Plant Communities Rather than Soil Properties Structure Arbuscular Mycorrhizal Fungal Communities along Primary Succession on a Mine Spoil
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
28473828
PubMed Central
PMC5397529
DOI
10.3389/fmicb.2017.00719
Knihovny.cz E-zdroje
- Klíčová slova
- Glomeromycota, biodiversity, community ecology, ecosystem development, fungal and plant succession, mycorrhiza,
- Publikační typ
- časopisecké články MeSH
Arbuscular mycorrhizal fungal (AMF) community assembly during primary succession has so far received little attention. It remains therefore unclear, which of the factors, driving AMF community composition, are important during ecosystem development. We addressed this question on a large spoil heap, which provides a mosaic of sites in different successional stages under different managements. We selected 24 sites of c. 12, 20, 30, or 50 years in age, including sites with spontaneously developing vegetation and sites reclaimed by alder plantations. On each site, we sampled twice a year roots of the perennial rhizomatous grass Calamagrostis epigejos (Poaceae) to determine AMF root colonization and diversity (using 454-sequencing), determined the soil chemical properties and composition of plant communities. AMF taxa richness was unaffected by site age, but AMF composition variation increased along the chronosequences. AMF communities were unaffected by soil chemistry, but related to the composition of neighboring plant communities of the sampled C. epigejos plants. In contrast, the plant communities of the sites were more distinctively structured than the AMF communities along the four successional stages. We conclude that AMF and plant community successions respond to different factors. AMF communities seem to be influenced by biotic rather than by abiotic factors and to diverge with successional age.
Faculty of Science Charles UniversityPrague Czechia
Institute of Botany Academy of Sciences of the Czech RepublicPrůhonice Czechia
Institute of Microbiology Academy of Sciences of the Czech RepublicPrague Czechia
Zobrazit více v PubMed
Abakumov E. V., Cajthaml T., Brus J., Frouz J. (2013). Humus accumulation, humification, and humic acid composition in soils of two post-mining chronosequences after coal mining. J. Soils Sediments 13 491–500. 10.1007/s11368-012-0579-9 DOI
Allen E. B., Chambers J. C., Connor K. F., Allen M. F., Brown R. W. (1987). Natural reestablishment of mycorrhizae in disturbed alpine ecosystems. Arctic Alpine Res. 19 11–20. 10.2307/1550995 DOI
Allen M. F., Crisafulli C., Friese C. F., Jeakins S. L. (1992). Re-formation of mycorrhizal symbioses on Mount St Helens 1980-1990: interactions of rodents and mycorrhizal fungi. Mycol. Res. 96 447–453. 10.1016/S0953-7562(09)81089-7 DOI
Anderson M. J., Crist T. O., Chase J. M., Vellend M., Inouye B. D., Freestone A. L., et al. (2011). Navigating the multiple meanings of beta diversity: a roadmap for the practicing ecologist. Ecol. Lett. 14 19–28. 10.1111/j.1461-0248.2010.01552.x PubMed DOI
Bahram M., Kohout P., Anslan S., Harend H., Abarenkov K., Tedersoo L. (2016). Stochastic distribution of small soil eukaryotes resulting from high dispersal and drift in a local environment. ISME J. 10 885–896. 10.1038/ismej.2015.164 PubMed DOI PMC
Becklin K. M., Hertweck K. L., Jumpponen A. (2012a). Host identity impacts rhizosphere fungal communities associated with three alpine plant species. Microb. Ecol. 63 682–693. 10.1007/s00248-011-9968-7 PubMed DOI
Becklin K. M., Pallo M. L., Galen C. (2012b). Willows indirectly reduce arbuscular mycorrhizal fungal colonization in understorey communities. J. Ecol. 100 343–351. 10.1111/j.1365-2745.2011.01903.x DOI
Bennett A. E., Daniell T. J., Öpik M., Davison J., Moora M., Zobel M., et al. (2013). Arbuscular mycorrhizal fungal networks vary throughout the growing season and between successional stages. PLoS ONE 8:e83241 10.1371/journal.pone.0083241 PubMed DOI PMC
Berger S. A., Krompaß D., Stamatakis A. (2011). Performance, accuracy, and web server for evolutionary placement of short sequence reads under maximum likelihood. Syst. Biol. 60 291–302. 10.1093/sysbio/syr010 PubMed DOI PMC
Borcard D., Legendre P. (2002). All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol. Model. 153 51–68. 10.1016/S0304-3800(01)00501-4 DOI
Brundrett M. C. (2009). Mycorrhizal associations and other means of nutrition of vascular plants, understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320 37–77. 10.1007/s11104-008-9877-9 DOI
Bruns T. D., Taylor J. W. (2016). Comment on “Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism”. Science 351 6275–6275. 10.1126/science.aad4228 PubMed DOI
Caporaso J. G., Kuczynski J., Stombaugh J., Bittinger K., Bushman F. D., Costello E. K., et al. (2010). QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7 335–336. 10.1038/nmeth.f.303 PubMed DOI PMC
Chagnon P. L., Bradley R. L., Klironomos J. N. (2012). Using ecological network theory to evaluate the causes and consequences of arbuscular mycorrhizal community structure. New Phytol. 194 307–312. 10.1111/j.1469-8137.2011.04044.x PubMed DOI
Chagnon P. L., Bradley R. L., Maherali H., Klironomos J. N. (2013). A trait-based framework to understand life history of mycorrhizal fungi. Trends Plant Sci. 18 484–491. 10.1016/j.tplants.2013.05.001 PubMed DOI
da Silva D. K. A., Coutinho F. P., Escobar I. E. C., de Souza R. G., Oehl F., Silva G. A., et al. (2015). The community of arbuscular mycorrhizal fungi in natural and revegetated coastal areas (Atlantic Forest) in northeastern Brazil. Biodivers. Conserv. 24 2213–2226. 10.1007/s10531-015-0968-7 DOI
Davison J., Moora M., Öpik M., Adholeya A., Ainsaar L., Bâ A., et al. (2015). Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science 349 970–973. 10.1126/science.aab1161 PubMed DOI
Davison J., Öpik M., Zobel M., Vasar M., Metsis M., Moora M. (2012). Communities of arbuscular mycorrhizal fungi detected in forest soil are spatially heterogeneous but do not vary throughout the growing season. PLoS ONE 7:e41938 10.1371/journal.pone.0041938 PubMed DOI PMC
de Cárcer D. A., Denman S. E., McSweeney C., Morrison M. (2011). Evaluation of subsampling-based normalization strategies for tagged high-throughput sequencing data sets from gut microbiomes. Appl. Environ. Microbiol. 77 8795–8798. 10.1128/AEM.05491-11 PubMed DOI PMC
de Souza R. G., da Silva D. K. A., de Mello C. M. A., Goto B. T., da Silva F. S. B., Sampaio E. V. S. B., et al. (2013). Arbuscular mycorrhizal fungi in revegetated mined dunes. Land Degrad. Dev. 24 147–155. 10.1002/ldr.1113 DOI
Dickie I. A., Martínez-García L. B., Koel N., Grelet G. A., Tylianakis J. M., Peltzer D. A., et al. (2013). Mycorrhizas and mycorrhizal fungal communities throughout ecosystem development. Plant Soil 367 11–39. 10.1007/s11104-013-1609-0 DOI
Edgar R. C. (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26 2460–2461. 10.1093/bioinformatics/btq461 PubMed DOI
Egan C., Li D. W., Klironomos J. (2014). Detection of arbuscular mycorrhizal fungal spores in the air across different biomes and ecoregions. Fungal Ecol. 12 26–31. 10.1016/j.funeco.2014.06.004 DOI
Elhottová D., Krištùfek V., Frouz J., Nováková A., Chroòáková A. (2006). Screening for microbial markers in Miocene sediment exposed during open-cast brown coal mining. Antonie Van Leeuwenhoek 89 459–463. 10.1007/s10482-005-9044-8 PubMed DOI
Fitzsimons M. S., Miller R. M., Jastrow J. D. (2008). Scale-dependent niche axes of arbuscular mycorrhizal fungi. Oecologia 158 117–127. 10.1007/s00442-008-1117-8 PubMed DOI
Frouz J., Dvorščík P., Vávrová A., Doušová O., Kadochová Š, Matìjíček L. (2015). Development of canopy cover and woody vegetation biomass on reclaimed and unreclaimed post-mining sites. Ecol. Eng. 84 233–239. 10.1016/j.ecoleng.2015.09.027 DOI
Frouz J., Keplin B., Pižl V., Tajovský K., Starý J., Lukešová A., et al. (2001). Soil biota and upper soil layer development in two contrasting post-mining chronosequences. Ecol. Eng. 17 275–284. 10.1016/S0925-8574(00)00144-0 DOI
Frouz J., Pižl V., Tajovský K. (2007). The effect of earthworms and other saprophagous macrofauna on soil microstructure in reclaimed and un-reclaimed post-mining sites in Central Europe. Eur. J. Soil Biol. 43 S184–S189. 10.1016/j.ejsobi.2007.08.033 DOI
Frouz J., Prach K., Pižl V., Háněl L., Starý J., Tajovský K., et al. (2008). Interactions between soil development, vegetation and soil fauna during spontaneous succession in post mining sites. Eur. J. Soil Biol. 44 109–121. 10.1016/j.ejsobi.2007.09.002 DOI
García de León D. G., Moora M., Öpik M., Neuenkamp L., Gerz M., Jairus T., et al. (2016). Symbiont dynamics during ecosystem succession: co-occurring plant and arbuscular mycorrhizal fungal communities. FEMS Microbiol. Ecol. 92:fiw097 10.1093/femsec/fiw097 PubMed DOI
Goslee S. C., Urban D. L. (2007). The ecodist package for dissimilarity-based analysis of ecological data. J. Stat. Softw. 22 1–19. 10.18637/jss.v022.i07 DOI
Gould A. B., Hendrix J. W., Ferriss R. S. (1996). Relationship of mycorrhizal activity to time following reclamation of surface mine land in western Kentucky. I. Propagule and spore population densities. Can. J. Bot. 74 247–261. 10.1139/b96-030 DOI
Hart M. M., Reader R. J., Klironomos J. N. (2001). Life-history strategies of arbuscular mycorrhizal fungi in relation to their successional dynamics. Mycologia 93 1186–1194. 10.2307/3761678 DOI
Hausmann N. T., Hawkes C. V. (2009). Plant neighborhood control of arbuscular mycorrhizal community composition. New Phytol. 183 1188–1200. 10.1111/j.1469-8137.2009.02882.x PubMed DOI
Herrmann L., Lesueur D., Brau L., Davison J., Jairus T., Robain H., et al. (2016). Diversity of root-associated arbuscular mycorrhizal fungal communities in a rubber tree plantation chronosequence in Northeast Thailand. Mycorrhiza 26 863–877. 10.1007/s00572-016-0720-5 PubMed DOI
Hiiesalu I., Pärtel M., Davison J., Gerhold P., Metsis M., Moora M., et al. (2014). Species richness of arbuscular mycorrhizal fungi: associations with grassland plant richness and biomass. New Phytol. 203 233–244. 10.1111/nph.12765 PubMed DOI
Johnson N. C., Zak D. R., Tilman D., Pfleger F. L. (1991). Dynamics of vesicular-arbuscular mycorrhizae during old field succession. Oecologia 86 349–358. 10.1007/BF00317600 PubMed DOI
Kohout P., Doubková P., Bahram M., Suda J., Tedersoo L., Voříšková J., et al. (2015). Niche partitioning in arbuscular mycorrhizal communities in temperate grasslands: a lesson from adjacent serpentine and nonserpentine habitats. Mol. Ecol. 24 1831–1843. 10.1111/mec.13147 PubMed DOI
Koske R. E., Gemma J. N. (1989). A modified procedure for staining roots to detect VA mycorrhizas. Mycol. Res. 92 486–505. 10.1016/S0953-7562(89)80195-9 DOI
Křibek B., Strnad M., Bohaček Z., Sykorova I., Čejka J., Sobalik Z. (1998). Geochemistry of Miocene lacustrine sediments from the Sokolov Coal Basin (Czech Republic). Int. J. Coal Geol. 37 207–233. 10.1016/S0166-5162(98)00002-0 DOI
Krüger M., Krüger C., Walker C., Stockinger H., Schüßler A. (2012). Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. New Phytol. 193 970–984. 10.1111/j.1469-8137.2011.03962.x PubMed DOI
Krüger M., Stockinger H., Krüger C., Schüßler A. (2009). DNA-based species level detection of Glomeromycota: one PCR primer set for all arbuscular mycorrhizal fungi. New Phytol. 183 212–223. 10.1111/j.1469-8137.2009.02835.x PubMed DOI
Krüger M., Teste F. P., Laliberté E., Lambers H., Coghlan M., Zemunik G., et al. (2015). The rise and fall of arbuscular mycorrhizal fungal diversity during ecosystem retrogression. Mol. Ecol. 24 4912–4930. 10.1111/mec.13363 PubMed DOI
Legendre P., Gallagher E. D. (2001). Ecologically meaningful transformations for ordination of species data. Oecologia 129 271–280. 10.1007/s004420100716 PubMed DOI
Lekberg Y., Koide R. T., Rohr J. R., Aldrich-Wolfe L., Morton J. B. (2007). Role of niche restrictions and dispersal in the composition of arbuscular mycorrhizal fungal communities. J. Ecol. 95 95–105. 10.1111/j.1365-2745.2006.01193.x DOI
Lichter J. (2000). Colonization constraints during primary succession on coastal Lake Michigan sand dunes. J. Ecol. 88 825–839. 10.1046/j.1365-2745.2000.00503.x DOI
Mangan S. A., Adler G. H. (2002). Seasonal dispersal of arbuscular mycorrhizal fungi by spiny rats in a neotropical forest. Oecologia 131 587–597. 10.1007/s00442-002-0907-7 PubMed DOI
Martínez-García L. B., Richardson S. J., Tylianakis J. M., Peltzer D. A., Dickie I. A. (2015). Host identity is a dominant driver of mycorrhizal fungal community composition during ecosystem development. New Phytol. 205 1565–1576. 10.1111/nph.13226 PubMed DOI
Meadow J. F., Zabinski C. A. (2012). Linking symbiont community structures in a model arbuscular mycorrhizal system. New Phytol. 194 800–809. 10.1111/j.1469-8137.2012.04096.x PubMed DOI
Mudrák O., Frouz J., Velichová V. (2010). Understory vegetation in reclaimed and unreclaimed post-mining forest stands. Ecol. Eng. 36 783–790. 10.1016/j.ecoleng.2010.02.003 DOI
Mummey D. L., Rillig M. C., Holben W. E. (2005). Neighboring plant influences on arbuscular mycorrhizal fungal community composition as assessed by T-RFLP analysis. Plant Soil 271 83–90. 10.1007/s11104-004-2066-6 DOI
Nielsen K. B., Kjoller R., Bruun H. H., Schnoor T. K., Rosendahl S. (2016). Colonization of new land by arbuscular mycorrhizal fungi. Fungal Ecol. 20 22–29. 10.1016/j.funeco.2015.10.004 DOI
Odum E. P. (1969). The strategy of ecosystem development. Science 164 262–270. 10.1126/science.164.3877.262 PubMed DOI
Oehl F., Schneider D., Sieverding E., Burga C. A. (2011). Succession of arbuscular mycorrhizal communities in the foreland of the retreating Morteratsch glacier in the Central Alps. Pedobiologia 54 321–331. 10.1016/j.pedobi.2011.07.006 DOI
Oksanen J., Blanchet F. G., Kindt R. (2012). vegan: Community Ecology Package. [WWW Document]. Available at: http://CRAN.R-project.org/package=vegan
Öpik M., Davison J., Moora M., Pärtel M., Zobel M. (2016). Response to Comment on “Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism”. Science 351 826–826. 10.1126/science.aad5495 PubMed DOI
Pinheiro J., Bates D., DebRoy S., Sarkar D. R Core Team. (2008). nlme: Linear and Nonlinear Mixed Effects Models. [WWW Document]. Available at: http://CRAN.R-project.org/package=nlme
Piotrowski J. S., Morford S. L., Rillig M. C. (2008). Inhibition of colonization by a native arbuscular mycorrhizal fungal community via Populus trichocarpa litter, litter extract, and soluble phenolic compounds. Soil Biol. Biochem. 40 709–717. 10.1016/j.soilbio.2007.10.005 DOI
Powell J. R., Parrent J. L., Hart M. M., Klironomos J. N., Rillig M. C., Maherali H. (2009). Phylogenetic trait conservatism and the evolution of functional trade-offs in arbuscular mycorrhizal fungi. Proc. R. Soc. B Biol. Sci. 276 4237–4245. 10.1098/rspb.2009.1015 PubMed DOI PMC
Prach K., Lencová K., Řehounková K., Dvořáková H., Jírová A., Konvalinková P., et al. (2013). Spontaneous vegetation succession at different central European mining sites: a comparison across seres. Environ. Sci. Pollut. Res. 20 7680–7685. 10.1007/s11356-013-1563-7 PubMed DOI
Püschel D., Rydlová J., Vosátka M. (2008). Does the sequence of plant dominants affect mycorrhiza development in simulated succession on spoil banks? Plant Soil 302 273–282. 10.1007/s11104-007-9480-5 DOI
R Core Development Team (2008). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.
Roberts D. W. (2014). labdsv: Ordination and Multivariate Analysis for Ecology. [WWW Document]. Available at: http://CRAN.R-project.org/package=labdsv
Roche (2009). Roche Technical Bulletin No. 005–2009. Branford, CT: Roche.
Rosendahl S., McGee P., Morton J. B. (2009). Lack of global population genetic differentiation in the arbuscular mycorrhizal fungus Glomus mosseae suggests a recent range expansion which may have coincided with the spread of agriculture. Mol. Ecol. 18 4316–4329. 10.1111/j.1365-294X.2009.04359.x PubMed DOI
Rydlová J., Püschel D., Vosátka M., Charvátová K. (2008). Different effect of mycorrhizal inoculation in direct and indirect reclamation of spoil banks. J. Appl. Bot. Food Qual. 82 15–20.
Rydlová J., Püschel D., Dostálová M., Janoušková M., Frouz J. (2016). Nutrient limitation drives response of calamagrostis epigejos to arbuscular mycorrhiza in primary succession. Mycorrhiza 7 757–767. 10.1007/s00572-016-0712-5 PubMed DOI
Schüßler A., Schwarzott D., Walker C. (2001). A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol. Res. 105 1413–1421. 10.1017/S0953756201005196 DOI
Senés-Guerrero C., Schüßler A. (2015). A conserved arbuscular mycorrhizal fungal core-species community colonizes potato roots in the Andes. Fungal Divers. 77 317–333. 10.1007/s00572-013-0549-0 DOI
Sikes B., Maherali H., Klironomos J. (2014). Mycorrhizal fungal growth responds to soil characteristics, but not host plant identity, during a primary lacustrine dune succession. Mycorrhiza 24 219–226. 10.1007/s00572-013-0531-x PubMed DOI
Sikes B. A., Maherali H., Klironomos J. N. (2012). Arbuscular mycorrhizal fungal communities change among three stages of primary sand dune succession but do not alter plant growth. Oikos 121 1791–1800. 10.1007/s00572-013-0531-x DOI
Smith S. E., Read D. J. (2008). Mycorrhizal Symbiosis. Cambridge: Academic Press.
Stamatakis A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22 2688–2690. 10.1093/bioinformatics/btl446 PubMed DOI
Stinson K. A., Campbell S. A., Powell J. R., Wolfe B. E., Callaway R. M., Thelen G. C., et al. (2006). Invasive plant suppresses the growth of native tree seedlings by disrupting belowground mutualisms. PLoS Biol. 4:e140 10.1371/journal.pbio.0040140 PubMed DOI PMC
Sýkorová Z., Börstler B., Zvolenská S., Fehrer J., Gryndler M., Vosátka M., et al. (2012). Long-term tracing of Rhizophagus irregularis isolate BEG140 inoculated on Phalaris arundinacea in a coal mine spoil bank, using mitochondrial large subunit rDNA markers. Mycorrhiza 22 69–80. 10.1007/s00572-011-0375-1 PubMed DOI
Sýkorová Z., Wiemken A., Redecker D. (2007). Cooccurring Gentiana verna and Gentiana acaulis and their neighboring plants in two Swiss upper montane meadows harbor distinct arbuscular mycorrhizal fungal communities. Appl. Environ. Microbiol. 73 5426–5434. 10.1128/AEM.00987-07 PubMed DOI PMC
Trouvelot A., Kough J. L., Gianinazzi-Pearson V. (1986). “Mesure du taux de mycorhization VA dún système radiculaire. Recherche de méthodes déstimation ayant une signification fonctionnelle,” in Proceeding of the 1st European Symposium on Mycorrhizae: Physiological and Genetical Aspects of Mycorrhizae, eds Gianinazzi-Pearson V., Gianinazzi S. (Paris: INRA; ), 217–221.
Vandenkoornhuyse P., Husband R., Daniell T. J., Watson I. J., Duck J. M., Fitter A. H., et al. (2002). Arbuscular mycorrhizal community composition associated with two plant species in a grassland ecosystem. Mol. Ecol. 11 1555–1564. 10.1046/j.1365-294X.2002.01538.x PubMed DOI
van de Voorde F. J., van der Putten W. H., Gamper H. A., Hol W. H. G., Bezemer T. M. (2010). Comparing arbuscular mycorrhizal communities of individual plants in a grassland biodiversity experiment. New Phytol. 186 746–754. 10.1111/j.1469-8137.2010.03216.x PubMed DOI
Větrovský T., Baldrian P. (2013). Analysis of soil fungal communities by amplicon pyrosequencing: current approaches to data analysis and the introduction of the pipeline SEED. Biol. Fertil. Soils 49 1027–1037. 10.1007/s00374-013-0801-y DOI
Walker L. R., Del Moral R. (2003). Primary Succession and Ecosystem Rehabilitation. Cambridge: Cambridge University Press; 10.1017/CBO9780511615078 DOI
Warner N. J., Allen M. F., MacMahon J. A. (1987). Dispersal agents of vesicular-arbuscular mycorrhizal fungi in a disturbed arid ecosystem. Mycologia 79 721–730. 10.2307/3807824 DOI
Zangaro W., Alves R. A., Lescano L. E., Ansanelo A. P., Nogueira M. A. (2012). Investment in fine roots and arbuscular mycorrhizal fungi decrease during succession in three Brazilian ecosystems. Biotropica 44 141–150. 10.1111/j.1744-7429.2011.00781.x DOI
Zhang H., Chu L. M. (2013). Early development of soil microbial communities of rehabilitated quarries. Restor. Ecol. 21 490–497. 10.1111/j.1526-100X.2012.00917.x DOI
Zobel M., Öpik M. (2014). Plant and arbuscular mycorrhizal fungi (AMF) communities – which drives which? J. Veg. Sci. 25 1133–1140. 10.1111/jvs.12191 DOI