Photoinduced damage of AsLOV2 domain is accompanied by increased singlet oxygen production due to flavin dissociation

. 2020 Mar 05 ; 10 (1) : 4119. [epub] 20200305

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32139757
Odkazy

PubMed 32139757
PubMed Central PMC7058016
DOI 10.1038/s41598-020-60861-2
PII: 10.1038/s41598-020-60861-2
Knihovny.cz E-zdroje

Flavin mononucleotide (FMN) belongs to the group of very efficient endogenous photosensitizers producing singlet oxygen, 1O2, but with limited ability to be targeted. On the other hand, in genetically-encoded photosensitizers, which can be targeted by means of various tags, the efficiency of FMN to produce 1O2 is significantly diminished due to its interactions with surrounding amino acid residues. Recently, an increase of 1O2 production yield by FMN buried in a protein matrix was achieved by a decrease of quenching of the cofactor excited states by weakening of the protein-FMN interactions while still forming a complex. Here, we suggest an alternative approach which relies on the blue light irradiation-induced dissociation of FMN to solvent. This dissociation unlocks the full capacity of FMN as 1O2 producer. Our suggestion is based on the study of an irradiation effect on two variants of the LOV2 domain from Avena sativa; wild type, AsLOV2 wt, and the variant with a replaced cysteine residue, AsLOV2 C450A. We detected irradiation-induced conformational changes as well as oxidation of several amino acids in both AsLOV2 variants. Detailed analysis of these observations indicates that irradiation-induced increase in 1O2 production is caused by a release of FMN from the protein. Moreover, an increased FMN dissociation from AsLOV2 wt in comparison with AsLOV2 C450A points to a role of C450 oxidation in repelling the cofactor from the protein.

Zobrazit více v PubMed

Baier J, et al. Singlet oxygen generation by UVA light exposure of endogenous photosensitizers. Biophys. J. 2006;91:1452–1459. doi: 10.1529/biophysj.106.082388. PubMed DOI PMC

Westberg M, Bregnhoj M, Etzerodt M, Ogilby PR. Temperature Sensitive Singlet Oxygen Photosensitization by LOV-Derived Fluorescent Flavoproteins. The journal of physical chemistry. B. 2017;121:2561–2574. doi: 10.1021/acs.jpcb.7b00561. PubMed DOI

Baron R, et al. Multiple pathways guide oxygen diffusion into flavoenzyme active sites. Proceedings of the National Academy of Sciences of the United States of America. 2009;106:10603–10608. doi: 10.1073/pnas.0903809106. PubMed DOI PMC

Meissner B, Schleicher E, Weber S, Essen LO. The dodecin from Thermus thermophilus, a bifunctional cofactor storage protein. The Journal of biological chemistry. 2007;282:33142–33154. doi: 10.1074/jbc.M704951200. PubMed DOI

Davies MJ. Singlet oxygen-mediated damage to proteins and its consequences. Biochem. Biophys. Res. Commun. 2003;305:761–770. doi: 10.1016/s0006-291x(03)00817-9. PubMed DOI

Ogilby PR. Singlet oxygen: there is indeed something new under the sun. Chem. Soc. Rev. 2010;39:3181–3209. doi: 10.1039/b926014p. PubMed DOI

Schweitzer C, Schmidt R. Physical mechanisms of generation and deactivation of singlet oxygen. Chem Rev. 2003;103:1685–1757. doi: 10.1021/cr010371d. PubMed DOI

Davies MJ. Reactive species formed on proteins exposed to singlet oxygen. Photochemical & photobiological sciences: Official journal of the European Photochemistry Association and the European Society for Photobiology. 2004;3:17–25. doi: 10.1039/b307576c. PubMed DOI

Mansoori B, et al. Photodynamic therapy for cancer: role of natural products. Photodiagnosis Photodyn Ther. 2019;26:395–404. doi: 10.1016/j.pdpdt.2019.04.033. PubMed DOI PMC

McLean MA, et al. Mechanism of chromophore assisted laser inactivation employing fluorescent proteins. Anal. Chem. 2009;81:1755–1761. doi: 10.1021/ac801663y. PubMed DOI PMC

Riani YD, Matsuda T, Takemoto K, Nagai T. Green monomeric photosensitizing fluorescent protein for photo-inducible protein inactivation and cell ablation. BMC Biol. 2018;16:50. doi: 10.1186/s12915-018-0514-7. PubMed DOI PMC

Redmond RW, Kochevar IE. Spatially resolved cellular responses to singlet oxygen. Photochem Photobiio. 2006;82:1178–1186. doi: 10.1562/2006-04-14-IR-874. PubMed DOI

Wojtovich AP, Foster TH. Optogenetic control of ROS production. Redox Biol. 2014;2:368–376. doi: 10.1016/j.redox.2014.01.019. PubMed DOI PMC

Westberg M, et al. Exerting better control and specificity with singlet oxygen experiments in live mammalian cells. Methods. 2016;109:81–91. doi: 10.1016/j.ymeth.2016.07.001. PubMed DOI

Endres S, et al. An optogenetic toolbox of LOV-based photosensitizers for light-driven killing of bacteria. Sci Rep. 2018;8:15021. doi: 10.1038/s41598-018-33291-4. PubMed DOI PMC

Hilgers F, et al. Genetically Encoded Photosensitizers as Light-Triggered Antimicrobial Agents. Int J Mol Sci. 2019;20:4608. doi: 10.3390/ijms20184608. PubMed DOI PMC

Shirmanova M, et al. Towards PDT with Genetically Encoded Photosensitizer KillerRed: A Comparison of Continuous and Pulsed Laser Regimens in an Animal Tumor Model. PLoS ONE. 2015;10:e0144617. doi: 10.1371/journal.pone.0144617. PubMed DOI PMC

Norman RA. Past and future: porphyria and porphyrins. Skinmed. 2005;4:287–292. doi: 10.1111/j.1540-9740.2005.03706.x. PubMed DOI

Xiong Y, Tian X, Ai HW. Molecular Tools to Generate Reactive Oxygen Species in Biological Systems. Bioconjug Chem. 2019;30:1297–1303. doi: 10.1021/acs.bioconjchem.9b00191. PubMed DOI PMC

Jiang HN, Li Y, Cui ZJ. Photodynamic Physiology-Photonanomanipulations in Cellular Physiology with Protein Photosensitizers. Front Physiol. 2017;8:191. doi: 10.3389/fphys.2017.00191. PubMed DOI PMC

Ruiz-Gonzalez R, et al. Singlet oxygen generation by the genetically encoded tag miniSOG. J. Am. Chem. Soc. 2013;135:9564–9567. doi: 10.1021/ja4020524. PubMed DOI

Rodriguez-Pulido A, et al. Correction: Assessing the potential of photosensitizing flavoproteins as tags for correlative microscopy. Chem Commun (Camb) 2016;52:9300. doi: 10.1039/c6cc90313d. PubMed DOI

Westberg M, Bregnhoj M, Etzerodt M, Ogilby PR. No Photon Wasted: An Efficient and Selective Singlet Oxygen Photosensitizing Protein. The journal of physical chemistry. B. 2017;121:9366–9371. doi: 10.1021/acs.jpcb.7b07831. PubMed DOI

Jimenez-Banzo A, et al. Singlet oxygen photosensitisation by GFP mutants: oxygen accessibility to the chromophore. Photochemical & photobiological sciences: Official journal of the European Photochemistry Association and the European Society for Photobiology. 2010;9:1336–1341. doi: 10.1039/c0pp00125b. PubMed DOI

Ragas X, Cooper LP, White JH, Nonell S, Flors C. Quantification of photosensitized singlet oxygen production by a fluorescent protein. ChemPhysChem. 2011;12:161–165. doi: 10.1002/cphc.201000919. PubMed DOI

Westberg M, Holmegaard L, Pimenta FM, Etzerodt M, Ogilby PR. Rational design of an efficient, genetically encodable, protein-encased singlet oxygen photosensitizer. J. Am. Chem. Soc. 2015;137:1632–1642. doi: 10.1021/ja511940j. PubMed DOI

Shu X, et al. A genetically encoded tag for correlated light and electron microscopy of intact cells, tissues, and organisms. PLoS biology. 2011;9:e1001041. doi: 10.1371/journal.pbio.1001041. PubMed DOI PMC

Jensen RL, Arnbjerg J, Ogilby PR. Reaction of singlet oxygen with tryptophan in proteins: a pronounced effect of the local environment on the reaction rate. J. Am. Chem. Soc. 2012;134:9820–9826. doi: 10.1021/ja303710m. PubMed DOI

Torra J, et al. Tailing miniSOG: structural bases of the complex photophysics of a flavin-binding singlet oxygen photosensitizing protein. Sci Rep. 2019;9:2428. doi: 10.1038/s41598-019-38955-3. PubMed DOI PMC

Zayner JP, Antoniou C, Sosnick TR. The amino-terminal helix modulates light-activated conformational changes in AsLOV2. J. Mol. Biol. 2012;419:61–74. doi: 10.1016/j.jmb.2012.02.037. PubMed DOI PMC

Swartz TE, et al. The photocycle of a flavin-binding domain of the blue light photoreceptor phototropin. The Journal of biological chemistry. 2001;276:36493–36500. doi: 10.1074/jbc.M103114200. PubMed DOI

Salomon M, Christie JM, Knieb E, Lempert U, Briggs WR. Photochemical and mutational analysis of the FMN-binding domains of the plant blue light receptor, phototropin. Biochemistry. 2000;39:9401–9410. doi: 10.1021/bi000585+. PubMed DOI

Desmond Molecular Dynamics System. Schrödinger Maestro 2019-2; Desmond Molecular Dynamics System; Schrödinger Inc. & D. E. Shaw Research; New York, NY (2019).

Bowers, K. J. et al. in Proceedings of the 2006 ACM/IEEE conference on Supercomputing - SC ‘06 (ACM Press, 2006).

Jorgensen WL, Tirado-Rives J. The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J. Am. Chem. Soc. 1988;110:1657–1666. doi: 10.1021/ja00214a001. PubMed DOI

Jorgensen WL, Maxwell DS, TiradoRives J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 1996;118:11225–11236. doi: 10.1021/Ja9621760. DOI

Damm, W., Frontera, A., TiradoRives, J. & Jorgensen, W. L. OPLS all-atom force field for carbohydrates. J. Comput. Chem. 18, 1955–1970, 10.1002/(Sici)1096-987x(199712)18:16<1955::Aid-Jcc1>3.3.Co;2-A (1997).

McDonald NA, Jorgensen WL. Development of an all-atom force field for heterocycles. Properties of liquid pyrrole, furan, diazoles, and oxazoles. J. Phys. Chem. B. 1998;102:8049–8059. doi: 10.1021/Jp981200o. DOI

Jorgensen WL, McDonald NA. Development of an all-atom force field for heterocycles. Properties of liquid pyridine and diazenes. Theochem-Journal of Molecular Structure. 1998;424:145–155. doi: 10.1016/s0166-1280(97)00237-6. DOI

Rizzo RC, Jorgensen WL. OPLS All-Atom Model for Amines: Resolution of the Amine Hydration Problem. J. Am. Chem. Soc. 1999;121:4827–4836. doi: 10.1021/ja984106u. DOI

Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL. Evaluation and Reparametrization of the OPLS-AA Force Field for Proteins via Comparison with Accurate Quantum Chemical Calculations on Peptides†. The Journal of Physical Chemistry B. 2001;105:6474–6487. doi: 10.1021/jp003919d. DOI

Watkins EK, Jorgensen WL. Perfluoroalkanes: Conformational Analysis and Liquid-State Properties from ab Initio and Monte Carlo Calculations. The Journal of Physical Chemistry A. 2001;105:4118–4125. doi: 10.1021/jp004071w. DOI

Berendsen HJC, Grigera JR, Straatsma TP. The Missing Term in Effective Pair Potentials. J. Phys. Chem.-Us. 1987;91:6269–6271. doi: 10.1021/J100308a038. DOI

Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J. Mol. Graph. 1996;14(33-38):27–38. PubMed

Chovancova E, et al. CAVER 3.0: a tool for the analysis of transport pathways in dynamic protein structures. PLoS Comput. Biol. 2012;8:e1002708. doi: 10.1371/journal.pcbi.1002708. PubMed DOI PMC

Dassault Systemes BIOVIA; Discovery Studio Client; San Diego, USA. Dassault Systemes BIOVIA; Discovery Studio 2019 Client; San Diego, USA (2019).

Gil AA, et al. Femtosecond to Millisecond Dynamics of Light Induced Allostery in the Avena sativa LOV Domain. The journal of physical chemistry. B. 2017;121:1010–1019. doi: 10.1021/acs.jpcb.7b00088. PubMed DOI PMC

Durr H, Salomon M, Rudiger W. Chromophore exchange in the LOV2 domain of the plant photoreceptor phototropin1 from oat. Biochemistry. 2005;44:3050–3055. doi: 10.1021/bi0478897. PubMed DOI

Song SH, et al. Modulating LOV domain photodynamics with a residue alteration outside the chromophore binding site. Biochemistry. 2011;50:2411–2423. doi: 10.1021/bi200198x. PubMed DOI PMC

Fukunaga Y, Katsuragi Y, Izumi T, Sakiyama F. Fluorescence characteristics of kynurenine and N’-formylkynurenine. Their use as reporters of the environment of tryptophan 62 in hen egg-white lysozyme. Journal of biochemistry. 1982;92:129–141. doi: 10.1093/oxfordjournals.jbchem.a133909. PubMed DOI

Lobley A, Whitmore L, Wallace BA. DICHROWEB: an interactive website for the analysis of protein secondary structure from circular dichroism spectra. Bioinformatics. 2002;18:211–212. doi: 10.1093/bioinformatics/18.1.211. PubMed DOI

Sreerama N, Woody RW. Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal. Biochem. 2000;287:252–260. doi: 10.1006/abio.2000.4880. PubMed DOI

Micsonai A, et al. BeStSel: a web server for accurate protein secondary structure prediction and fold recognition from the circular dichroism spectra. Nucleic Acids Res. 2018;46:W315–W322. doi: 10.1093/nar/gky497. PubMed DOI PMC

Tomasková N, Varinska L, Sedlak E. Rate of oxidative modification of cytochrome c by hydrogen peroxide is modulated by Hofmeister anions. General Physiology and Biophysics. 2010;29:255–265. doi: 10.4149/gpb_2010_03_255. PubMed DOI

Zayner JP, Sosnick TR. Factors that control the chemistry of the LOV domain photocycle. PLoS ONE. 2014;9:e87074. doi: 10.1371/journal.pone.0087074. PubMed DOI PMC

Leferink NG, et al. Identification of a gatekeeper residue that prevents dehydrogenases from acting as oxidases. The Journal of biological chemistry. 2009;284:4392–4397. doi: 10.1074/jbc.M808202200. PubMed DOI

Yagi K, Ohishi N, Nishimoto K, Choi JD, Song PS. Effect of hydrogen bonding on electronic spectra and reactivity of flavins. Biochemistry. 1980;19:1553–1557. doi: 10.1021/bi00549a003. PubMed DOI

Halavaty AS, Moffat K. N- and C-terminal flanking regions modulate light-induced signal transduction in the LOV2 domain of the blue light sensor phototropin 1 from Avena sativa. Biochemistry. 2007;46:14001–14009. doi: 10.1021/bi701543e. PubMed DOI

Pietra F. Molecular dynamics simulation of dioxygen pathways through mini singlet oxygen generator (miniSOG), a genetically encoded marker and killer protein. Chem. Biodivers. 2014;11:1883–1891. doi: 10.1002/cbdv.201400125. PubMed DOI

Alia A, Mohanty P, Matysik J. Effect of proline on the production of singlet oxygen. Amino Acids. 2001;21:195–200. doi: 10.1007/s007260170026. PubMed DOI

Matysik J, Alia A, Bhalu B, Mohanty P. Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Current Science. 2002;82:525–532.

Signorelli S, Arellano JB, Melo TB, Borsani O, Monza J. Proline does not quench singlet oxygen: evidence to reconsider its protective role in plants. Plant physiology and biochemistry: PPB. 2013;64:80–83. doi: 10.1016/j.plaphy.2012.12.017. PubMed DOI

Pimenta FM, Jensen RL, Breitenbach T, Etzerodt M, Ogilby PR. Oxygen-dependent photochemistry and photophysics of “miniSOG,” a protein-encased flavin. Photochemistry and Photobiology. 2013;89:1116–1126. doi: 10.1111/php.12111. PubMed DOI

Barnett ME, Baran TM, Foster TH, Wojtovich AP. Quantification of light-induced miniSOG superoxide production using the selective marker, 2-hydroxyethidium. Free radical biology &. medicine. 2018;116:134–140. doi: 10.1016/j.freeradbiomed.2018.01.014. PubMed DOI PMC

Winterbourn CC. Reconciling the chemistry and biology of reactive oxygen species. Nat. Chem. Biol. 2008;4:278–286. doi: 10.1038/nchembio.85. PubMed DOI

Di Mascio P, et al. Singlet Molecular Oxygen Reactions with Nucleic Acids, Lipids, and Proteins. Chem Rev. 2019;119:2043–2086. doi: 10.1021/acs.chemrev.8b00554. PubMed DOI

Kim J, et al. Oxidative modification of cytochrome c by singlet oxygen. Free radical biology & medicine. 2008;44:1700–1711. doi: 10.1016/j.freeradbiomed.2007.12.031. PubMed DOI PMC

Marques EF, Medeiros MHG, Di Mascio P. Lysozyme oxidation by singlet molecular oxygen: Peptide characterization using [(18) O]-labeling oxygen and nLC-MS/MS. Journal of mass spectrometry: JMS. 2017;52:739–751. doi: 10.1002/jms.3983. PubMed DOI

Kiselar JG, Maleknia SD, Sullivan M, Downard KM, Chance MR. Hydroxyl radical probe of protein surfaces using synchrotron X-ray radiolysis and mass spectrometry. International journal of radiation biology. 2002;78:101–114. doi: 10.1080/09553000110094805. PubMed DOI

Jensen RL, Arnbjerg J, Ogilby PR. Temperature effects on the solvent-dependent deactivation of singlet oxygen. J. Am. Chem. Soc. 2010;132:8098–8105. doi: 10.1021/ja101753n. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...