Top-Down Proteoform Analysis by 2D MS with Quadrupolar Detection

. 2023 Nov 07 ; 95 (44) : 16123-16130. [epub] 20231025

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37877738

Grantová podpora
M 2757 Austrian Science Fund FWF - Austria

Two-dimensional mass spectrometry (2D MS) is a multiplexed tandem mass spectrometry method that does not rely on ion isolation to correlate the precursor and fragment ions. On a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS), 2D MS instead uses the modulation of precursor ion radii inside the ICR cell before fragmentation and yields 2D mass spectra that show the fragmentation patterns of all the analytes. In this study, we perform 2D MS for the first time with quadrupolar detection in a dynamically harmonized ICR cell. We discuss the advantages of quadrupolar detection in 2D MS and how we adapted existing data processing techniques for accurate frequency-to-mass conversion. We apply 2D MS with quadrupolar detection to the top-down analysis of covalently labeled ubiquitin with ECD fragmentation, and we develop a workflow for label-free relative quantification of biomolecule isoforms in 2D MS.

Zobrazit více v PubMed

Fabris D.; Yu E. T. Elucidating the higher-order structure of biopolymers by structural probing and mass spectrometry: MS3D. J. Mass Spectrom. 2010, 45 (8), 841–860. 10.1002/jms.1762. PubMed DOI PMC

Takamoto K.; Chance M. R. Radiolytic Protein Footprinting with Mass Spectrometry to Probe the Structure of Macromolecular Complexes. Annu. Rev. Biophys. Biomol. Struct. 2006, 35 (1), 251–276. 10.1146/annurev.biophys.35.040405.102050. PubMed DOI

Sinz A. Chemical cross-linking and mass spectrometry to map three-dimensional protein structures and protein–protein interactions. Mass Spectrom. Rev. 2006, 25 (4), 663–682. 10.1002/mas.20082. PubMed DOI

Fojtík L.; Fiala J.; Pompach P.; Chmelík J.; Matoušek V.; Beier P.; Kukačka Z.; Novák P. Fast Fluoroalkylation of Proteins Uncovers the Structure and Dynamics of Biological Macromolecules. J. Am. Chem. Soc. 2021, 143 (49), 20670–20679. 10.1021/jacs.1c07771. PubMed DOI

Yan X.; Maier C. S.. Hydrogen/Deuterium Exchange Mass Spectrometry. In Mass Spectrometry of Proteins and Peptides: Methods and Protocols, Lipton M. S., Paša-Tolic L., Eds.; Methods in Molecular Biology, Vol. 492; Humana Press: Totowa, NJ, 2009; pp 255–271. PubMed

Niu B.; Gross M. L.. MS-Based Hydroxyl Radical Footprinting: Methodology and Application of Fast Photochemical Oxidation of Proteins (FPOP). In Mass Spectrometry-Based Chemical Proteomics; Tao W. A., Zhang Y., Eds.; John Wiley & Sons, Inc.: New York, NY, 2019; pp 363–416.

Polák M.; Yassaghi G.; Kavan D.; Filandr F.; Fiala J.; Kukačka Z.; Halada P.; Loginov D. S.; Novák P. Utilization of Fast Photochemical Oxidation of Proteins and Both Bottom-up and Top-down Mass Spectrometry for Structural Characterization of a Transcription Factor–dsDNA Complex. Anal. Chem. 2022, 94 (7), 3203–3210. 10.1021/acs.analchem.1c04746. PubMed DOI

Chen J.; Cui W.; Giblin D.; Gross M. L. New Protein Footprinting: Fast Photochemical Iodination Combined with Top-Down and Bottom-Up Mass Spectrometry. J. Am. Chem. Soc. 2012, 23 (8), 1306–1318. 10.1007/s13361-012-0403-1. PubMed DOI PMC

Novak P.; Young M. M.; Schoeniger J. S.; Kruppa G. H. A Top-Down Approach to Protein Structure Studies Using Chemical Cross-Linking and Fourier Transform Mass Spectrometry. Eur. J. Mass Spectrom. 2003, 9 (6), 623–631. 10.1255/ejms.590. PubMed DOI

Marshall A. G.; Hendrickson C. L. High-resolution mass spectrometers. Annu. Rev. Anal. Chem. 2008, 1, 579–599. 10.1146/annurev.anchem.1.031207.112945. PubMed DOI

Zubarev R. A.; Horn D. M.; Fridriksson E. K.; Kelleher N. L.; Kruger N. A.; Lewis M. A.; Carpenter B. K.; McLafferty F. W. Electron Capture Dissociation for Structural Characterization of Multiply Charged Protein Cations. Anal. Chem. 2000, 72 (3), 563–573. 10.1021/ac990811p. PubMed DOI

Cannon J. R.; Cammarata M. B.; Robotham S. A.; Cotham V. C.; Shaw J. B.; Fellers R. T.; Early B. P.; Thomas P. M.; Kelleher N. L.; Brodbelt J. S. Ultraviolet Photodissociation for Characterization of Whole Proteins on a Chromatographic Time Scale. Anal. Chem. 2014, 86 (4), 2185–2192. 10.1021/ac403859a. PubMed DOI PMC

Moradian A.; Kalli A.; Sweredoski M. J.; Hess S. The top-down, middle-down, and bottom-up mass spectrometry approaches for characterization of histone variants and their post-translational modifications. PROTEOMICS 2014, 14 (4–5), 489–497. 10.1002/pmic.201300256. PubMed DOI

Kruger N. A.; Zubarev R. A.; Carpenter B. K.; Kelleher N. L.; Horn D. M.; McLafferty F. W. Electron capture versus energetic dissociation of protein ions. Int. J. Mass Spectrom. 1999, 182 (183), 1–5. 10.1016/S1387-3806(98)14260-4. DOI

Brodbelt J. S.; Morrison L. J.; Santos I. Ultraviolet Photodissociation Mass Spectrometry for Analysis of Biological Molecules. Chem. Rev. 2020, 120 (7), 3328–3380. 10.1021/acs.chemrev.9b00440. PubMed DOI PMC

Glish G. L.; Burinsky D. J. Hybrid mass spectrometers for tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 2008, 19 (2), 161–172. 10.1016/j.jasms.2007.11.013. PubMed DOI

Douglas D. J.; French J. B. Collisional focusing effects in radio frequency quadrupoles. J. Am. Soc. Mass Spectrom. 1992, 3 (4), 398–408. 10.1016/1044-0305(92)87067-9. PubMed DOI

Wootton C. A.; Lam Y. P. Y.; Willetts M.; van Agthoven M. A.; Barrow M. P.; Sadler P. J.; O’Connor P. B. Automatic assignment of metal-containing peptides in proteomic LC-MS and MS/MS data sets. Analyst 2017, 142 (11), 2029–2037. 10.1039/C7AN00075H. PubMed DOI

Smith D. F.; Blakney G. T.; Beu S. C.; Anderson L. C.; Weisbrod C. R.; Hendrickson C. L. Ultrahigh Resolution Ion Isolation by Stored Waveform Inverse Fourier Transform 21 T Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Anal. Chem. 2020, 92 (4), 3213–3219. 10.1021/acs.analchem.9b04954. PubMed DOI

Wongkongkathep P.; Han J. Y.; Choi T. S.; Yin S.; Kim H. I.; Loo J. A. Native Top-Down Mass Spectrometry and Ion Mobility MS for Characterizing the Cobalt and Manganese Metal Binding of α-Synuclein Protein. J. Am. Soc. Mass Spectrom. 2018, 29 (9), 1870–1880. 10.1007/s13361-018-2002-2. PubMed DOI PMC

Zhang F.; Ge W.; Ruan G.; Cai X.; Guo T. Data-Independent Acquisition Mass Spectrometry-Based Proteomics and Software Tools: A Glimpse in 2020. PROTEOMICS 2020, 20 (17–18), 1900276.10.1002/pmic.201900276. PubMed DOI

Pfändler P.; Bodenhausen G.; Rapin J.; Walser M. E.; Gäumann T. Broad-band two-dimensional Fourier transform ion cyclotron resonance. J. Am. Chem. Soc. 1988, 110 (17), 5625–5628. 10.1021/ja00225a006. DOI

Marzullo B. P.; Morgan T. E.; Theisen A.; Haris A.; Wootton C. A.; Perry S. J.; Saeed M.; Barrow M. P.; O’Connor P. B. Combining Ultraviolet Photodissociation and Two-Dimensional Mass Spectrometry: A Contemporary Approach for Characterizing Singly Charged Agrochemicals. Anal. Chem. 2021, 93 (27), 9462–9470. 10.1021/acs.analchem.1c01185. PubMed DOI

van Agthoven M. A.; Lam Y. P. Y.; O’Connor P. B.; Rolando C.; Delsuc M.-A. Two-dimensional mass spectrometry: new perspectives for tandem mass spectrometry. Eur. Biophys. J. 2019, 48 (3), 213–229. 10.1007/s00249-019-01348-5. PubMed DOI PMC

Guan S.; Jones P. R. A theory for two-dimensional Fourier-transform ion cyclotron resonance mass spectrometry. J. Chem. Phys. 1989, 91 (9), 5291–5. 10.1063/1.457575. DOI

Morgan T. E.; Wootton C. A.; Marzullo B.; Paris J.; Kerr A.; Ellacott S. H.; van Agthoven M. A.; Barrow M. P.; Bristow A. W. T.; Perrier S.; O’Connor P. B. Characterization Across a Dispersity: Polymer Mass Spectrometry in the Second Dimension. J. Am. Soc. Mass Spectrom. 2021, 32 (8), 2153–2161. 10.1021/jasms.1c00106. PubMed DOI

Floris F.; van Agthoven M.; Chiron L.; Soulby A. J.; Wootton C. A.; Lam Y. P. Y.; Barrow M. P.; Delsuc M.-A.; O’Connor P. B. 2D FT-ICR MS of Calmodulin: A Top-Down and Bottom-Up Approach. J. Am. Soc. Mass Spectrom. 2016, 27 (9), 1531–1538. 10.1007/s13361-016-1431-z. PubMed DOI

Marzullo B. P.; Morgan T. E.; Wootton C. A.; Perry S. J.; Saeed M.; Barrow M. P.; O’Connor P. B. Advantages of Two-Dimensional Electron-Induced Dissociation and Infrared Multiphoton Dissociation Mass Spectrometry for the Analysis of Agrochemicals. Anal. Chem. 2020, 92 (17), 11687–11695. 10.1021/acs.analchem.0c01585. PubMed DOI

Paris J.; Morgan T. E.; Marzullo B. P.; Wootton C. A.; Barrow M. P.; O’Hara J.; O’Connor P. B. Two-Dimensional Mass Spectrometry Analysis of IgG1 Antibodies. J. Am. Soc. Mass Spectrom. 2021, 32 (7), 1716–1724. 10.1021/jasms.1c00096. PubMed DOI

Halper M.; Delsuc M.-A.; Breuker K.; van Agthoven M. A. Narrowband Modulation Two-Dimensional Mass Spectrometry and Label-Free Relative Quantification of Histone Peptides. Anal. Chem. 2020, 92 (20), 13945–13952. 10.1021/acs.analchem.0c02843. PubMed DOI PMC

Delsuc M.-A.; Breuker K.; van Agthoven M. A. Phase Correction for Absorption Mode Two-Dimensional Mass Spectrometry. Molecules 2021, 26 (11), 3388.10.3390/molecules26113388. PubMed DOI PMC

Palasser M.; Heel S. V.; Delsuc M.-A.; Breuker K.; van Agthoven M. A. Ultra-Accurate Correlation between Precursor and Fragment Ions in Two-Dimensional Mass Spectrometry: Acetylated vs Trimethylated Histone Peptides. J. Am. Soc. Mass Spectrom. 2023, 34 (4), 608–616. 10.1021/jasms.2c00319. PubMed DOI PMC

Yassaghi G.; Kukačka Z.; Fiala J.; Kavan D.; Halada P.; Volný M.; Novák P. Top-Down Detection of Oxidative Protein Footprinting by Collision-Induced Dissociation, Electron-Transfer Dissociation, and Electron-Capture Dissociation. Anal. Chem. 2022, 94 (28), 9993–10002. 10.1021/acs.analchem.1c05476. PubMed DOI PMC

Schweihard L.; Lindinger M.; Kluge H.-J. Quadrupole-detection FT-ICR mass spectrometry. Int. J. Mass Spectrom. Ion Process. 1990, 98 (1), 25–33. 10.1016/0168-1176(90)85045-4. DOI

Novak P.; Kruppa G. H.; Young M. M.; Schoeniger J. A Top-down method for the determination of residue-specific solvent accessibility in proteins. J. Mass Spectrom. 2004, 39 (3), 322–328. 10.1002/jms.587. PubMed DOI

Taucher M.; Breuker K. Top-Down Mass Spectrometry for Sequencing of Larger (up to 61 nt) RNA by CAD and EDD. J. Am. Soc. Mass Spectrom. 2010, 21 (6), 918–929. 10.1016/j.jasms.2010.02.025. PubMed DOI

Schweikhard L.; Lindinger M.; Kluge H. J. Parametric-mode-excitation/dipole-mode-detection Fourier-transform–ion-cyclotron-resonance spectrometry. Rev. Sci. Instrum. 1990, 61 (3), 1055–1058. 10.1063/1.1141475. DOI

Jertz R.; Friedrich J.; Kriete C.; Nikolaev E. N.; Baykut G. Tracking the Magnetron Motion in FT-ICR Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2015, 26 (8), 1349–1366. 10.1007/s13361-015-1148-4. PubMed DOI

Tsybin Y. O.; Quinn J. P.; Tsybin O. Y.; Hendrickson C. L.; Marshall A. G. Electron Capture Dissociation Implementation Progress in Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2008, 19 (6), 762–771. 10.1016/j.jasms.2008.02.007. PubMed DOI

Chiron L.; Coutouly M.-A.; Starck J.-P.; Rolando C.; Delsuc M.-A. SPIKE a processing software dedicated to Fourier spectroscopies. arXiv (Physics.Computational Physics) 2016, 1608.06777.10.48550/arXiv.1608.06777. DOI

Bray F.; Bouclon J.; Chiron L.; Witt M.; Delsuc M.-A.; Rolando C. Nonuniform Sampling Acquisition of Two-Dimensional Fourier Transform Ion Cyclotron Resonance Mass Spectrometry for Increased Mass Resolution of Tandem Mass Spectrometry Precursor Ions. Anal. Chem. 2017, 89 (17), 8589–8593. 10.1021/acs.analchem.7b01850. PubMed DOI

Ledford E. B. Jr.; Rempel D. L.; Gross M. L. Space charge effects in Fourier transform mass spectrometry. II. Mass calibration. Anal. Chem. 1984, 56 (14), 2744–8. 10.1021/ac00278a027. PubMed DOI

Palasser M.FAST-MS. https://github.com/michael-palasser/FAST-MS (accessed 2022-01-07).

Nikolaev E. N.; Boldin I. A.; Jertz R.; Baykut G. Initial experimental characterization of a new ultra-high resolution FTICR cell with dynamic harmonization. J. Am. Soc. Mass Spectrom. 2011, 22 (7), 1125–1133. 10.1007/s13361-011-0125-9. PubMed DOI

Driver J. A.; Kharchenko A.; Amster I. J. Simulations of nw measurement using multiple detection electrodes in FTICR mass spectrometry. Int. J. Mass Spectrom. 2020, 455, 116372.10.1016/j.ijms.2020.116372. DOI

Wu Q.; Gorshkov M. V.; Paša-Tolić L. Towards increasing the performance of FTICR-MS with signal detection at frequency multiples: Signal theory and numerical study. Int. J. Mass Spectrom. 2021, 469, 116669.10.1016/j.ijms.2021.116669. DOI

Cooper H. J.; Hakansson K.; Marshall A. G. The role of electron capture dissociation in biomolecular analysis. Mass Spectrom. Rev. 2005, 24 (2), 201–222. 10.1002/mas.20014. PubMed DOI

Fellgett P. B. The ultimate sensitivity and practical performance of radiation detectors. J. Opt. Soc. Am. 1949, 39, 970–6. 10.1364/JOSA.39.000970. PubMed DOI

Marshall A. G.; Hendrickson C. L.; Jackson G. S. Fourier transform ion cyclotron resonance mass spectrometry: a primer. Mass Spectrom. Rev. 1998, 17 (1), 1–35. 10.1002/(SICI)1098-2787(1998)17:1<1::AID-MAS1>3.0.CO;2-K. PubMed DOI

Valkenborg D.; Jansen I.; Burzykowski T. A model-based method for the prediction of the isotopic distribution of peptides. J. Am. Soc. Mass Spectrom. 2008, 19 (5), 703–712. 10.1016/j.jasms.2008.01.009. PubMed DOI

Masuda T.; Ide N.; Kitabatake N. Effects of Chemical Modification of Lysine Residues on the Sweetness of Lysozyme. Chemical Senses 2005, 30 (3), 253–264. 10.1093/chemse/bji021. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...