Photoinduced damage of AsLOV2 domain is accompanied by increased singlet oxygen production due to flavin dissociation
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32139757
PubMed Central
PMC7058016
DOI
10.1038/s41598-020-60861-2
PII: 10.1038/s41598-020-60861-2
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Flavin mononucleotide (FMN) belongs to the group of very efficient endogenous photosensitizers producing singlet oxygen, 1O2, but with limited ability to be targeted. On the other hand, in genetically-encoded photosensitizers, which can be targeted by means of various tags, the efficiency of FMN to produce 1O2 is significantly diminished due to its interactions with surrounding amino acid residues. Recently, an increase of 1O2 production yield by FMN buried in a protein matrix was achieved by a decrease of quenching of the cofactor excited states by weakening of the protein-FMN interactions while still forming a complex. Here, we suggest an alternative approach which relies on the blue light irradiation-induced dissociation of FMN to solvent. This dissociation unlocks the full capacity of FMN as 1O2 producer. Our suggestion is based on the study of an irradiation effect on two variants of the LOV2 domain from Avena sativa; wild type, AsLOV2 wt, and the variant with a replaced cysteine residue, AsLOV2 C450A. We detected irradiation-induced conformational changes as well as oxidation of several amino acids in both AsLOV2 variants. Detailed analysis of these observations indicates that irradiation-induced increase in 1O2 production is caused by a release of FMN from the protein. Moreover, an increased FMN dissociation from AsLOV2 wt in comparison with AsLOV2 C450A points to a role of C450 oxidation in repelling the cofactor from the protein.
BioCeV Institute of Microbiology Průmyslová 595 252 50 Vestec Czech Republic
Department of Biochemistry University of Zürich Winterthurerstrasse 190 CH 8057 Zurich Switzerland
Department of Biophysics Faculty of Science P J Šafárik University Jesenná 5 041 54 Košice Slovakia
Zobrazit více v PubMed
Baier J, et al. Singlet oxygen generation by UVA light exposure of endogenous photosensitizers. Biophys. J. 2006;91:1452–1459. doi: 10.1529/biophysj.106.082388. PubMed DOI PMC
Westberg M, Bregnhoj M, Etzerodt M, Ogilby PR. Temperature Sensitive Singlet Oxygen Photosensitization by LOV-Derived Fluorescent Flavoproteins. The journal of physical chemistry. B. 2017;121:2561–2574. doi: 10.1021/acs.jpcb.7b00561. PubMed DOI
Baron R, et al. Multiple pathways guide oxygen diffusion into flavoenzyme active sites. Proceedings of the National Academy of Sciences of the United States of America. 2009;106:10603–10608. doi: 10.1073/pnas.0903809106. PubMed DOI PMC
Meissner B, Schleicher E, Weber S, Essen LO. The dodecin from Thermus thermophilus, a bifunctional cofactor storage protein. The Journal of biological chemistry. 2007;282:33142–33154. doi: 10.1074/jbc.M704951200. PubMed DOI
Davies MJ. Singlet oxygen-mediated damage to proteins and its consequences. Biochem. Biophys. Res. Commun. 2003;305:761–770. doi: 10.1016/s0006-291x(03)00817-9. PubMed DOI
Ogilby PR. Singlet oxygen: there is indeed something new under the sun. Chem. Soc. Rev. 2010;39:3181–3209. doi: 10.1039/b926014p. PubMed DOI
Schweitzer C, Schmidt R. Physical mechanisms of generation and deactivation of singlet oxygen. Chem Rev. 2003;103:1685–1757. doi: 10.1021/cr010371d. PubMed DOI
Davies MJ. Reactive species formed on proteins exposed to singlet oxygen. Photochemical & photobiological sciences: Official journal of the European Photochemistry Association and the European Society for Photobiology. 2004;3:17–25. doi: 10.1039/b307576c. PubMed DOI
Mansoori B, et al. Photodynamic therapy for cancer: role of natural products. Photodiagnosis Photodyn Ther. 2019;26:395–404. doi: 10.1016/j.pdpdt.2019.04.033. PubMed DOI PMC
McLean MA, et al. Mechanism of chromophore assisted laser inactivation employing fluorescent proteins. Anal. Chem. 2009;81:1755–1761. doi: 10.1021/ac801663y. PubMed DOI PMC
Riani YD, Matsuda T, Takemoto K, Nagai T. Green monomeric photosensitizing fluorescent protein for photo-inducible protein inactivation and cell ablation. BMC Biol. 2018;16:50. doi: 10.1186/s12915-018-0514-7. PubMed DOI PMC
Redmond RW, Kochevar IE. Spatially resolved cellular responses to singlet oxygen. Photochem Photobiio. 2006;82:1178–1186. doi: 10.1562/2006-04-14-IR-874. PubMed DOI
Wojtovich AP, Foster TH. Optogenetic control of ROS production. Redox Biol. 2014;2:368–376. doi: 10.1016/j.redox.2014.01.019. PubMed DOI PMC
Westberg M, et al. Exerting better control and specificity with singlet oxygen experiments in live mammalian cells. Methods. 2016;109:81–91. doi: 10.1016/j.ymeth.2016.07.001. PubMed DOI
Endres S, et al. An optogenetic toolbox of LOV-based photosensitizers for light-driven killing of bacteria. Sci Rep. 2018;8:15021. doi: 10.1038/s41598-018-33291-4. PubMed DOI PMC
Hilgers F, et al. Genetically Encoded Photosensitizers as Light-Triggered Antimicrobial Agents. Int J Mol Sci. 2019;20:4608. doi: 10.3390/ijms20184608. PubMed DOI PMC
Shirmanova M, et al. Towards PDT with Genetically Encoded Photosensitizer KillerRed: A Comparison of Continuous and Pulsed Laser Regimens in an Animal Tumor Model. PLoS ONE. 2015;10:e0144617. doi: 10.1371/journal.pone.0144617. PubMed DOI PMC
Norman RA. Past and future: porphyria and porphyrins. Skinmed. 2005;4:287–292. doi: 10.1111/j.1540-9740.2005.03706.x. PubMed DOI
Xiong Y, Tian X, Ai HW. Molecular Tools to Generate Reactive Oxygen Species in Biological Systems. Bioconjug Chem. 2019;30:1297–1303. doi: 10.1021/acs.bioconjchem.9b00191. PubMed DOI PMC
Jiang HN, Li Y, Cui ZJ. Photodynamic Physiology-Photonanomanipulations in Cellular Physiology with Protein Photosensitizers. Front Physiol. 2017;8:191. doi: 10.3389/fphys.2017.00191. PubMed DOI PMC
Ruiz-Gonzalez R, et al. Singlet oxygen generation by the genetically encoded tag miniSOG. J. Am. Chem. Soc. 2013;135:9564–9567. doi: 10.1021/ja4020524. PubMed DOI
Rodriguez-Pulido A, et al. Correction: Assessing the potential of photosensitizing flavoproteins as tags for correlative microscopy. Chem Commun (Camb) 2016;52:9300. doi: 10.1039/c6cc90313d. PubMed DOI
Westberg M, Bregnhoj M, Etzerodt M, Ogilby PR. No Photon Wasted: An Efficient and Selective Singlet Oxygen Photosensitizing Protein. The journal of physical chemistry. B. 2017;121:9366–9371. doi: 10.1021/acs.jpcb.7b07831. PubMed DOI
Jimenez-Banzo A, et al. Singlet oxygen photosensitisation by GFP mutants: oxygen accessibility to the chromophore. Photochemical & photobiological sciences: Official journal of the European Photochemistry Association and the European Society for Photobiology. 2010;9:1336–1341. doi: 10.1039/c0pp00125b. PubMed DOI
Ragas X, Cooper LP, White JH, Nonell S, Flors C. Quantification of photosensitized singlet oxygen production by a fluorescent protein. ChemPhysChem. 2011;12:161–165. doi: 10.1002/cphc.201000919. PubMed DOI
Westberg M, Holmegaard L, Pimenta FM, Etzerodt M, Ogilby PR. Rational design of an efficient, genetically encodable, protein-encased singlet oxygen photosensitizer. J. Am. Chem. Soc. 2015;137:1632–1642. doi: 10.1021/ja511940j. PubMed DOI
Shu X, et al. A genetically encoded tag for correlated light and electron microscopy of intact cells, tissues, and organisms. PLoS biology. 2011;9:e1001041. doi: 10.1371/journal.pbio.1001041. PubMed DOI PMC
Jensen RL, Arnbjerg J, Ogilby PR. Reaction of singlet oxygen with tryptophan in proteins: a pronounced effect of the local environment on the reaction rate. J. Am. Chem. Soc. 2012;134:9820–9826. doi: 10.1021/ja303710m. PubMed DOI
Torra J, et al. Tailing miniSOG: structural bases of the complex photophysics of a flavin-binding singlet oxygen photosensitizing protein. Sci Rep. 2019;9:2428. doi: 10.1038/s41598-019-38955-3. PubMed DOI PMC
Zayner JP, Antoniou C, Sosnick TR. The amino-terminal helix modulates light-activated conformational changes in AsLOV2. J. Mol. Biol. 2012;419:61–74. doi: 10.1016/j.jmb.2012.02.037. PubMed DOI PMC
Swartz TE, et al. The photocycle of a flavin-binding domain of the blue light photoreceptor phototropin. The Journal of biological chemistry. 2001;276:36493–36500. doi: 10.1074/jbc.M103114200. PubMed DOI
Salomon M, Christie JM, Knieb E, Lempert U, Briggs WR. Photochemical and mutational analysis of the FMN-binding domains of the plant blue light receptor, phototropin. Biochemistry. 2000;39:9401–9410. doi: 10.1021/bi000585+. PubMed DOI
Desmond Molecular Dynamics System. Schrödinger Maestro 2019-2; Desmond Molecular Dynamics System; Schrödinger Inc. & D. E. Shaw Research; New York, NY (2019).
Bowers, K. J. et al. in Proceedings of the 2006 ACM/IEEE conference on Supercomputing - SC ‘06 (ACM Press, 2006).
Jorgensen WL, Tirado-Rives J. The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J. Am. Chem. Soc. 1988;110:1657–1666. doi: 10.1021/ja00214a001. PubMed DOI
Jorgensen WL, Maxwell DS, TiradoRives J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 1996;118:11225–11236. doi: 10.1021/Ja9621760. DOI
Damm, W., Frontera, A., TiradoRives, J. & Jorgensen, W. L. OPLS all-atom force field for carbohydrates. J. Comput. Chem. 18, 1955–1970, 10.1002/(Sici)1096-987x(199712)18:16<1955::Aid-Jcc1>3.3.Co;2-A (1997).
McDonald NA, Jorgensen WL. Development of an all-atom force field for heterocycles. Properties of liquid pyrrole, furan, diazoles, and oxazoles. J. Phys. Chem. B. 1998;102:8049–8059. doi: 10.1021/Jp981200o. DOI
Jorgensen WL, McDonald NA. Development of an all-atom force field for heterocycles. Properties of liquid pyridine and diazenes. Theochem-Journal of Molecular Structure. 1998;424:145–155. doi: 10.1016/s0166-1280(97)00237-6. DOI
Rizzo RC, Jorgensen WL. OPLS All-Atom Model for Amines: Resolution of the Amine Hydration Problem. J. Am. Chem. Soc. 1999;121:4827–4836. doi: 10.1021/ja984106u. DOI
Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL. Evaluation and Reparametrization of the OPLS-AA Force Field for Proteins via Comparison with Accurate Quantum Chemical Calculations on Peptides†. The Journal of Physical Chemistry B. 2001;105:6474–6487. doi: 10.1021/jp003919d. DOI
Watkins EK, Jorgensen WL. Perfluoroalkanes: Conformational Analysis and Liquid-State Properties from ab Initio and Monte Carlo Calculations. The Journal of Physical Chemistry A. 2001;105:4118–4125. doi: 10.1021/jp004071w. DOI
Berendsen HJC, Grigera JR, Straatsma TP. The Missing Term in Effective Pair Potentials. J. Phys. Chem.-Us. 1987;91:6269–6271. doi: 10.1021/J100308a038. DOI
Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J. Mol. Graph. 1996;14(33-38):27–38. PubMed
Chovancova E, et al. CAVER 3.0: a tool for the analysis of transport pathways in dynamic protein structures. PLoS Comput. Biol. 2012;8:e1002708. doi: 10.1371/journal.pcbi.1002708. PubMed DOI PMC
Dassault Systemes BIOVIA; Discovery Studio Client; San Diego, USA. Dassault Systemes BIOVIA; Discovery Studio 2019 Client; San Diego, USA (2019).
Gil AA, et al. Femtosecond to Millisecond Dynamics of Light Induced Allostery in the Avena sativa LOV Domain. The journal of physical chemistry. B. 2017;121:1010–1019. doi: 10.1021/acs.jpcb.7b00088. PubMed DOI PMC
Durr H, Salomon M, Rudiger W. Chromophore exchange in the LOV2 domain of the plant photoreceptor phototropin1 from oat. Biochemistry. 2005;44:3050–3055. doi: 10.1021/bi0478897. PubMed DOI
Song SH, et al. Modulating LOV domain photodynamics with a residue alteration outside the chromophore binding site. Biochemistry. 2011;50:2411–2423. doi: 10.1021/bi200198x. PubMed DOI PMC
Fukunaga Y, Katsuragi Y, Izumi T, Sakiyama F. Fluorescence characteristics of kynurenine and N’-formylkynurenine. Their use as reporters of the environment of tryptophan 62 in hen egg-white lysozyme. Journal of biochemistry. 1982;92:129–141. doi: 10.1093/oxfordjournals.jbchem.a133909. PubMed DOI
Lobley A, Whitmore L, Wallace BA. DICHROWEB: an interactive website for the analysis of protein secondary structure from circular dichroism spectra. Bioinformatics. 2002;18:211–212. doi: 10.1093/bioinformatics/18.1.211. PubMed DOI
Sreerama N, Woody RW. Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal. Biochem. 2000;287:252–260. doi: 10.1006/abio.2000.4880. PubMed DOI
Micsonai A, et al. BeStSel: a web server for accurate protein secondary structure prediction and fold recognition from the circular dichroism spectra. Nucleic Acids Res. 2018;46:W315–W322. doi: 10.1093/nar/gky497. PubMed DOI PMC
Tomasková N, Varinska L, Sedlak E. Rate of oxidative modification of cytochrome c by hydrogen peroxide is modulated by Hofmeister anions. General Physiology and Biophysics. 2010;29:255–265. doi: 10.4149/gpb_2010_03_255. PubMed DOI
Zayner JP, Sosnick TR. Factors that control the chemistry of the LOV domain photocycle. PLoS ONE. 2014;9:e87074. doi: 10.1371/journal.pone.0087074. PubMed DOI PMC
Leferink NG, et al. Identification of a gatekeeper residue that prevents dehydrogenases from acting as oxidases. The Journal of biological chemistry. 2009;284:4392–4397. doi: 10.1074/jbc.M808202200. PubMed DOI
Yagi K, Ohishi N, Nishimoto K, Choi JD, Song PS. Effect of hydrogen bonding on electronic spectra and reactivity of flavins. Biochemistry. 1980;19:1553–1557. doi: 10.1021/bi00549a003. PubMed DOI
Halavaty AS, Moffat K. N- and C-terminal flanking regions modulate light-induced signal transduction in the LOV2 domain of the blue light sensor phototropin 1 from Avena sativa. Biochemistry. 2007;46:14001–14009. doi: 10.1021/bi701543e. PubMed DOI
Pietra F. Molecular dynamics simulation of dioxygen pathways through mini singlet oxygen generator (miniSOG), a genetically encoded marker and killer protein. Chem. Biodivers. 2014;11:1883–1891. doi: 10.1002/cbdv.201400125. PubMed DOI
Alia A, Mohanty P, Matysik J. Effect of proline on the production of singlet oxygen. Amino Acids. 2001;21:195–200. doi: 10.1007/s007260170026. PubMed DOI
Matysik J, Alia A, Bhalu B, Mohanty P. Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Current Science. 2002;82:525–532.
Signorelli S, Arellano JB, Melo TB, Borsani O, Monza J. Proline does not quench singlet oxygen: evidence to reconsider its protective role in plants. Plant physiology and biochemistry: PPB. 2013;64:80–83. doi: 10.1016/j.plaphy.2012.12.017. PubMed DOI
Pimenta FM, Jensen RL, Breitenbach T, Etzerodt M, Ogilby PR. Oxygen-dependent photochemistry and photophysics of “miniSOG,” a protein-encased flavin. Photochemistry and Photobiology. 2013;89:1116–1126. doi: 10.1111/php.12111. PubMed DOI
Barnett ME, Baran TM, Foster TH, Wojtovich AP. Quantification of light-induced miniSOG superoxide production using the selective marker, 2-hydroxyethidium. Free radical biology &. medicine. 2018;116:134–140. doi: 10.1016/j.freeradbiomed.2018.01.014. PubMed DOI PMC
Winterbourn CC. Reconciling the chemistry and biology of reactive oxygen species. Nat. Chem. Biol. 2008;4:278–286. doi: 10.1038/nchembio.85. PubMed DOI
Di Mascio P, et al. Singlet Molecular Oxygen Reactions with Nucleic Acids, Lipids, and Proteins. Chem Rev. 2019;119:2043–2086. doi: 10.1021/acs.chemrev.8b00554. PubMed DOI
Kim J, et al. Oxidative modification of cytochrome c by singlet oxygen. Free radical biology & medicine. 2008;44:1700–1711. doi: 10.1016/j.freeradbiomed.2007.12.031. PubMed DOI PMC
Marques EF, Medeiros MHG, Di Mascio P. Lysozyme oxidation by singlet molecular oxygen: Peptide characterization using [(18) O]-labeling oxygen and nLC-MS/MS. Journal of mass spectrometry: JMS. 2017;52:739–751. doi: 10.1002/jms.3983. PubMed DOI
Kiselar JG, Maleknia SD, Sullivan M, Downard KM, Chance MR. Hydroxyl radical probe of protein surfaces using synchrotron X-ray radiolysis and mass spectrometry. International journal of radiation biology. 2002;78:101–114. doi: 10.1080/09553000110094805. PubMed DOI
Jensen RL, Arnbjerg J, Ogilby PR. Temperature effects on the solvent-dependent deactivation of singlet oxygen. J. Am. Chem. Soc. 2010;132:8098–8105. doi: 10.1021/ja101753n. PubMed DOI
Design of AsLOV2 domain as a carrier of light-induced dissociable FMN photosensitizer
Isotopic Depletion Increases the Spatial Resolution of FPOP Top-Down Mass Spectrometry Analysis