
Instituto de Investigación en Agrobiotecnología Universidad de Salamanca Salamanca Spain
Millenium Nucleus Bioproducts Genomics and Environmental Genomics Valparaíso Chile
Zobrazit více v PubMed
Abidi W., Torres-Sánchez L., Siroy A., Krasteva P. V. (2022). Weaving of bacterial cellulose by the Bcs secretion systems. FEMS Microbiol. Rev. 46, 1–35. doi: 10.1093/femsre/fuab051, PMID: PubMed DOI PMC
Alexander B., Zuberer D. A. (1991). Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol. Fertil. Soils 12, 39–45. doi: 10.1007/BF00369386 DOI
Asaf S., Numan M., Khan A. L., Al-Harrasi A. (2020). Sphingomonas: from diversity and genomics to functional role in environmental remediation and plant growth. Crit. Rev. Biotechnol. 40, 138–152. doi: 10.1080/07388551.2019.1709793, PMID: PubMed DOI
Ashwini N., Srividya S. (2014). Potentiality of Bacillus subtilis as biocontrol agent for management of anthracnose disease of chilli caused by Colletotrichum gloeosporioides OGC1. 3 Biotech 4, 127–136. doi: 10.1007/s13205-013-0134-4, PMID: PubMed DOI PMC
Babalola O. O. (2007). Pectinase and cellulase enhance the control of Abutilon theophrasti by Colletotrichum coccodes. Biocontrol Sci. Tech. 17, 53–61. doi: 10.1080/09583150600828783 DOI
Bao J., Li J., Jiang L., Mei W., Song M., Huang D., et al. . (2022). New insight into the mechanism underlying the effect of biochar on phenanthrene degradation in contaminated soil revealed through DNA-SIP. J. Hazard. Mater. 438:129466. doi: 10.1016/j.jhazmat.2022.129466, PMID: PubMed DOI
Basim Y., Mohebali G., Jorfi S., Nabizadeh R., Ahmadi Moghadam M., Ghadiri A., et al. . (2020). Environ. Health Eng. Manag. 7, 127–133. doi: 10.34172/EHEM.2020.15 PubMed DOI PMC
Benitez-Alfonso Y., Soanes B. K., Zimba S., Sinanaj B., German L., Sharma V., et al. . (2023). Enhancing climate change resilience in agricultural crops. Curr. Biol. 33, R1246–R1261. doi: 10.1016/j.cub.2023.10.028, PMID: PubMed DOI
Buée M., Reich M., Murat C., Morin E., Nilsson R. H., Uroz S., et al. . (2009). 454 pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytol. 184, 449–456. doi: 10.1111/j.1469-8137.2009.03003.x, PMID: PubMed DOI
Bulgarelli D., Schlaeppi K., Spaepen S., Loren V., van Themaat E., Schulze-Lefert P. (2013). Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant Biol. 64, 807–838. doi: 10.1146/annurev-arplant-050312-120106 PubMed DOI
Calderon-Fajardo A., Hidalgo K. J., Romao E. A. V., Gonzales P. S., Martins L. F., Oliveira V. M. (2024). Taxonomic and evolutionary insights from comparative genomics of hydrocarbon degrading bacteria isolated from petroleum reservoirs. J. Hazard. Mater. Adv. 15:100439. doi: 10.1016/j.hazadv.2024.100439 DOI
Callahan B. J., McMurdie P. J., Rosen M. J., Han A. W., Johnson A. J. A., Holmes S. P. (2016). DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583. doi: 10.1038/nmeth.3869, PMID: PubMed DOI PMC
Chaudhury R., Chakraborty A., Rahaman F., Sarkar T., Dey S., Das M. (2024). Mycorrhization in trees: ecology, physiology, emerging technologies and beyond. Plant Biol. 26, 145–156. doi: 10.1111/plb.13613, PMID: PubMed DOI
Chen S. C., Duan G. L., Ding K., Huang F. Y., Zhu Y. G. (2018). DNA stable-isotope probing identifies uncultivated members of Pseudonocardia associated with biodegradation of pyrene in agricultural soil. FEMS Microbiol. Ecol. 94:fiy026. doi: 10.1093/femsec/fiy026, PMID: PubMed DOI
Chikere C. B., Tekere M., Adeleke R. (2020). Microbial communities in field-scale oil-polluted soil remediation using 16S rRNA amplicon sequencing. Int. J. Environ. Sci. 78, 410–426. doi: 10.1080/00207233.2020.1817276 DOI
Cregger M. A., Carper D. L., Christel S., Doktycz M. J., Labbe J., Michener J. K., et al. . (2021). Plant-microbe interactions: from genes to ecosystems using Populus as a model system. Phytobiomes J. 5, 29–38. doi: 10.1094/PBIOMES-01-20-0009-FI DOI
Cui J., Nie F., Zhao Y., Zhang D., Zhou D., Wu J., et al. . (2024). A review on plant endophytes in response to abiotic stress. Environ. Pollut. Bioavailab. 36:2323123. doi: 10.1080/26395940.2024.2323123 DOI
Dangerfield C. R., Nadkarni N. M., Brazelton W. J. (2017). Canopy soil bacterial communities altered by severing host tree limbs. Peer J. 5:e3773. doi: 10.7717/peerj.3773, PMID: PubMed DOI PMC
Delmotte N., Knief C., Chaffron S., Innerebner G., Roschitzki B., Schlapbach R., et al. . (2009). Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc. Natl. Acad. Sci. USA 106, 16428–16433. doi: 10.1073/pnas.0905240106, PMID: PubMed DOI PMC
Dharmasiri R. B. N., Undugoda L. J. S., Nilmini A. H. L., Nugara N. N. R. N., Manage P. M., Udayanga D. (2023). Phylloremediation approach to green air: phenanthrene degrading potential of Bacillus spp. inhabit the phyllosphere of ornamental plants in urban polluted areas. Int. J. Environ. Sci. Technol. 20, 13359–13372. doi: 10.1007/s13762-023-04883-z DOI
Dyshko V., Hilszczańska D., Davydenko K., Matić S., Moser W. K., Borowik P., et al. . (2024). An overview of mycorrhiza in pines: research, species, and applications. Plan. Theory 13:506. doi: 10.3390/plants13040506, PMID: PubMed DOI PMC
Federici E., Pepi M., Esposito A., Scargetta S., Fidati L., Gasperini S., et al. . (2011). Two-phase olive mill waste composting: community dynamics and functional role of the resident microbiota. Bioresor. Technol. 102, 10965–10972. doi: 10.1016/j.biortech.2011.09.062, PMID: PubMed DOI
Feng N. X., Yu J., Zhao H. M., Cheng Y. T., Mo C. H., Cai Q. Y., et al. . (2017). Efficient phytoremediation of organic contaminants in soils using plant–endophyte partnerships. Sci. Total Environ. 583, 352–368. doi: 10.1016/j.scitotenv.2017.01.075, PMID: PubMed DOI
Frąc M., Hannula S. E., Bełka M., Jędryczka M. (2018). Fungal biodiversity and their role in soil health. Front. Microbiol. 9:707. doi: 10.3389/fmicb.2018.00707, PMID: PubMed DOI PMC
Franzetti A., Gandolfi I., Bestetti G., Padoa-Schioppa E., Canedoli C., Brambilla D., et al. . (2020). Plant-microorganisms interaction promotes removal of air pollutants in Milan (Italy) urban area. J. Hazard. Mater. 384:121021. doi: 10.1016/j.jhazmat.2019.121021, PMID: PubMed DOI
Gandolfi I., Canedoli C., Imperato V., Tagliaferri I., Gkorezis P., Vangronsveld J., et al. . (2017). Diversity and hydrocarbon-degrading potential of epiphytic microbial communities on Platanus x acerifolia leaves in an urban area. Environ. Pollut. 220, 650–658. doi: 10.1016/j.envpol.2016.10.022, PMID: PubMed DOI
García-Fraile P., Carro L., Robledo M., Ramírez-Bahena M., Flores-Félix J., Fernández M. T., et al. . (2012). Rhizobium promotes non-legumes growth and quality in several production steps: towards a biofertilization of edible raw vegetables healthy for humans. PLoS One 7:e38122. doi: 10.1371/journal.pone.0038122, PMID: PubMed DOI PMC
García-Fraile P., Menéndez E., Rivas R. (2015). Role of bacterial biofertilizers in agriculture and forestry. Aims Bioeng. 2, 183–205. doi: 10.3934/bioeng.2015.3.183 DOI
Glick B. R., Todorovic B., Czarny J., Cheng Z., Duan J., McConkey B. (2007). Promotion of plant growth by bacterial ACC deaminase. Crit. Rev. Plant Sci. 26, 227–242. doi: 10.1080/07352680701572966 DOI
Glushakova A. M., Kachalkin A. V., Chernov I. Y. (2016). The influence of Aster x salignus Willd. Invasion on the diversity of soil yeast communities. Eurasian Soil Sci. 49, 792–795. doi: 10.1134/S1064229316050057 DOI
Góngora E., Lirette A. O., Freyria N. J., Greer C. W., Whyte L. G. (2024). Metagenomic survey reveals hydrocarbon biodegradation potential of Canadian high Arctic beaches. Environ. Microb. 19:72. doi: 10.1186/s40793-024-00616-y, PMID: PubMed DOI PMC
Grote R., Samson R., Alonso R., Amorim J. H., Cariñanos P., Churkina G., et al. . (2016). Functional traits of urban trees: air pollution mitigation potential. Front. Ecol. Environ. 14, 543–550. doi: 10.1002/fee.1426 DOI
Howe K. L., Zaugg J., Mason O. U. (2024). Novel, active, and uncultured hydrocarbon-degrading microbes in the ocean. Appl. Environ. Microbiol. 90:e0122424. doi: 10.1128/aem.01224-24, PMID: PubMed DOI PMC
Hung P. Q., Kumar S. M., Govindsamy V., Annapurna K. (2007). Isolation and characterization of endophytic bacteria from wild and cultivated soybean varieties. Biol. Fertil. Soils 44, 155–162. doi: 10.1007/s00374-007-0189-7 DOI
Jiménez-Gómez A., Flores-Félix J. D., García-Fraile P., Mateos P. F., Menéndez E., Velázquez E., et al. . (2018). Probiotic activities of Rhizobium laguerreae on growth and quality of spinach. Sci. Rep. 8:295. doi: 10.1038/s41598-017-18632-z, PMID: PubMed DOI PMC
Khot V., Zorz J., Gittins D. A., Chakraborty A., Bell E., Bautista M. A., et al. . (2022). CANT-HYD: a curated database of phylogeny-derived hidden Markov models for annotation of marker genes involved in hydrocarbon degradation. Front. Microbiol. 12:764058. doi: 10.3389/fmicb.2021.764058, PMID: PubMed DOI PMC
Knief C., Delmotte N., Chaffron S., Stark M., Innerebner G., Wassmann R., et al. . (2012). Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J. 6, 1378–1390. doi: 10.1038/ismej.2011.192, PMID: PubMed DOI PMC
Knief C., Ramette A., Frances L., Alonso-Blanco C., Vorholt J. A. (2010). Site and plant species are important determinants of the Methylobacterium community composition in the plant phyllosphere. ISME J. 4, 719–728. doi: 10.1038/ismej.2010.9, PMID: PubMed DOI
Kotoky R., Ogawa N., Pandey P. (2022). The structure-function relationship of bacterial transcriptional regulators as a target for enhanced biodegradation of aromatic hydrocarbons. Microbiol. Res. 262:127087. doi: 10.1016/j.micres.2022.127087, PMID: PubMed DOI
Kuffner M., De Maria S., Puschenreiter M., Fallmann K., Wieshammer G., Gorfer M., et al. . (2010). Culturable bacteria from Zn- and cd- accumulating Salix caprea with differential effects on plant growth and heavy metal availability. J. Appl. Microbiol. 108, 1471–1484. doi: 10.1111/j.1365-2672.2010.04670.x, PMID: PubMed DOI
Lalevic B., Raicevic V., Kikovic D., Jovanovic L., Surlan-Momirovic G., Jovic J., et al. . (2012). Biodegradation of MTBE by bacteria isolated from oil hydrocarbons- contaminated environments. Int. J. Environ. Res. 6, 81–86. doi: 10.22059/IJER.2011.474 DOI
Landry S. M., Chakraborty J. (2009). Street trees and equity: evaluating the spatial distribution of an urban amenity. Environ. Plan. A 41, 2651–2670. doi: 10.1068/a41236 DOI
Larrieu L., Paillet Y., Winter S., Bütler R., Kraus D., Krumm F., et al. . (2018). Tree related microhabitats in temperate and Mediterranean European forests: a hierarchical typology for inventory standardization. Ecol. Indic. 84, 194–207. doi: 10.1016/j.ecolind.2017.08.051 DOI
Li J., Gu J. (2007). Complete degradation of dimethyl isophthalate requires the biochemical cooperation between Klebsiella oxytoca Sc and Methylobacterium mesophilicum Sr isolated from wetland sediment. Sci. Total Environ. 380, 181–187. doi: 10.1016/j.scitotenv.2006.12.033, PMID: PubMed DOI
Lindenmayer D. B. (2017). Conserving large old trees as small natural features. Biol. Conserv. 211, 51–59. doi: 10.1016/j.biocon.2016.11.012 DOI
Lu X. Y., Zhang T., Fang H. H. P. (2011). Bacteria-mediated PAH degradation in soil and sediment. Appl. Microbiol. Biotechnol. 89, 1357–1371. doi: 10.1007/s00253-010-3072-7, PMID: PubMed DOI
Madigan M. T., Bender K. S., Buckley D. H., Sattley W. M., Stahl D. A. (2020). Brock biology of microorganisms. 16th Edn. London: Pearson Ed.
Manning A. D., Fischer J., Lindenmayer D. B. (2006). Scattered trees are keystone structures–implications for conservation. Biol. Conserv. 132, 311–321. doi: 10.1016/j.biocon.2006.04.023 DOI
Martin M., Paillet Y., Larrieu L., Kern C. C., Raymond P., Drapeau P., et al. . (2022). Tree-related microhabitats are promising yet underused tools for biodiversity and nature conservation: a systematic review for international perspectives. Front. For. Glob. Change 5:818474. doi: 10.3389/ffgc.2022.818474 DOI
Mateos P. F., Jimenez-Zurdo J. I., Chen J., Squartini A. S., Haack S. K., Martinez Molina E., et al. . (1992). Cell-associated pectinolytic and cellulolytic enzymes in Rhizobium leguminosarum biovar trifolii. Appl. Environ. Microbiol. 58, 1816–1822. doi: 10.1128/aem.58.6.1816-1822.1992, PMID: PubMed DOI PMC
Mercado-Blanco J., Abrantes I., Caracciolo A. B., Bevivino A., Ciancio A., Grenni P., et al. . (2018). Belowground microbiota and the health of tree crops. Front. Microbiol. 9:1006. doi: 10.3389/fmicb.2018.01006, PMID: PubMed DOI PMC
Mortier E., Lamotte O., Martin-Laurent F., Recorbet G. (2020). Forty years of study on interactions between walnut tree and arbuscular mycorrhizal fungi. A review. Agron. Sustain. Dev. 40:43. doi: 10.1007/s13593-020-00647-y DOI
Müller D. B., Vogel C., Bai Y., Vorholt J. A. (2016). The plant microbiota: systems-level insights and perspectives. Annu. Rev. Genet. 50, 211–234. doi: 10.1146/annurev-genet-120215-034952, PMID: PubMed DOI
Nautiyal C. S. (1999). An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett. 170, 265–270. doi: 10.1111/j.1574-6968.1999.tb13383.x, PMID: PubMed DOI
Nava V., Leoni B., Arienzo M. M., Hogan Z. S., Gandolfi I., Tatangelo V., et al. . (2024). Plastic pollution affects ecosystem processes including community structure and functional traits in large rivers. Water Res. 259:121849. doi: 10.1016/j.watres.2024.121849, PMID: PubMed DOI
Nelson A. R., Fegel T. S., Danczak R. E., Caiafa M. V., Roth H. K., Dunn O. I., et al. . (2024). Soil microbiome feedbacks during disturbance-driven forest ecosystem conversion. ISME J. 18:wrae047. doi: 10.1093/ismejo/wrae047 PubMed DOI PMC
Nowak D. J., Heisler G. M. (2010). Air quality effects of urban trees and parks. Ashburn, VA: National Recreation and Park Association; Available at: https://www.nrpa.org/globalassets/research/nowak-heisler-research-paper.pdf.
O’Hara G. W., Goss T. J., Dilworth M. J., Glenn A. R. (1989). Maintenance of intracellular pH and acid tolerance in Rhizobium meliloti. Appl. Environ. Microbiol. 55, 1870–1876. doi: 10.1128/aem.55.8.1870-1876.1989, PMID: PubMed DOI PMC
Papik J., Folkmanova M., Polivkova-Majorova M., Suman J., Uhlik O. (2020). The invisible life inside plants: deciphering the riddles of endophytic bacterial diversity. Biotechnol. Adv. 44:107614. doi: 10.1016/j.biotechadv.2020.107614, PMID: PubMed DOI
Parks D. H., Chuvochina M., Rinke C., Mussig A. J., Chaumeil P. A., Hugenholtz P. (2022). GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic Acids Res. 50, D785–D794. doi: 10.1093/nar/gkab776 PubMed DOI PMC
Parmar P., Sindhu S. S. (2013). Potassium solubilization by rhizosphere bacteria: influence of nutritional and environmental conditions. J. Microbiol. Res. 3, 25–31. doi: 10.5923/j.microbiology.20130301.04 DOI
Pauvert C., Buée M., Laval V., Edel-Hermann V., Fauchery L., Gautier A., et al. . (2019). Bioinformatics matters: the accuracy of plant and soil fungal community data is highly dependent on the metabarcoding pipeline. Fungal Ecol. 41, 23–33. doi: 10.1016/j.funeco.2019.03.005 DOI
Peng R., Xiong A., Xue Y., Fu X., Gao F., Zhao W., et al. . (2008). Microbial biodegradation of polyaromatic hydrocarbons. FEMS Microbiol. Rev. 32, 927–955. doi: 10.1111/j.1574-6976.2008.00127.x PubMed DOI
Penrose D. M., Glick B. R. (2003). Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol. Plant. 118, 10–15. doi: 10.1034/j.1399-3054.2003.00086.x, PMID: PubMed DOI
Peral-Aranega E., Saati-Santamaría Z., Kolařik M., Rivas R., García-Fraile P. (2020). Bacteria belonging to Pseudomonas typographi sp. nov. from bark beetle Ips typographus have genomic potential to aid in the host ecology. Insects 11:593. doi: 10.3390/insects11090593 PubMed DOI PMC
Perreault R., Laforest-Lapointe I. (2022). Plant-microbe interactions in the phyllosphere: facing challenges of the Anthropocene. ISME J. 16, 339–345. doi: 10.1038/s41396-021-01109-3, PMID: PubMed DOI PMC
Poveda J., Jiménez-Gómez A., Saati-Santamaría Z., Usategui-Martín R., Rivas R., García-Fraile P. (2019). Mealworm frass as a potential biofertilizer and abiotic stress tolerance-inductor in plants. Appl. Soil Ecol. 142, 110–122. doi: 10.1016/j.apsoil.2019.04.016 DOI
Preininger C., Sauer U., Bejarano A., Berninger T. (2018). Concepts and applications of foliar spray for microbial inoculants. Appl. Microbiol. Biotechnol. 102, 7265–7282. doi: 10.1007/s00253-018-9173-4 PubMed DOI
Rani V., Bhatia A., Nain L., Tomar G. S., Kaushik R. (2021). Methane utilizing plant growth promoting microbial diversity analysis of flooded paddy ecosystem of India. World J. Microbiol. Biotechnol. 37:56. doi: 10.1007/s11274-021-03018-1, PMID: PubMed DOI
Rastogi G., Coaker G. L., Leveau J. H. J. (2013). New insights into the structure and function of phyllosphere microbiota through high-throughput molecular approaches. FEMS Microbiol. Lett. 348, 1–10. doi: 10.1111/1574-6968.12225, PMID: PubMed DOI
Remm J., Lõhmus A. (2011). Tree cavities in forests – the broad distribution pattern of a keystone structure for biodiversity. For. Ecol. Manag. 262, 579–585. doi: 10.1016/j.foreco.2011.04.028 DOI
Ren J. H., Li H., Wang Y., Ye J., Yan A., Wu X. (2013). Biocontrol potential of an endophytic Bacillus pumilus JK-SX001 against poplar canker. BioControl 67, 421–430. doi: 10.1016/j.biocontrol.2013.09.012 DOI
Robledo M., Rivera L., Jiménez-Zurdo J. I., Rivas R., Dazzo F., Velázquez E., et al. . (2012). Role of Rhizobium endoglucanase CelC2 in cellulose biosynthesis and biofilm formation on plant roots and abiotic surfaces. Microb. Cell Factories 11:125. doi: 10.1186/1475-2859-11-125 PubMed DOI PMC
Rust S. (2015). Tree preservation, maintenance and repair. Urban tree management: For the sustainable development of green cities. 1st Edn. New York: John Wiley & Sons.
Saeki I., Hioki S., Azuma W. A., Osada N., Niwa S., Ota A. T., et al. . (2024). Legacy over a thousand years: canopy soil of old-growth forest fosters rich and unique invertebrate diversity that is slow to recover from human disturbance. Biol. Conserv. 292:110520. doi: 10.1016/j.biocon.2024.110520 DOI
Salmond J. A., Tadaki M., Vardoulakis S., Arbuthnott K., Coutts A., Demuzere M., et al. . (2016). Health and climate related ecosystem services provided by street trees in the urban environment. Environ. Health 15, 36–111. doi: 10.1186/s12940-016-0103-6, PMID: PubMed DOI PMC
Sangthong S., Suksabye P., Thiravetyan P. (2016). Air-borne xylene degradation by Bougainvillea buttiana and the role of epiphytic bacteria in the degradation. Ecotoxicol. Environ. Saf. 126, 273–280. doi: 10.1016/j.ecoenv.2015.12.017, PMID: PubMed DOI
Scheublin T. R., Deusch S., Moreno-Forero S. K., Müller J. A., van der Meer J. R., Leveau J. H. J. (2014). Transcriptional profiling of gram-positive Arthrobacter in the phyllosphere: induction of pollutant degradation genes by natural plant phenolic compounds. Environ. Microbiol. 16, 2212–2225. doi: 10.1111/1462-2920.12375, PMID: PubMed DOI
Schwyn B., Neilands J. B. (1987). Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160, 47–56. doi: 10.1016/0003-2697(87)90612-9, PMID: PubMed DOI
Seneviratne M., Seneviratne G., Madawala H. M. S. P., Vithanage M. (2017). Role of rhizospheric microbes in heavy metal uptake by plants. Agro-environmental sustainability: Volume 2: Managing environmental pollution. Berlin: Springer International Publishing AG, 147–163.
Serra D. O., Richter A. M., Hengge R. (2013). Cellulose as an architectural element in spatially structured Escherichia coli biofilms. J. Bacteriol. 195, 5540–5554. doi: 10.1128/jb.00946-13, PMID: PubMed DOI PMC
Shahid M., Singh U. B., Khan M. S., Singh P., Kumar R., Singh R. N., et al. . (2023). Bacterial ACC deaminase: insights into enzymology, biochemistry, genetics, and potential role in amelioration of environmental stress in crop plants. Front. Microbiol. 14:1132770. doi: 10.3389/fmicb.2023.1132770 PubMed DOI PMC
Shao Z., Schenk P. M., Dart P. (2023). Phyllosphere bacterial strains Rhizobium b1 and Bacillus subtilis b2 control tomato leaf diseases caused by Pseudomonas syringae pv. Tomato and Alternaria solani. J. Appl. Microbiol. 134:lxad139. doi: 10.1093/jambio/lxad139, PMID: PubMed DOI
Singer E., Wagner M., Woyke T. (2017). Capturing the genetic makeup of the active microbiome in situ. ISME J. 11, 1949–1963. doi: 10.1038/ismej.2017.59, PMID: PubMed DOI PMC
Smets W., Spada L. M., Gandolfi I., Wuyts K., Legein M., Muyshondt B., et al. . (2022). Bacterial succession and community dynamics of the emerging leaf Phyllosphere in spring. Microbiol. Spectr. 10, e02420–e02421. doi: 10.1128/spectrum.02420-21 PubMed DOI PMC
Sundara Rao W. V. B., Sinha M. K. (1963). Phosphate dissolving organisms in the soil and rhizosphere. Indian J. Agric. Sci. 35, 127–132. doi: 10.1007/BF01372637 DOI
Terzaghi E., Posada-Baquero R., Di Guardo A., Ortega-Calvo J.-J. (2021). Microbial degradation of pyrene in holm oak (Quercus ilex) phyllosphere: role of particulate matter in regulating bioaccessibility. Sci. Total Environ. 786:147431. doi: 10.1016/j.scitotenv.2021.147431, PMID: PubMed DOI
Theis K. R., Dheilly N. M., Klassen J. L., Brucker R. M., Baines J. F., Bosch T. C. G., et al. . (2016). Getting the hologenome concept right: an eco-evolutionary framework for hosts and their microbiomes. mSystems 1:e00028-16. doi: 10.1128/mSystems.00028-16 PubMed DOI PMC
Vacher C., Hampe A., Porté A. J., Sauer U., Compant S., Morris C. E. (2016). The phyllosphere: microbial jungle at the plant-climate interface. Annu. Rev. Ecol. Evol. Syst. 47, 1–124. doi: 10.1146/annurev-ecolsys-121415-032238 DOI
Van Aken B., Yoon J. M., Schnoor J. L. (2004). Biodegradation of nitro-substituted explosives 2,4,6-trinitrotoluene, hexahydro-1,3,5-trinitro-1,3,5-triazine, and octahydro1,3,5,7-tetranitro-1,3,5-tetrazocine by a Phytosymbiotic Methylobacterium sp. associated with poplar tissues (Populus deltoides nigra DN34). Appl. Environ. Microbiol. 70, 508–517. doi: 10.1128/AEM.70.1.508-517.2004, PMID: PubMed DOI PMC
VanInsberghe D., Hartmann M., Stewart G. R., Mohn W. W. (2013). Isolation of a substantial proportion of Forest soil bacterial communities detected via Pyrotag sequencing. Appl. Environ. Microbiol. 79, 2096–2098. doi: 10.1128/AEM.03112-12, PMID: PubMed DOI PMC
Ventorino V., Sannino F., Piccolo A., Cafaro V., Carotenuto R., Pepe O. (2014). Methylobacterium populi VP2: plant growth promoting bacterium isolated from a highly polluted environment for polycyclic aromatic hydrocarbon (PAH) biodegradation. Sci. World J. 2014:931793, 1–11. doi: 10.1155/2014/931793 PubMed DOI PMC
Vorholt J. A. (2012). Microbial life in the phyllosphere. Nat. Rev. Microbiol. 10, 828–840. doi: 10.1038/nrmicro2910 PubMed DOI
Wang X. W., Yang F. Y., Meijer M., Kraak B., Sun B. D., Jiang Y. L., et al. . (2019). Redefining Humicola sensu stricto and related genera in the Chaetomiaceae. Stud. Mycol. 93, 65–153. doi: 10.1016/j.simyco.2018.07.001, PMID: PubMed DOI PMC
Wei X., Lyu S., Yu Y., Wang Z., Liu H., Pan D., et al. . (2017). Phylloremediation of air pollutants: exploiting the potential of plant leaves and leaf-associated microbes. Front. Plant Sci. 8:1318. doi: 10.3389/fpls.2017.01318, PMID: PubMed DOI PMC
Weyens N., Thijs S., Popek R., Witters N., Przybysz A., Espenshade J., et al. . (2015). The role of plant-microbe interactions and their exploitation for phytoremediation of air pollutants. Int. J. Mol. Sci. 16, 25576–25604. doi: 10.3390/ijms161025576, PMID: PubMed DOI PMC
Zhang C., Wang M., Khan N., Tan L., Yang S. (2021). Potentials, utilization, and bioengineering of plant growth-promoting Methylobacterium for sustainable agriculture. Sustain. For. 13:3941. doi: 10.3390/su13073941 DOI