Top-Down Detection of Oxidative Protein Footprinting by Collision-Induced Dissociation, Electron-Transfer Dissociation, and Electron-Capture Dissociation
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35797180
PubMed Central
PMC9311227
DOI
10.1021/acs.analchem.1c05476
Knihovny.cz E-zdroje
- MeSH
- elektrony * MeSH
- footprinting proteinů * metody MeSH
- konformace proteinů MeSH
- myoglobin chemie MeSH
- oxidační stres MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- myoglobin MeSH
Fast photochemical oxidation of proteins (FPOP) footprinting is a structural mass spectrometry method that maps proteins by fast and irreversible chemical reactions. The position of oxidative modification reflects solvent accessibility and site reactivity and thus provides information about protein conformation, structural dynamics, and interactions. Bottom-up mass spectrometry is an established standard method to analyze FPOP samples. In the bottom-up approach, all forms of the protein are digested together by a protease of choice, which results in a mixture of peptides from various subpopulations of proteins with varying degrees of photochemical oxidation. Here, we investigate the possibility to analyze a specifically selected population of only singly oxidized proteins. This requires utilization of more specific top-down mass spectrometry approaches. The key element of any top-down experiment is the selection of a suitable method of ion isolation, excitation, and fragmentation. Here, we employ and compare collision-induced dissociation, electron-transfer dissociation, and electron-capture dissociation combined with multi-continuous accumulation of selected ions. A singly oxidized subpopulation of FPOP-labeled ubiquitin was used to optimize the method. The top-down approach in FPOP is limited to smaller proteins, but its usefulness was demonstrated by using it to visualize structural changes induced by co-factor removal from the holo/apo myoglobin system. The top-down data were compared with the literature and with the bottom-up data set obtained on the same samples. The top-down results were found to be in good agreement, which indicates that monitoring a singly oxidized FPOP ion population by the top-down approach is a functional workflow for oxidative protein footprinting.
Zobrazit více v PubMed
Rozbesky D.; Man P.; Kavan D.; Chmelik J.; Cerny J.; Bezouska K.; Novak P. Chemical Cross-Linking and H/D Exchange for Fast Refinement of Protein Crystal Structure. Anal. Chem. 2012, 84, 867–870. 10.1021/ac202818m. PubMed DOI
Wang L.; Chance M. R. Protein Footprinting Comes of Age: Mass Spectrometry for Biophysical Structure Assessment. Mol. Cell. Proteomics 2017, 16, 706–716. 10.1074/mcp.o116.064386. PubMed DOI PMC
Liu X. R.; Zhang M. M.; Gross M. L. Mass Spectrometry-Based Protein Footprinting for Higher-Order Structure Analysis: Fundamentals and Applications. Chem. Rev. 2020, 120, 4355–4454. 10.1021/acs.chemrev.9b00815. PubMed DOI PMC
Gau B. C.; Chen H.; Zhang Y.; Gross M. L. Sulfate Radical Anion as a New Reagent for Fast Photochemical Oxidation of Proteins. Anal. Chem. 2010, 82, 7821–7827. 10.1021/ac101760y. PubMed DOI PMC
Zhang B.; Rempel D. L.; Gross M. L. Protein Footprinting by Carbenes on a Fast Photochemical Oxidation of Proteins (FPOP) Platform. J. Am. Soc. Mass Spectrom. 2016, 27, 552–555. 10.1007/s13361-015-1313-9. PubMed DOI PMC
Zhang M. M.; Rempel D. L.; Gross M. L. A Fast Photochemical Oxidation of Proteins (FPOP) Platform for Free-Radical Reactions: The Carbonate Radical Anion with Peptides and Proteins. Free Radic. Biol. Med. 2019, 131, 126–132. 10.1016/j.freeradbiomed.2018.11.031. PubMed DOI PMC
Cheng M.; Zhang B.; Cui W.; Gross M. L. Laser-Initiated Radical Trifluoromethylation of Peptides and Proteins: Application to Mass-Spectrometry-Based Protein Footprinting. Angew. Chem., Int. Ed. 2017, 56, 14007–14010. 10.1002/anie.201706697. PubMed DOI PMC
Chance M. R.; Sclavi B.; Woodson S. A.; Brenowitz M. Examining the Conformational Dynamics of Macromolecule with Time-Resolved Synchrotron X-Ray “Footprinting. Structure 1997, 5, 865–869. 10.1016/s0969-2126(97)00241-4. PubMed DOI
Heyduk E.; Heyduk T. Mapping Protein Domains Involved in Macromolecular Interactions: A Novel Protein Footprinting Approach. Biochemistry 1994, 33, 9643–9650. 10.1021/bi00198a033. PubMed DOI
Hambly D. M.; Gross M. L. Laser Flash Photolysis of Hydrogen Peroxide to Oxidize Protein Solvent-Accessible Residues on the Microsecond Timescale. J. Am. Soc. Mass Spectrom. 2005, 16, 2057–2063. 10.1016/j.jasms.2005.09.008. PubMed DOI
Aye T. T.; Low T. Y.; Sze S. K. Nanosecond Laser-Induced Photochemical Oxidation Method for Protein Surface Mapping with Mass Spectrometry. Anal. Chem. 2005, 77, 5814–5822. 10.1021/ac050353m. PubMed DOI
Suckau D.; Köhl J.; Karwath G.; Schneider K.; Casaretto M.; Bitter-Suermann D.; Przybylski M. Molecular Epitope Identification by Limited Proteolysis of an Immobilized Antigen-Antibody Complex and Mass Spectrometric Peptide Mapping. Proc. Natl. Acad. Sci. U.S.A. 1990, 87, 9848–9852. 10.1073/pnas.87.24.9848. PubMed DOI PMC
Suckau D.; Mak M.; Przybylski M. Protein Surface Topology-Probing by Selective Chemical Modification and Mass Spectrometric Peptide Mapping. Proc. Natl. Acad. Sci. U.S.A. 1992, 89, 5630–5634. 10.1073/pnas.89.12.5630. PubMed DOI PMC
Glocker M. O.; Borchers C.; Fiedler W.; Suckau D.; Przybylski M. Molecular Characterization of Surface Topology in Protein Tertiary Structures by Amino-Acylation and Mass Spectrometric Peptide Mapping. Bioconjugate Chem. 1994, 5, 583–590. 10.1021/bc00030a014. PubMed DOI
Katta V.; Chait B. T.; Carr S. Conformational Changes in Proteins Probed by Hydrogen-Exchange Electrospray-Ionization Mass Spectrometry. Rapid Commun. Mass Spectrom. 1991, 5, 214–217. 10.1002/rcm.1290050415. PubMed DOI
Zhang Z.; Smith D. L. Determination of Amide Hydrogen Exchange by Mass Spectrometry: A New Tool for Protein Structure Elucidation. Protein Sci. 1993, 2, 522–531. 10.1002/pro.5560020404. PubMed DOI PMC
Cornwell O.; Radford S. E.; Ashcroft A. E.; Ault J. R. Comparing Hydrogen Deuterium Exchange and Fast Photochemical Oxidation of Proteins: A Structural Characterisation of Wild-Type and ΔN6 Β2-Microglobulin. J. Am. Soc. Mass Spectrom. 2018, 29, 2413–2426. 10.1007/s13361-018-2067-y. PubMed DOI PMC
Chen J.; Rempel D. L.; Gross M. L. Temperature Jump and Fast Photochemical Oxidation Probe Submillisecond Protein Folding. J. Am. Chem. Soc. 2010, 132, 15502–15504. 10.1021/ja106518d. PubMed DOI PMC
Johnson D. T.; Punshon-Smith B.; Espino J. A.; Gershenson A.; Jones L. M. Implementing In-Cell Fast Photochemical Oxidation of Proteins in a Platform Incubator with a Movable XY Stage. Anal. Chem. 2020, 92, 1691–1696. 10.1021/acs.analchem.9b04933. PubMed DOI PMC
Stadtman E. R.; Levine R. L. Free Radical-Mediated Oxidation of Free Amino Acids and Amino Acid Residues in Proteins. Amino Acids 2003, 25, 207.10.1007/s00726-003-0011-2. PubMed DOI
Xu G.; Chance M. R. Radiolytic Modification and Reactivity of Amino Acid Residues Serving as Structural Probes for Protein Footprinting. Anal. Chem. 2005, 77, 4549–4555. 10.1021/ac050299+. PubMed DOI
Limpikirati P.; Liu T.; Vachet R. W. Covalent Labeling-Mass Spectrometry with Non-Specific Reagents for Studying Protein Structure and Interactions. Methods 2018, 144, 79–93. 10.1016/j.ymeth.2018.04.002. PubMed DOI PMC
Liu X. R.; Zhang M. M.; Zhang B.; Rempel D. L.; Gross M. L. Hydroxyl-Radical Reaction Pathways for the Fast Photochemical Oxidation of Proteins Platform As Revealed by 18 O Isotopic Labeling. Anal. Chem. 2019, 91, 9238.10.1021/acs.analchem.9b02134. PubMed DOI PMC
Rozbeský D.; Rosůlek M.; Kukačka Z.; Chmelík J.; Man P.; Novák P. Impact of Chemical Cross-Linking on Protein Structure and Function. Anal. Chem. 2018, 90, 1104–1113. 10.1021/acs.analchem.7b02863. PubMed DOI
Gau B. C.; Sharp J. S.; Rempel D. L.; Gross M. L. Fast Photochemical Oxidation of Protein Footprints Faster than Protein Unfolding. Anal. Chem. 2009, 81, 6563–6571. 10.1021/ac901054w. PubMed DOI PMC
Vahidi S.; Konermann L. Probing the Time Scale of FPOP (Fast Photochemical Oxidation of Proteins): Radical Reactions Extend Over Tens of Milliseconds. J. Am. Soc. Mass Spectrom. 2016, 27, 1156–1164. 10.1007/s13361-016-1389-x. PubMed DOI
Chen J.; Cui W.; Giblin D.; Gross M. L. New Protein Footprinting: Fast Photochemical Iodination Combined with Top-down and Bottom-up Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2012, 23, 1306–1318. 10.1007/s13361-012-0403-1. PubMed DOI PMC
Pamreddy A.; Panyala N. R. Top-down Proteomics: Applications, Recent Developments and Perspectives. J. Appl. Bioanal. 2016, 2, 52–75. 10.17145/jab.16.009. DOI
Polák M.; Yassaghi G.; Kavan D.; Filandr F.; Fiala J.; Kukačka Z.; Halada P.; Loginov D. S.; Novák P. Utilization of Fast Photochemical Oxidation of Proteins and Both Bottom-up and Top-down Mass Spectrometry for Structural Characterization of a Transcription Factor–DsDNA Complex. Anal. Chem. 2022, 94, 3203–3210. 10.1021/acs.analchem.1c04746. PubMed DOI
Kruppa G. H.; Schoeniger J.; Young M. M. A Top down Approach to Protein Structural Studies Using Chemical Cross-Linking and Fourier Transform Mass Spectrometry. Rapid Commun. Mass Spectrom. 2003, 17, 155–162. 10.1002/rcm.885. PubMed DOI
Novak P.; Young M. M.; Schoeniger J. S.; Kruppa G. H. A Top-down Approach to Protein Structure Studies Using Chemical Cross-Linking and Fourier Transform Mass Spectrometry. Eur. J. Mass Spectrom. 2003, 9, 623–631. 10.1255/ejms.590. PubMed DOI
Novak P.; Kruppa G. H.; Young M. M.; Schoeniger J. A Top-down Method for the Determination of Residue-Specific Solvent Accessibility in Proteins. J. Mass Spectrom. 2004, 39, 322–328. 10.1002/jms.587. PubMed DOI
Wells J. M.; McLuckey S. A. Collision-Induced Dissociation (CID) of Peptides and Proteins. Methods Enzymol. 2005, 402, 148–185. 10.1016/s0076-6879(05)02005-7. PubMed DOI
Syka J. E. P.; Coon J. J.; Schroeder M. J.; Shabanowitz J.; Hunt D. F. Peptide and Protein Sequence Analysis by Electron Transfer Dissociation Mass Spectrometry. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 9528–9533. 10.1073/pnas.0402700101. PubMed DOI PMC
Zubarev R.; Kelleher N. L.; McLafferty F. W. Electron Capture Dissociation of Multiply Charged Protein Cations. A Nonergodic Process. J. Am. Chem. Soc. 1998, 120, 3265–3266. 10.1021/ja973478k. DOI
Young M. M.; Tang N.; Hempel J. C.; Oshiro C. M.; Taylor E. W.; Kuntz I. D.; Gibson B. W.; Dollinger G. High Throughput Protein Fold Identification by Using Experimental Constraints Derived from Intramolecular Cross-Links and Mass Spectrometry. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 5802–5806. 10.1073/pnas.090099097. PubMed DOI PMC
Teale F. W. J. Cleavage of the Haem-Protein Link by Acid Methylethylketone. Biochim. Biophys. Acta 1959, 35, 543.10.1016/0006-3002(59)90407-x. PubMed DOI
Zhang Y.; Rempel D. L.; Zhang H.; Gross M. L. An Improved Fast Photochemical Oxidation of Proteins (FPOP) Platform for Protein Therapeutics. J. Am. Soc. Mass Spectrom. 2015, 26, 526–529. 10.1007/s13361-014-1055-0. PubMed DOI PMC
Braslavsky S. E. Glossary of Terms Used in Photochemistry 3rd Edition: (IUPAC Recommendations 2006). Pure Appl. Chem. 2007, 79, 293–465. 10.1351/pac200779030293. DOI
McLafferty F. W.; Bente P. F.; Kornfeld R.; Tsai S. C.; Howe I. Collisional Activation Spectra of Organic Ions. J. Mass Spectrom. 1995, 30, 797–806. 10.1002/jms.1190300604. DOI
Fojtík L.; Fiala J.; Pompach P.; Chmelík J.; Matoušek V.; Beier P.; Kukačka Z.; Novák P. Fast Fluoroalkylation of Proteins Uncovers the Structure and Dynamics of Biological Macromolecules. J. Am. Chem. Soc. 2021, 143, 20670–20679. 10.1021/jacs.1c07771. PubMed DOI
Loginov D. S.; Fiala J.; Brechlin P.; Kruppa G.; Novak P. Hydroxyl Radical Footprinting Analysis of a Human Haptoglobin-Hemoglobin Complex. Biochim. Biophys. Acta, Proteins Proteomics 2022, 1870, 140735.10.1016/j.bbapap.2021.140735. PubMed DOI
Li K. S.; Shi L.; Gross M. L. Mass Spectrometry-Based Fast Photochemical Oxidation of Proteins (FPOP) for Higher Order Structure Characterization. Acc. Chem. Res. 2018, 51, 736–744. 10.1021/acs.accounts.7b00593. PubMed DOI PMC
Hambly D.; Gross M. Laser Flash Photochemical Oxidation to Locate Heme Binding and Conformational Changes in Myoglobin. Int. J. Mass Spectrom. 2007, 259, 124–129. 10.1016/j.ijms.2006.08.018. DOI
Perez-Riverol Y.; Bai J.; Bandla C.; García-Seisdedos D.; Hewapathirana S.; Kamatchinathan S.; Kundu D. J.; Prakash A.; Frericks-Zipper A.; Eisenacher M.; et al. The PRIDE Database Resources in 2022: A Hub for Mass Spectrometry-Based Proteomics Evidences. Nucleic Acids Res. 2022, 50, D543–D552. 10.1093/nar/gkab1038. PubMed DOI PMC
Cooper H. J.; Håkansson K.; Marshall A. G. The Role of Electron Capture Dissociation in Biomolecular Analysis. Mass Spectrom. Rev. 2005, 24, 201–222. 10.1002/mas.20014. PubMed DOI
Tadi S.; Sharp J. S. Top-down Etd-Ms Provides Unreliable Quantitation of Methionine Oxidation. J. Biomol. Tech. 2019, 30, 50–57. 10.7171/jbt.19-3004-002. PubMed DOI PMC
Xu G.; Chance M. R. Hydroxyl Radical-Mediated Modification of Proteins as Probes for Structural Proteomics. Chem. Rev. 2007, 107, 3514–3543. 10.1021/cr0682047. PubMed DOI
Maurus R.; Overall C. M.; Bogumil R.; Luo Y.; Mauk A. G.; Smith M.; Brayer G. D. A Myoglobin Variant with a Polar Substitution in a Conserved Hydrophobic Cluster in the Heme Binding Pocket. Biochim. Biophys. Acta 1997, 1341, 1–13. 10.1016/s0167-4838(97)00064-2. PubMed DOI
Vahidi S.; Stocks B. B.; Liaghati-Mobarhan Y.; Konermann L. Mapping PH-Induced Protein Structural Changes under Equilibrium Conditions by Pulsed Oxidative Labeling and Mass Spectrometry. Anal. Chem. 2012, 84, 9124–9130. 10.1021/ac302393g. PubMed DOI
Zhang H.; Shen W.; Rempel D.; Monsey J.; Vidavsky I.; Gross M. L.; Bose R. Carboxyl-Group Footprinting Maps the Dimerization Interface and Phosphorylation-Induced Conformational Changes of a Membrane-Associated Tyrosine Kinase. Mol. Cell. Proteomics 2011, 10, 1–16. 10.1074/mcp.m110.005678. PubMed DOI PMC
Design of AsLOV2 domain as a carrier of light-induced dissociable FMN photosensitizer
Isotopic Depletion Increases the Spatial Resolution of FPOP Top-Down Mass Spectrometry Analysis
Top-Down Proteoform Analysis by 2D MS with Quadrupolar Detection