Top-Down Detection of Oxidative Protein Footprinting by Collision-Induced Dissociation, Electron-Transfer Dissociation, and Electron-Capture Dissociation

. 2022 Jul 19 ; 94 (28) : 9993-10002. [epub] 20220707

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35797180

Fast photochemical oxidation of proteins (FPOP) footprinting is a structural mass spectrometry method that maps proteins by fast and irreversible chemical reactions. The position of oxidative modification reflects solvent accessibility and site reactivity and thus provides information about protein conformation, structural dynamics, and interactions. Bottom-up mass spectrometry is an established standard method to analyze FPOP samples. In the bottom-up approach, all forms of the protein are digested together by a protease of choice, which results in a mixture of peptides from various subpopulations of proteins with varying degrees of photochemical oxidation. Here, we investigate the possibility to analyze a specifically selected population of only singly oxidized proteins. This requires utilization of more specific top-down mass spectrometry approaches. The key element of any top-down experiment is the selection of a suitable method of ion isolation, excitation, and fragmentation. Here, we employ and compare collision-induced dissociation, electron-transfer dissociation, and electron-capture dissociation combined with multi-continuous accumulation of selected ions. A singly oxidized subpopulation of FPOP-labeled ubiquitin was used to optimize the method. The top-down approach in FPOP is limited to smaller proteins, but its usefulness was demonstrated by using it to visualize structural changes induced by co-factor removal from the holo/apo myoglobin system. The top-down data were compared with the literature and with the bottom-up data set obtained on the same samples. The top-down results were found to be in good agreement, which indicates that monitoring a singly oxidized FPOP ion population by the top-down approach is a functional workflow for oxidative protein footprinting.

Zobrazit více v PubMed

Rozbesky D.; Man P.; Kavan D.; Chmelik J.; Cerny J.; Bezouska K.; Novak P. Chemical Cross-Linking and H/D Exchange for Fast Refinement of Protein Crystal Structure. Anal. Chem. 2012, 84, 867–870. 10.1021/ac202818m. PubMed DOI

Wang L.; Chance M. R. Protein Footprinting Comes of Age: Mass Spectrometry for Biophysical Structure Assessment. Mol. Cell. Proteomics 2017, 16, 706–716. 10.1074/mcp.o116.064386. PubMed DOI PMC

Liu X. R.; Zhang M. M.; Gross M. L. Mass Spectrometry-Based Protein Footprinting for Higher-Order Structure Analysis: Fundamentals and Applications. Chem. Rev. 2020, 120, 4355–4454. 10.1021/acs.chemrev.9b00815. PubMed DOI PMC

Gau B. C.; Chen H.; Zhang Y.; Gross M. L. Sulfate Radical Anion as a New Reagent for Fast Photochemical Oxidation of Proteins. Anal. Chem. 2010, 82, 7821–7827. 10.1021/ac101760y. PubMed DOI PMC

Zhang B.; Rempel D. L.; Gross M. L. Protein Footprinting by Carbenes on a Fast Photochemical Oxidation of Proteins (FPOP) Platform. J. Am. Soc. Mass Spectrom. 2016, 27, 552–555. 10.1007/s13361-015-1313-9. PubMed DOI PMC

Zhang M. M.; Rempel D. L.; Gross M. L. A Fast Photochemical Oxidation of Proteins (FPOP) Platform for Free-Radical Reactions: The Carbonate Radical Anion with Peptides and Proteins. Free Radic. Biol. Med. 2019, 131, 126–132. 10.1016/j.freeradbiomed.2018.11.031. PubMed DOI PMC

Cheng M.; Zhang B.; Cui W.; Gross M. L. Laser-Initiated Radical Trifluoromethylation of Peptides and Proteins: Application to Mass-Spectrometry-Based Protein Footprinting. Angew. Chem., Int. Ed. 2017, 56, 14007–14010. 10.1002/anie.201706697. PubMed DOI PMC

Chance M. R.; Sclavi B.; Woodson S. A.; Brenowitz M. Examining the Conformational Dynamics of Macromolecule with Time-Resolved Synchrotron X-Ray “Footprinting. Structure 1997, 5, 865–869. 10.1016/s0969-2126(97)00241-4. PubMed DOI

Heyduk E.; Heyduk T. Mapping Protein Domains Involved in Macromolecular Interactions: A Novel Protein Footprinting Approach. Biochemistry 1994, 33, 9643–9650. 10.1021/bi00198a033. PubMed DOI

Hambly D. M.; Gross M. L. Laser Flash Photolysis of Hydrogen Peroxide to Oxidize Protein Solvent-Accessible Residues on the Microsecond Timescale. J. Am. Soc. Mass Spectrom. 2005, 16, 2057–2063. 10.1016/j.jasms.2005.09.008. PubMed DOI

Aye T. T.; Low T. Y.; Sze S. K. Nanosecond Laser-Induced Photochemical Oxidation Method for Protein Surface Mapping with Mass Spectrometry. Anal. Chem. 2005, 77, 5814–5822. 10.1021/ac050353m. PubMed DOI

Suckau D.; Köhl J.; Karwath G.; Schneider K.; Casaretto M.; Bitter-Suermann D.; Przybylski M. Molecular Epitope Identification by Limited Proteolysis of an Immobilized Antigen-Antibody Complex and Mass Spectrometric Peptide Mapping. Proc. Natl. Acad. Sci. U.S.A. 1990, 87, 9848–9852. 10.1073/pnas.87.24.9848. PubMed DOI PMC

Suckau D.; Mak M.; Przybylski M. Protein Surface Topology-Probing by Selective Chemical Modification and Mass Spectrometric Peptide Mapping. Proc. Natl. Acad. Sci. U.S.A. 1992, 89, 5630–5634. 10.1073/pnas.89.12.5630. PubMed DOI PMC

Glocker M. O.; Borchers C.; Fiedler W.; Suckau D.; Przybylski M. Molecular Characterization of Surface Topology in Protein Tertiary Structures by Amino-Acylation and Mass Spectrometric Peptide Mapping. Bioconjugate Chem. 1994, 5, 583–590. 10.1021/bc00030a014. PubMed DOI

Katta V.; Chait B. T.; Carr S. Conformational Changes in Proteins Probed by Hydrogen-Exchange Electrospray-Ionization Mass Spectrometry. Rapid Commun. Mass Spectrom. 1991, 5, 214–217. 10.1002/rcm.1290050415. PubMed DOI

Zhang Z.; Smith D. L. Determination of Amide Hydrogen Exchange by Mass Spectrometry: A New Tool for Protein Structure Elucidation. Protein Sci. 1993, 2, 522–531. 10.1002/pro.5560020404. PubMed DOI PMC

Cornwell O.; Radford S. E.; Ashcroft A. E.; Ault J. R. Comparing Hydrogen Deuterium Exchange and Fast Photochemical Oxidation of Proteins: A Structural Characterisation of Wild-Type and ΔN6 Β2-Microglobulin. J. Am. Soc. Mass Spectrom. 2018, 29, 2413–2426. 10.1007/s13361-018-2067-y. PubMed DOI PMC

Chen J.; Rempel D. L.; Gross M. L. Temperature Jump and Fast Photochemical Oxidation Probe Submillisecond Protein Folding. J. Am. Chem. Soc. 2010, 132, 15502–15504. 10.1021/ja106518d. PubMed DOI PMC

Johnson D. T.; Punshon-Smith B.; Espino J. A.; Gershenson A.; Jones L. M. Implementing In-Cell Fast Photochemical Oxidation of Proteins in a Platform Incubator with a Movable XY Stage. Anal. Chem. 2020, 92, 1691–1696. 10.1021/acs.analchem.9b04933. PubMed DOI PMC

Stadtman E. R.; Levine R. L. Free Radical-Mediated Oxidation of Free Amino Acids and Amino Acid Residues in Proteins. Amino Acids 2003, 25, 207.10.1007/s00726-003-0011-2. PubMed DOI

Xu G.; Chance M. R. Radiolytic Modification and Reactivity of Amino Acid Residues Serving as Structural Probes for Protein Footprinting. Anal. Chem. 2005, 77, 4549–4555. 10.1021/ac050299+. PubMed DOI

Limpikirati P.; Liu T.; Vachet R. W. Covalent Labeling-Mass Spectrometry with Non-Specific Reagents for Studying Protein Structure and Interactions. Methods 2018, 144, 79–93. 10.1016/j.ymeth.2018.04.002. PubMed DOI PMC

Liu X. R.; Zhang M. M.; Zhang B.; Rempel D. L.; Gross M. L. Hydroxyl-Radical Reaction Pathways for the Fast Photochemical Oxidation of Proteins Platform As Revealed by 18 O Isotopic Labeling. Anal. Chem. 2019, 91, 9238.10.1021/acs.analchem.9b02134. PubMed DOI PMC

Rozbeský D.; Rosůlek M.; Kukačka Z.; Chmelík J.; Man P.; Novák P. Impact of Chemical Cross-Linking on Protein Structure and Function. Anal. Chem. 2018, 90, 1104–1113. 10.1021/acs.analchem.7b02863. PubMed DOI

Gau B. C.; Sharp J. S.; Rempel D. L.; Gross M. L. Fast Photochemical Oxidation of Protein Footprints Faster than Protein Unfolding. Anal. Chem. 2009, 81, 6563–6571. 10.1021/ac901054w. PubMed DOI PMC

Vahidi S.; Konermann L. Probing the Time Scale of FPOP (Fast Photochemical Oxidation of Proteins): Radical Reactions Extend Over Tens of Milliseconds. J. Am. Soc. Mass Spectrom. 2016, 27, 1156–1164. 10.1007/s13361-016-1389-x. PubMed DOI

Chen J.; Cui W.; Giblin D.; Gross M. L. New Protein Footprinting: Fast Photochemical Iodination Combined with Top-down and Bottom-up Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2012, 23, 1306–1318. 10.1007/s13361-012-0403-1. PubMed DOI PMC

Pamreddy A.; Panyala N. R. Top-down Proteomics: Applications, Recent Developments and Perspectives. J. Appl. Bioanal. 2016, 2, 52–75. 10.17145/jab.16.009. DOI

Polák M.; Yassaghi G.; Kavan D.; Filandr F.; Fiala J.; Kukačka Z.; Halada P.; Loginov D. S.; Novák P. Utilization of Fast Photochemical Oxidation of Proteins and Both Bottom-up and Top-down Mass Spectrometry for Structural Characterization of a Transcription Factor–DsDNA Complex. Anal. Chem. 2022, 94, 3203–3210. 10.1021/acs.analchem.1c04746. PubMed DOI

Kruppa G. H.; Schoeniger J.; Young M. M. A Top down Approach to Protein Structural Studies Using Chemical Cross-Linking and Fourier Transform Mass Spectrometry. Rapid Commun. Mass Spectrom. 2003, 17, 155–162. 10.1002/rcm.885. PubMed DOI

Novak P.; Young M. M.; Schoeniger J. S.; Kruppa G. H. A Top-down Approach to Protein Structure Studies Using Chemical Cross-Linking and Fourier Transform Mass Spectrometry. Eur. J. Mass Spectrom. 2003, 9, 623–631. 10.1255/ejms.590. PubMed DOI

Novak P.; Kruppa G. H.; Young M. M.; Schoeniger J. A Top-down Method for the Determination of Residue-Specific Solvent Accessibility in Proteins. J. Mass Spectrom. 2004, 39, 322–328. 10.1002/jms.587. PubMed DOI

Wells J. M.; McLuckey S. A. Collision-Induced Dissociation (CID) of Peptides and Proteins. Methods Enzymol. 2005, 402, 148–185. 10.1016/s0076-6879(05)02005-7. PubMed DOI

Syka J. E. P.; Coon J. J.; Schroeder M. J.; Shabanowitz J.; Hunt D. F. Peptide and Protein Sequence Analysis by Electron Transfer Dissociation Mass Spectrometry. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 9528–9533. 10.1073/pnas.0402700101. PubMed DOI PMC

Zubarev R.; Kelleher N. L.; McLafferty F. W. Electron Capture Dissociation of Multiply Charged Protein Cations. A Nonergodic Process. J. Am. Chem. Soc. 1998, 120, 3265–3266. 10.1021/ja973478k. DOI

Young M. M.; Tang N.; Hempel J. C.; Oshiro C. M.; Taylor E. W.; Kuntz I. D.; Gibson B. W.; Dollinger G. High Throughput Protein Fold Identification by Using Experimental Constraints Derived from Intramolecular Cross-Links and Mass Spectrometry. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 5802–5806. 10.1073/pnas.090099097. PubMed DOI PMC

Teale F. W. J. Cleavage of the Haem-Protein Link by Acid Methylethylketone. Biochim. Biophys. Acta 1959, 35, 543.10.1016/0006-3002(59)90407-x. PubMed DOI

Zhang Y.; Rempel D. L.; Zhang H.; Gross M. L. An Improved Fast Photochemical Oxidation of Proteins (FPOP) Platform for Protein Therapeutics. J. Am. Soc. Mass Spectrom. 2015, 26, 526–529. 10.1007/s13361-014-1055-0. PubMed DOI PMC

Braslavsky S. E. Glossary of Terms Used in Photochemistry 3rd Edition: (IUPAC Recommendations 2006). Pure Appl. Chem. 2007, 79, 293–465. 10.1351/pac200779030293. DOI

McLafferty F. W.; Bente P. F.; Kornfeld R.; Tsai S. C.; Howe I. Collisional Activation Spectra of Organic Ions. J. Mass Spectrom. 1995, 30, 797–806. 10.1002/jms.1190300604. DOI

Fojtík L.; Fiala J.; Pompach P.; Chmelík J.; Matoušek V.; Beier P.; Kukačka Z.; Novák P. Fast Fluoroalkylation of Proteins Uncovers the Structure and Dynamics of Biological Macromolecules. J. Am. Chem. Soc. 2021, 143, 20670–20679. 10.1021/jacs.1c07771. PubMed DOI

Loginov D. S.; Fiala J.; Brechlin P.; Kruppa G.; Novak P. Hydroxyl Radical Footprinting Analysis of a Human Haptoglobin-Hemoglobin Complex. Biochim. Biophys. Acta, Proteins Proteomics 2022, 1870, 140735.10.1016/j.bbapap.2021.140735. PubMed DOI

Li K. S.; Shi L.; Gross M. L. Mass Spectrometry-Based Fast Photochemical Oxidation of Proteins (FPOP) for Higher Order Structure Characterization. Acc. Chem. Res. 2018, 51, 736–744. 10.1021/acs.accounts.7b00593. PubMed DOI PMC

Hambly D.; Gross M. Laser Flash Photochemical Oxidation to Locate Heme Binding and Conformational Changes in Myoglobin. Int. J. Mass Spectrom. 2007, 259, 124–129. 10.1016/j.ijms.2006.08.018. DOI

Perez-Riverol Y.; Bai J.; Bandla C.; García-Seisdedos D.; Hewapathirana S.; Kamatchinathan S.; Kundu D. J.; Prakash A.; Frericks-Zipper A.; Eisenacher M.; et al. The PRIDE Database Resources in 2022: A Hub for Mass Spectrometry-Based Proteomics Evidences. Nucleic Acids Res. 2022, 50, D543–D552. 10.1093/nar/gkab1038. PubMed DOI PMC

Cooper H. J.; Håkansson K.; Marshall A. G. The Role of Electron Capture Dissociation in Biomolecular Analysis. Mass Spectrom. Rev. 2005, 24, 201–222. 10.1002/mas.20014. PubMed DOI

Tadi S.; Sharp J. S. Top-down Etd-Ms Provides Unreliable Quantitation of Methionine Oxidation. J. Biomol. Tech. 2019, 30, 50–57. 10.7171/jbt.19-3004-002. PubMed DOI PMC

Xu G.; Chance M. R. Hydroxyl Radical-Mediated Modification of Proteins as Probes for Structural Proteomics. Chem. Rev. 2007, 107, 3514–3543. 10.1021/cr0682047. PubMed DOI

Maurus R.; Overall C. M.; Bogumil R.; Luo Y.; Mauk A. G.; Smith M.; Brayer G. D. A Myoglobin Variant with a Polar Substitution in a Conserved Hydrophobic Cluster in the Heme Binding Pocket. Biochim. Biophys. Acta 1997, 1341, 1–13. 10.1016/s0167-4838(97)00064-2. PubMed DOI

Vahidi S.; Stocks B. B.; Liaghati-Mobarhan Y.; Konermann L. Mapping PH-Induced Protein Structural Changes under Equilibrium Conditions by Pulsed Oxidative Labeling and Mass Spectrometry. Anal. Chem. 2012, 84, 9124–9130. 10.1021/ac302393g. PubMed DOI

Zhang H.; Shen W.; Rempel D.; Monsey J.; Vidavsky I.; Gross M. L.; Bose R. Carboxyl-Group Footprinting Maps the Dimerization Interface and Phosphorylation-Induced Conformational Changes of a Membrane-Associated Tyrosine Kinase. Mol. Cell. Proteomics 2011, 10, 1–16. 10.1074/mcp.m110.005678. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...