Top-Down Proteoform Analysis by 2D MS with Quadrupolar Detection
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
M 2757
Austrian Science Fund FWF - Austria
PubMed
37877738
PubMed Central
PMC10633810
DOI
10.1021/acs.analchem.3c02225
Knihovny.cz E-zdroje
- MeSH
- cyklotrony MeSH
- Fourierova analýza MeSH
- proteomika * metody MeSH
- tandemová hmotnostní spektrometrie * metody MeSH
- ubikvitin MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ubikvitin MeSH
Two-dimensional mass spectrometry (2D MS) is a multiplexed tandem mass spectrometry method that does not rely on ion isolation to correlate the precursor and fragment ions. On a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS), 2D MS instead uses the modulation of precursor ion radii inside the ICR cell before fragmentation and yields 2D mass spectra that show the fragmentation patterns of all the analytes. In this study, we perform 2D MS for the first time with quadrupolar detection in a dynamically harmonized ICR cell. We discuss the advantages of quadrupolar detection in 2D MS and how we adapted existing data processing techniques for accurate frequency-to-mass conversion. We apply 2D MS with quadrupolar detection to the top-down analysis of covalently labeled ubiquitin with ECD fragmentation, and we develop a workflow for label-free relative quantification of biomolecule isoforms in 2D MS.
Bruker Daltonics GmbH and Co KG Fahrenheitstraße 4 28359 Bremen Germany
Center for Chemistry and Biomedicine University of Innsbruck Innrain 80 82 6020 Innsbruck Austria
Faculty of Science Charles University Prague 12843 Czech Republic
Institute of Microbiology of the Czech Academy of Sciences Prague 14220 Czech Republic
Zobrazit více v PubMed
Fabris D.; Yu E. T. Elucidating the higher-order structure of biopolymers by structural probing and mass spectrometry: MS3D. J. Mass Spectrom. 2010, 45 (8), 841–860. 10.1002/jms.1762. PubMed DOI PMC
Takamoto K.; Chance M. R. Radiolytic Protein Footprinting with Mass Spectrometry to Probe the Structure of Macromolecular Complexes. Annu. Rev. Biophys. Biomol. Struct. 2006, 35 (1), 251–276. 10.1146/annurev.biophys.35.040405.102050. PubMed DOI
Sinz A. Chemical cross-linking and mass spectrometry to map three-dimensional protein structures and protein–protein interactions. Mass Spectrom. Rev. 2006, 25 (4), 663–682. 10.1002/mas.20082. PubMed DOI
Fojtík L.; Fiala J.; Pompach P.; Chmelík J.; Matoušek V.; Beier P.; Kukačka Z.; Novák P. Fast Fluoroalkylation of Proteins Uncovers the Structure and Dynamics of Biological Macromolecules. J. Am. Chem. Soc. 2021, 143 (49), 20670–20679. 10.1021/jacs.1c07771. PubMed DOI
Yan X.; Maier C. S.. Hydrogen/Deuterium Exchange Mass Spectrometry. In Mass Spectrometry of Proteins and Peptides: Methods and Protocols, Lipton M. S., Paša-Tolic L., Eds.; Methods in Molecular Biology, Vol. 492; Humana Press: Totowa, NJ, 2009; pp 255–271. PubMed
Niu B.; Gross M. L.. MS-Based Hydroxyl Radical Footprinting: Methodology and Application of Fast Photochemical Oxidation of Proteins (FPOP). In Mass Spectrometry-Based Chemical Proteomics; Tao W. A., Zhang Y., Eds.; John Wiley & Sons, Inc.: New York, NY, 2019; pp 363–416.
Polák M.; Yassaghi G.; Kavan D.; Filandr F.; Fiala J.; Kukačka Z.; Halada P.; Loginov D. S.; Novák P. Utilization of Fast Photochemical Oxidation of Proteins and Both Bottom-up and Top-down Mass Spectrometry for Structural Characterization of a Transcription Factor–dsDNA Complex. Anal. Chem. 2022, 94 (7), 3203–3210. 10.1021/acs.analchem.1c04746. PubMed DOI
Chen J.; Cui W.; Giblin D.; Gross M. L. New Protein Footprinting: Fast Photochemical Iodination Combined with Top-Down and Bottom-Up Mass Spectrometry. J. Am. Chem. Soc. 2012, 23 (8), 1306–1318. 10.1007/s13361-012-0403-1. PubMed DOI PMC
Novak P.; Young M. M.; Schoeniger J. S.; Kruppa G. H. A Top-Down Approach to Protein Structure Studies Using Chemical Cross-Linking and Fourier Transform Mass Spectrometry. Eur. J. Mass Spectrom. 2003, 9 (6), 623–631. 10.1255/ejms.590. PubMed DOI
Marshall A. G.; Hendrickson C. L. High-resolution mass spectrometers. Annu. Rev. Anal. Chem. 2008, 1, 579–599. 10.1146/annurev.anchem.1.031207.112945. PubMed DOI
Zubarev R. A.; Horn D. M.; Fridriksson E. K.; Kelleher N. L.; Kruger N. A.; Lewis M. A.; Carpenter B. K.; McLafferty F. W. Electron Capture Dissociation for Structural Characterization of Multiply Charged Protein Cations. Anal. Chem. 2000, 72 (3), 563–573. 10.1021/ac990811p. PubMed DOI
Cannon J. R.; Cammarata M. B.; Robotham S. A.; Cotham V. C.; Shaw J. B.; Fellers R. T.; Early B. P.; Thomas P. M.; Kelleher N. L.; Brodbelt J. S. Ultraviolet Photodissociation for Characterization of Whole Proteins on a Chromatographic Time Scale. Anal. Chem. 2014, 86 (4), 2185–2192. 10.1021/ac403859a. PubMed DOI PMC
Moradian A.; Kalli A.; Sweredoski M. J.; Hess S. The top-down, middle-down, and bottom-up mass spectrometry approaches for characterization of histone variants and their post-translational modifications. PROTEOMICS 2014, 14 (4–5), 489–497. 10.1002/pmic.201300256. PubMed DOI
Kruger N. A.; Zubarev R. A.; Carpenter B. K.; Kelleher N. L.; Horn D. M.; McLafferty F. W. Electron capture versus energetic dissociation of protein ions. Int. J. Mass Spectrom. 1999, 182 (183), 1–5. 10.1016/S1387-3806(98)14260-4. DOI
Brodbelt J. S.; Morrison L. J.; Santos I. Ultraviolet Photodissociation Mass Spectrometry for Analysis of Biological Molecules. Chem. Rev. 2020, 120 (7), 3328–3380. 10.1021/acs.chemrev.9b00440. PubMed DOI PMC
Glish G. L.; Burinsky D. J. Hybrid mass spectrometers for tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 2008, 19 (2), 161–172. 10.1016/j.jasms.2007.11.013. PubMed DOI
Douglas D. J.; French J. B. Collisional focusing effects in radio frequency quadrupoles. J. Am. Soc. Mass Spectrom. 1992, 3 (4), 398–408. 10.1016/1044-0305(92)87067-9. PubMed DOI
Wootton C. A.; Lam Y. P. Y.; Willetts M.; van Agthoven M. A.; Barrow M. P.; Sadler P. J.; O’Connor P. B. Automatic assignment of metal-containing peptides in proteomic LC-MS and MS/MS data sets. Analyst 2017, 142 (11), 2029–2037. 10.1039/C7AN00075H. PubMed DOI
Smith D. F.; Blakney G. T.; Beu S. C.; Anderson L. C.; Weisbrod C. R.; Hendrickson C. L. Ultrahigh Resolution Ion Isolation by Stored Waveform Inverse Fourier Transform 21 T Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Anal. Chem. 2020, 92 (4), 3213–3219. 10.1021/acs.analchem.9b04954. PubMed DOI
Wongkongkathep P.; Han J. Y.; Choi T. S.; Yin S.; Kim H. I.; Loo J. A. Native Top-Down Mass Spectrometry and Ion Mobility MS for Characterizing the Cobalt and Manganese Metal Binding of α-Synuclein Protein. J. Am. Soc. Mass Spectrom. 2018, 29 (9), 1870–1880. 10.1007/s13361-018-2002-2. PubMed DOI PMC
Zhang F.; Ge W.; Ruan G.; Cai X.; Guo T. Data-Independent Acquisition Mass Spectrometry-Based Proteomics and Software Tools: A Glimpse in 2020. PROTEOMICS 2020, 20 (17–18), 1900276.10.1002/pmic.201900276. PubMed DOI
Pfändler P.; Bodenhausen G.; Rapin J.; Walser M. E.; Gäumann T. Broad-band two-dimensional Fourier transform ion cyclotron resonance. J. Am. Chem. Soc. 1988, 110 (17), 5625–5628. 10.1021/ja00225a006. DOI
Marzullo B. P.; Morgan T. E.; Theisen A.; Haris A.; Wootton C. A.; Perry S. J.; Saeed M.; Barrow M. P.; O’Connor P. B. Combining Ultraviolet Photodissociation and Two-Dimensional Mass Spectrometry: A Contemporary Approach for Characterizing Singly Charged Agrochemicals. Anal. Chem. 2021, 93 (27), 9462–9470. 10.1021/acs.analchem.1c01185. PubMed DOI
van Agthoven M. A.; Lam Y. P. Y.; O’Connor P. B.; Rolando C.; Delsuc M.-A. Two-dimensional mass spectrometry: new perspectives for tandem mass spectrometry. Eur. Biophys. J. 2019, 48 (3), 213–229. 10.1007/s00249-019-01348-5. PubMed DOI PMC
Guan S.; Jones P. R. A theory for two-dimensional Fourier-transform ion cyclotron resonance mass spectrometry. J. Chem. Phys. 1989, 91 (9), 5291–5. 10.1063/1.457575. DOI
Morgan T. E.; Wootton C. A.; Marzullo B.; Paris J.; Kerr A.; Ellacott S. H.; van Agthoven M. A.; Barrow M. P.; Bristow A. W. T.; Perrier S.; O’Connor P. B. Characterization Across a Dispersity: Polymer Mass Spectrometry in the Second Dimension. J. Am. Soc. Mass Spectrom. 2021, 32 (8), 2153–2161. 10.1021/jasms.1c00106. PubMed DOI
Floris F.; van Agthoven M.; Chiron L.; Soulby A. J.; Wootton C. A.; Lam Y. P. Y.; Barrow M. P.; Delsuc M.-A.; O’Connor P. B. 2D FT-ICR MS of Calmodulin: A Top-Down and Bottom-Up Approach. J. Am. Soc. Mass Spectrom. 2016, 27 (9), 1531–1538. 10.1007/s13361-016-1431-z. PubMed DOI
Marzullo B. P.; Morgan T. E.; Wootton C. A.; Perry S. J.; Saeed M.; Barrow M. P.; O’Connor P. B. Advantages of Two-Dimensional Electron-Induced Dissociation and Infrared Multiphoton Dissociation Mass Spectrometry for the Analysis of Agrochemicals. Anal. Chem. 2020, 92 (17), 11687–11695. 10.1021/acs.analchem.0c01585. PubMed DOI
Paris J.; Morgan T. E.; Marzullo B. P.; Wootton C. A.; Barrow M. P.; O’Hara J.; O’Connor P. B. Two-Dimensional Mass Spectrometry Analysis of IgG1 Antibodies. J. Am. Soc. Mass Spectrom. 2021, 32 (7), 1716–1724. 10.1021/jasms.1c00096. PubMed DOI
Halper M.; Delsuc M.-A.; Breuker K.; van Agthoven M. A. Narrowband Modulation Two-Dimensional Mass Spectrometry and Label-Free Relative Quantification of Histone Peptides. Anal. Chem. 2020, 92 (20), 13945–13952. 10.1021/acs.analchem.0c02843. PubMed DOI PMC
Delsuc M.-A.; Breuker K.; van Agthoven M. A. Phase Correction for Absorption Mode Two-Dimensional Mass Spectrometry. Molecules 2021, 26 (11), 3388.10.3390/molecules26113388. PubMed DOI PMC
Palasser M.; Heel S. V.; Delsuc M.-A.; Breuker K.; van Agthoven M. A. Ultra-Accurate Correlation between Precursor and Fragment Ions in Two-Dimensional Mass Spectrometry: Acetylated vs Trimethylated Histone Peptides. J. Am. Soc. Mass Spectrom. 2023, 34 (4), 608–616. 10.1021/jasms.2c00319. PubMed DOI PMC
Yassaghi G.; Kukačka Z.; Fiala J.; Kavan D.; Halada P.; Volný M.; Novák P. Top-Down Detection of Oxidative Protein Footprinting by Collision-Induced Dissociation, Electron-Transfer Dissociation, and Electron-Capture Dissociation. Anal. Chem. 2022, 94 (28), 9993–10002. 10.1021/acs.analchem.1c05476. PubMed DOI PMC
Schweihard L.; Lindinger M.; Kluge H.-J. Quadrupole-detection FT-ICR mass spectrometry. Int. J. Mass Spectrom. Ion Process. 1990, 98 (1), 25–33. 10.1016/0168-1176(90)85045-4. DOI
Novak P.; Kruppa G. H.; Young M. M.; Schoeniger J. A Top-down method for the determination of residue-specific solvent accessibility in proteins. J. Mass Spectrom. 2004, 39 (3), 322–328. 10.1002/jms.587. PubMed DOI
Taucher M.; Breuker K. Top-Down Mass Spectrometry for Sequencing of Larger (up to 61 nt) RNA by CAD and EDD. J. Am. Soc. Mass Spectrom. 2010, 21 (6), 918–929. 10.1016/j.jasms.2010.02.025. PubMed DOI
Schweikhard L.; Lindinger M.; Kluge H. J. Parametric-mode-excitation/dipole-mode-detection Fourier-transform–ion-cyclotron-resonance spectrometry. Rev. Sci. Instrum. 1990, 61 (3), 1055–1058. 10.1063/1.1141475. DOI
Jertz R.; Friedrich J.; Kriete C.; Nikolaev E. N.; Baykut G. Tracking the Magnetron Motion in FT-ICR Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2015, 26 (8), 1349–1366. 10.1007/s13361-015-1148-4. PubMed DOI
Tsybin Y. O.; Quinn J. P.; Tsybin O. Y.; Hendrickson C. L.; Marshall A. G. Electron Capture Dissociation Implementation Progress in Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2008, 19 (6), 762–771. 10.1016/j.jasms.2008.02.007. PubMed DOI
Chiron L.; Coutouly M.-A.; Starck J.-P.; Rolando C.; Delsuc M.-A. SPIKE a processing software dedicated to Fourier spectroscopies. arXiv (Physics.Computational Physics) 2016, 1608.06777.10.48550/arXiv.1608.06777. DOI
Bray F.; Bouclon J.; Chiron L.; Witt M.; Delsuc M.-A.; Rolando C. Nonuniform Sampling Acquisition of Two-Dimensional Fourier Transform Ion Cyclotron Resonance Mass Spectrometry for Increased Mass Resolution of Tandem Mass Spectrometry Precursor Ions. Anal. Chem. 2017, 89 (17), 8589–8593. 10.1021/acs.analchem.7b01850. PubMed DOI
Ledford E. B. Jr.; Rempel D. L.; Gross M. L. Space charge effects in Fourier transform mass spectrometry. II. Mass calibration. Anal. Chem. 1984, 56 (14), 2744–8. 10.1021/ac00278a027. PubMed DOI
Palasser M.FAST-MS. https://github.com/michael-palasser/FAST-MS (accessed 2022-01-07).
Nikolaev E. N.; Boldin I. A.; Jertz R.; Baykut G. Initial experimental characterization of a new ultra-high resolution FTICR cell with dynamic harmonization. J. Am. Soc. Mass Spectrom. 2011, 22 (7), 1125–1133. 10.1007/s13361-011-0125-9. PubMed DOI
Driver J. A.; Kharchenko A.; Amster I. J. Simulations of nw measurement using multiple detection electrodes in FTICR mass spectrometry. Int. J. Mass Spectrom. 2020, 455, 116372.10.1016/j.ijms.2020.116372. DOI
Wu Q.; Gorshkov M. V.; Paša-Tolić L. Towards increasing the performance of FTICR-MS with signal detection at frequency multiples: Signal theory and numerical study. Int. J. Mass Spectrom. 2021, 469, 116669.10.1016/j.ijms.2021.116669. DOI
Cooper H. J.; Hakansson K.; Marshall A. G. The role of electron capture dissociation in biomolecular analysis. Mass Spectrom. Rev. 2005, 24 (2), 201–222. 10.1002/mas.20014. PubMed DOI
Fellgett P. B. The ultimate sensitivity and practical performance of radiation detectors. J. Opt. Soc. Am. 1949, 39, 970–6. 10.1364/JOSA.39.000970. PubMed DOI
Marshall A. G.; Hendrickson C. L.; Jackson G. S. Fourier transform ion cyclotron resonance mass spectrometry: a primer. Mass Spectrom. Rev. 1998, 17 (1), 1–35. 10.1002/(SICI)1098-2787(1998)17:1<1::AID-MAS1>3.0.CO;2-K. PubMed DOI
Valkenborg D.; Jansen I.; Burzykowski T. A model-based method for the prediction of the isotopic distribution of peptides. J. Am. Soc. Mass Spectrom. 2008, 19 (5), 703–712. 10.1016/j.jasms.2008.01.009. PubMed DOI
Masuda T.; Ide N.; Kitabatake N. Effects of Chemical Modification of Lysine Residues on the Sweetness of Lysozyme. Chemical Senses 2005, 30 (3), 253–264. 10.1093/chemse/bji021. PubMed DOI