Design of AsLOV2 domain as a carrier of light-induced dissociable FMN photosensitizer
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
Grantová podpora
HORIZON EUROPE Innovative Europe
Agentúra na Podporu Výskumu a Vývoja
Slovak Research and Development Agency
LX22NPO5107
Ministry of Education, Youth and Sports of the Czech Republic
Grant Agency of Charles University
RVO61388971
Czech Academy of Sciences
PubMed
38501448
PubMed Central
PMC10949324
DOI
10.1002/pro.4921
Knihovny.cz E-zdroje
- Klíčová slova
- LOV2 domain, flavin cofactor, genetically encoded photosensitizers, miniSOG, singlet oxygen,
- MeSH
- aminokyseliny MeSH
- flavinmononukleotid chemie MeSH
- flavoproteiny * chemie metabolismus MeSH
- fotosenzibilizující látky * MeSH
- proteinové domény MeSH
- vazebná místa MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aminokyseliny MeSH
- flavinmononukleotid MeSH
- flavoproteiny * MeSH
- fotosenzibilizující látky * MeSH
Flavin mononucleotide (FMN) is a highly efficient photosensitizer (PS) yielding singlet oxygen (1 O2 ). However, its 1 O2 production efficiency significantly decreases upon isoalloxazine ring encapsulation into the protein matrix in genetically encoded photosensitizers (GEPS). Reducing isoalloxazine ring interactions with surrounding amino acids by protein engineering may increase 1 O2 production efficiency GEPS, but at the same time weakened native FMN-protein interactions may cause undesirable FMN dissociation. Here, in contrast, we intentionally induce the FMN release by light-triggered sulfur oxidation of strategically placed cysteines (oxidation-prone amino acids) in the isoalloxazine-binding site due to significantly increased volume of the cysteinyl side residue(s). As a proof of concept, in three variants of the LOV2 domain of Avena sativa (AsLOV2), namely V416C, T418C, and V416C/T418C, the effective 1 O2 production strongly correlated with the efficiency of irradiation-induced FMN dissociation (wild type (WT) < V416C < T418C < V416C/T418C). This alternative approach enables us: (i) to overcome the low 1 O2 production efficiency of flavin-based GEPSs without affecting native isoalloxazine ring-protein interactions and (ii) to utilize AsLOV2, due to its inherent binding propensity to FMN, as a PS vehicle, which is released at a target by light irradiation.
Department of Biochemistry Faculty of Science Charles University Prague Czech Republic
Department of Biochemistry Faculty of Science P J Šafárik University Košice Slovakia
Department of Biophysics Faculty of Science P J Šafárik University Košice Slovakia
Institute of Microbiology BioCeV Academy of Sciences of the Czech Republic Prague Czech Republic
Zobrazit více v PubMed
Akasov R, Khaydukov EV, Yamada M, Zvyagin AV, Leelahavanichkul A, Leanse LG, et al. Nanoparticle enhanced blue light therapy. Adv Drug Deliv Rev. 2022;184:114198. 10.1016/j.addr.2022.114198 PubMed DOI
Andersen HC. RATTLE – a velocity version of the SHAKE algorithms for molecular‐dynamics calculations. J Comput Phys. 1983;52(1):24–34. 10.1016/0021-9991(83)90014-1 DOI
Baier J, Maisch T, Maier M, Engel E, Landthaler M, Baumler W. Singlet oxygen generation by UVA light exposure of endogenous photosensitizers. Biophys J. 2006;91(4):1452–1459. 10.1529/biophysj.106.082388 PubMed DOI PMC
Bulina ME, Chudakov DM, Britanova OV, Yanushevich YG, Staroverov DB, Chepurnykh TV, et al. A genetically encoded photosensitizer. Nat Biotechnol. 2006;24(1):95–99. 10.1038/nbt1175 PubMed DOI
Darden T, York D, Pedersen L. Particle mesh Ewald – an N.Log(N) method for Ewald sums in large systems. J Chem Phys. 1993;98(12):10089–10092. 10.1063/1.464397 DOI
Debele TA, Peng S, Tsai HC. Drug carrier for photodynamic cancer therapy. Int J Mol Sci. 2015;16(9):22094–22136. 10.3390/ijms160922094 PubMed DOI PMC
Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, et al. Photodynamic therapy. J Natl Cancer Inst. 1998;90(12):889–905. 10.1093/jnci/90.12.889 PubMed DOI PMC
Endres S, Wingen M, Torra J, Ruiz‐Gonzalez R, Polen T, Bosio G, et al. An optogenetic toolbox of LOV‐based photosensitizers for light‐driven killing of bacteria. Sci Rep. 2018;8:15021. 10.1038/s41598-018-33291-4 PubMed DOI PMC
Feller SE, Zhang YH, Pastor RW, Brooks BR. Constant‐pressure molecular‐dynamics simulation – the Langevin piston method. J Chem Phys. 1995;103(11):4613–4621. 10.1063/1.470648 DOI
Gorbachev DA, Staroverov DB, Lukyanov KA, Sarkisyan KS. Genetically encoded red photosensitizers with enhanced phototoxicity. Int J Mol Sci. 2020;21(22):8800. 10.3390/ijms21228800 PubMed DOI PMC
Gunaydin G, Gedik ME, Ayan S. Photodynamic therapy for the treatment and diagnosis of cancer – a review of the current clinical status. Front Chem. 2021;9(26):686303. 10.3389/fchem.2021.686303 PubMed DOI PMC
Halavaty AS, Moffat K. N‐ and C‐terminal flanking regions modulate light‐induced signal transduction in the LOV2 domain of the blue light sensor phototropin 1 from Avena sativa . Biochemistry. 2007;46(49):14001–14009. 10.1021/bi701543e PubMed DOI
Hilgers F, Bitzenhofer NL, Ackermann Y, Burmeister A, Grunberger A, Jaeger KE, et al. Genetically encoded photosensitizers as light‐triggered antimicrobial agents. Int J Mol Sci. 2019;20(18):4608. 10.3390/ijms20184608 PubMed DOI PMC
Hovan A, Pevna V, Huntosova V, Miskovsky P, Bano G. Singlet oxygen lifetime changes in dying glioblastoma cells. Photochem Photobiol. 2023;100:1–13. 10.1111/php.13828 PubMed DOI
Huang J, Rauscher S, Nawrocki G, Ran T, Feig M, de Groot BL, et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat Methods. 2017;14(1):71–73. 10.1038/nmeth.4067 PubMed DOI PMC
Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graph. 1996;14(1):33–38. 10.1016/0263-7855(96)00018-5 PubMed DOI
Jarzynski C. Nonequilibrium equality for free energy differences. Phys Rev Lett. 1997;78(14):2690–2693. 10.1103/PhysRevLett.78.2690 DOI
Jimenez‐Banzo A, Ragas X, Kapusta P, Nonell S. Time‐resolved methods in biophysics. 7. Photon counting vs. analog time‐resolved singlet oxygen phosphorescence detection. Photochem Photobiol Sci. 2008;7(9):1003–1010. 10.1039/b804333g PubMed DOI
Kelly SM, Jess TJ, Price NC. How to study proteins by circular dichroism. Biochim Biophys Acta Proteins Proteom. 2005;1751(2):119–139. 10.1016/j.bbapap.2005.06.005 PubMed DOI
Kong AT, Leprevost FV, Avtonomov DM, Mellacheruvu D, Nesvizhskii AI. MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry‐based proteomics. Nat Methods. 2017;14(5):513–520. 10.1038/nmeth.4256 PubMed DOI PMC
Lee CN, Hsu R, Chen H, Wong TW. Daylight photodynamic therapy: an update. Molecules. 2020;25(21):5195. 10.3390/molecules25215195 PubMed DOI PMC
Loginov DS, Fiala J, Brechlin P, Kruppa G, Novak P. Hydroxyl radical footprinting analysis of a human haptoglobin‐hemoglobin complex. Biochim Biophys Acta Proteins Proteom. 2022;1870(2):140735. 10.1016/j.bbapap.2021.140735 PubMed DOI
MacLean B, Tomazela DM, Shulman N, Chambers M, Finney GL, Frewen B, et al. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics. 2010;26(7):966–968. 10.1093/bioinformatics/btq054 PubMed DOI PMC
Maestro . 2022‐2. Schrödinger, LLC. 2022. https://www.schrodinger.com/sites/default/files/s3/public/python_api/2022‐2/api/schrodinger.maestro.html.
Mansoori B, Mohammadi A, Doustvandi MA, Mohammadnejad F, Kamari F, Gjerstorff MF, et al. Photodynamic therapy for cancer: role of natural products. Photodiagnosis Photodyn Ther. 2019;26:395–404. 10.1016/j.pdpdt.2019.04.033 PubMed DOI PMC
Martyna GJ, Tobias DJ, Klein ML. Constant‐pressure molecular‐dynamics algorithms. J Chem Phys. 1994;101(5):4177–4189. 10.1063/1.467468 DOI
Meissner B, Schleicher E, Weber S, Essen LO. The dodecin from Thermus thermophilus, a bifunctional cofactor storage protein. J Biol Chem. 2007;282(45):33142–33154. 10.1074/jbc.M704951200 PubMed DOI
Micheletto MC, Guidelli EJ, Costa AJ. Interaction of genetically encoded photosensitizers with scintillating nanoparticles for X‐ray activated photodynamic therapy. ACS Appl Mater Interfaces. 2021;13(2):2289–2302. 10.1021/acsami.0c19041 PubMed DOI
Mogensen DJ, Westberg M, Breitenbach T, Etzerodt M, Ogilby PR. Stable transfection of the singlet oxygen photosensitizing protein SOPP3: examining aspects of intracellular behavior. Photochem Photobiol. 2021;97(6):1417–1430. 10.1111/php.13440 PubMed DOI
O'Connor AE, Gallagher WM, Byrne AT. Porphyrin and nonporphyrin photosensitizers in oncology: preclinical and clinical advances in photodynamic therapy. Photochem Photobiol. 2009;85(5):1053–1074. 10.1111/j.1751-1097.2009.00585.x PubMed DOI
Park S, Schulten K. Calculating potentials of mean force from steered molecular dynamics simulations. J Chem Phys. 2004;120(13):5946–5961. 10.1063/1.1651473 PubMed DOI
Petrencakova M, Filandr F, Hovan A, Yassaghi G, Man P, Kozar T, et al. Photoinduced damage of AsLOV2 domain is accompanied by increased singlet oxygen production due to flavin dissociation. Sci Rep. 2020;10(1):4119. 10.1038/s41598-020-60861-2 PubMed DOI PMC
Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, et al. Scalable molecular dynamics with NAMD. J Comput Chem. 2005;26(16):1781–1802. 10.1002/jcc.20289 PubMed DOI PMC
Pimenta FM, Jensen RL, Breitenbach T, Etzerodt M, Ogilby PR. Oxygen‐dependent photochemistry and Photophysics of “MiniSOG,” a protein‐encased flavin. Photochem Photobiol. 2013;89(5):1116–1126. 10.1111/php.12111 PubMed DOI
Polak M, Yassaghi G, Kavan D, Filandr F, Fiala J, Kukacka Z, et al. Utilization of fast photochemical oxidation of proteins and both bottom‐up and top‐down mass spectrometry for structural characterization of a transcription factor‐dsDNA complex. Anal Chem. 2022;94(7):3203–3210. 10.1021/acs.analchem.1c04746 PubMed DOI
Price DJ, Brooks CL. A modified TIP3P water potential for simulation with Ewald summation. J Chem Phys. 2004;121(20):10096–10103. 10.1063/1.1808117 PubMed DOI
Proshkina GM, Shilova ON, Ryabova AV, Stremovskiy OA, Deyev SM. A new anticancer toxin based on HER2/neu‐specific DARPin and photoactive flavoprotein miniSOG. Biochimie. 2015;118:116–122. 10.1016/j.biochi.2015.08.013 PubMed DOI
Ragas X, Cooper LP, White JH, Nonell S, Flors C. Quantification of photosensitized singlet oxygen production by a fluorescent protein. ChemPhysChem. 2011;12(1):161–165. 10.1002/cphc.201000919 PubMed DOI
Ragas X, He X, Agut M, Roxo‐Rosa M, Gonsalves AR, Serra AC, et al. Singlet oxygen in antimicrobial photodynamic therapy: photosensitizer‐dependent production and decay in E. coli . Molecules. 2013;18(3):2712–2725. 10.3390/molecules18032712 PubMed DOI PMC
Rodríguez‐Pulido A, Cortajarena AL, Torra J, Ruiz‐González R, Nonell S, Flors C. Assessing the potential of photosensitizing flavoproteins as tags for correlative microscopy. Chem Commun. 2016;52:8405–8408. 10.1039/C6CC03119F PubMed DOI
Ruiz‐Gonzalez R, Cortajarena AL, Mejias SH, Agut M, Nonell S, Flors C. Singlet oxygen generation by the genetically encoded tag miniSOG. J Am Chem Soc. 2013;135(26):9564–9567. 10.1021/ja4020524 PubMed DOI
Sarkisyan KS, Zlobovskaya OA, Gorbachev DA, Bozhanova NG, Sharonov GV, Staroverov DB, et al. KillerOrange, a genetically encoded photosensitizer activated by blue and green light. PloS One. 2015;10(12):e0145287. 10.1371/journal.pone.0145287 PubMed DOI PMC
Schrödinger L. Schrödinger. Version release 2022‐2. 2022. https://www.schrodinger.com/releases/release-2022-2
Serebrovskaya EO, Edelweiss EF, Stremovskiy OA, Lukyanov KA, Chudakov DM, Deyev SM. Targeting cancer cells by using an antireceptor antibody‐photosensitizer fusion protein. Proc Natl Acad Sci U S A. 2009;106(23):9221–9225. 10.1073/pnas.0904140106 PubMed DOI PMC
Shaw DE. Desmond molecular dynamics system. D E Shaw Research. 2020. https://www.deshawresearch.com/resources.html
Shu X, Lev‐Ram V, Deerinck TJ, Qi Y, Ramko EB, Davidson MW, et al. A genetically encoded tag for correlated light and electron microscopy of intact cells, tissues, and organisms. PLoS Biol. 2011;9(4):e1001041. 10.1371/journal.pbio.1001041 PubMed DOI PMC
Souslova EA, Mironova KE, Deyev SM. Applications of genetically encoded photosensitizer miniSOG: from correlative light electron microscopy to immunophotosensitizing. J Biophotonics. 2017;10(3):338–352. 10.1002/jbio.201600120 PubMed DOI
Stockwell GR, Thornton JM. Conformational diversity of ligands bound to proteins. J Mol Biol. 2006;356(4):928–944. 10.1016/j.jmb.2005.12.012 PubMed DOI
Takemoto K, Matsuda T, Sakai N, Fu D, Noda M, Uchiyama S, et al. SuperNova, a monomeric photosensitizing fluorescent protein for chromophore‐assisted light inactivation. Sci Rep. 2013;3(7):2629. 10.1038/srep02629 PubMed DOI PMC
Taylor BL, Zhulin IB. PAS domains: internal sensors of oxygen, redox potential, and light [review]. Microbiol Mol Biol Rev. 1999;63(2):479–506. 10.1128/mmbr.63.2.479-506.1999 PubMed DOI PMC
Torra J, Lafaye C, Signor L, Aumonier S, Flors C, Shu XK, et al. Tailing miniSOG: structural bases of the complex photophysics of a flavin‐binding singlet oxygen photosensitizing protein. Sci Rep. 2019;9:2428. 10.1038/s41598-019-38955-3 PubMed DOI PMC
van den Berg PAW, Feenstra KA, Mark AE, Berendsen HJC, Visser A. Dynamic conformations of flavin adenine dinucleotide: simulated molecular dynamics of the flavin cofactor related to the time‐resolved fluorescence characteristics. J Phys Chem B. 2002;106(34):8858–8869. 10.1021/jp020356s DOI
Westberg M, Bregnhoj M, Etzerodt M, Ogilby PR. No photon wasted: an efficient and selective singlet oxygen photosensitizing protein. J Phys Chem B. 2017a;121(40):9366–9371. 10.1021/acs.jpcb.7b07831 PubMed DOI
Westberg M, Bregnhoj M, Etzerodt M, Ogilby PR. Temperature sensitive singlet oxygen photosensitization by LOV‐derived fluorescent flavoproteins. J Phys Chem B. 2017b;121(12):2561–2574. 10.1021/acs.jpcb.7b00561 PubMed DOI
Westberg M, Etzerodt M, Ogilby PR. Rational design of genetically encoded singlet oxygen photosensitizing proteins. Curr Opin Struct Biol. 2019;57:56–62. 10.1016/j.sbi.2019.01.025 PubMed DOI
Westberg M, Holmegaard L, Pimenta FM, Etzerodt M, Ogilby PR. Rational design of an efficient, genetically encodable, protein‐encased singlet oxygen photosensitizer. J Am Chem Soc. 2015;137(4):1632–1642. 10.1021/ja511940j PubMed DOI
Yassaghi G, Kukacka Z, Fiala J, Kavan D, Halada P, Volny M, et al. Top‐down detection of oxidative protein footprinting by collision‐induced dissociation, electron‐transfer dissociation, and electron‐capture dissociation. Anal Chem. 2022;94(28):9993–10002. 10.1021/acs.analchem.1c05476 PubMed DOI PMC
Yu F, Haynes SE, Teo GC, Avtonomov DM, Polasky DA, Nesvizhskii AI. Fast quantitative analysis of timsTOF PASEF data with MSFragger and IonQuant. Mol Cell Proteomics. 2020;19(9):1575–1585. 10.1074/mcp.TIR120.002048 PubMed DOI PMC
Zayner JP, Antoniou C, Sosnick TR. The amino‐terminal helix modulates light‐activated conformational changes in AsLOV2. J Mol Biol. 2012;419(1–2):61–74. 10.1016/j.jmb.2012.02.037 PubMed DOI PMC
Zhang J, Jiang CS, Longo JPF, Azevedo RB, Zhang H, Muehlmann LA. An updated overview on the development of new photosensitizers for anticancer photodynamic therapy. Acta Pharm Sin B. 2018;8(2):137–146. 10.1016/j.apsb.2017.09.003 PubMed DOI PMC