Plant Communities Rather than Soil Properties Structure Arbuscular Mycorrhizal Fungal Communities along Primary Succession on a Mine Spoil

. 2017 ; 8 () : 719. [epub] 20170420

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28473828

Arbuscular mycorrhizal fungal (AMF) community assembly during primary succession has so far received little attention. It remains therefore unclear, which of the factors, driving AMF community composition, are important during ecosystem development. We addressed this question on a large spoil heap, which provides a mosaic of sites in different successional stages under different managements. We selected 24 sites of c. 12, 20, 30, or 50 years in age, including sites with spontaneously developing vegetation and sites reclaimed by alder plantations. On each site, we sampled twice a year roots of the perennial rhizomatous grass Calamagrostis epigejos (Poaceae) to determine AMF root colonization and diversity (using 454-sequencing), determined the soil chemical properties and composition of plant communities. AMF taxa richness was unaffected by site age, but AMF composition variation increased along the chronosequences. AMF communities were unaffected by soil chemistry, but related to the composition of neighboring plant communities of the sampled C. epigejos plants. In contrast, the plant communities of the sites were more distinctively structured than the AMF communities along the four successional stages. We conclude that AMF and plant community successions respond to different factors. AMF communities seem to be influenced by biotic rather than by abiotic factors and to diverge with successional age.

Zobrazit více v PubMed

Abakumov E. V., Cajthaml T., Brus J., Frouz J. (2013). Humus accumulation, humification, and humic acid composition in soils of two post-mining chronosequences after coal mining. J. Soils Sediments 13 491–500. 10.1007/s11368-012-0579-9 DOI

Allen E. B., Chambers J. C., Connor K. F., Allen M. F., Brown R. W. (1987). Natural reestablishment of mycorrhizae in disturbed alpine ecosystems. Arctic Alpine Res. 19 11–20. 10.2307/1550995 DOI

Allen M. F., Crisafulli C., Friese C. F., Jeakins S. L. (1992). Re-formation of mycorrhizal symbioses on Mount St Helens 1980-1990: interactions of rodents and mycorrhizal fungi. Mycol. Res. 96 447–453. 10.1016/S0953-7562(09)81089-7 DOI

Anderson M. J., Crist T. O., Chase J. M., Vellend M., Inouye B. D., Freestone A. L., et al. (2011). Navigating the multiple meanings of beta diversity: a roadmap for the practicing ecologist. Ecol. Lett. 14 19–28. 10.1111/j.1461-0248.2010.01552.x PubMed DOI

Bahram M., Kohout P., Anslan S., Harend H., Abarenkov K., Tedersoo L. (2016). Stochastic distribution of small soil eukaryotes resulting from high dispersal and drift in a local environment. ISME J. 10 885–896. 10.1038/ismej.2015.164 PubMed DOI PMC

Becklin K. M., Hertweck K. L., Jumpponen A. (2012a). Host identity impacts rhizosphere fungal communities associated with three alpine plant species. Microb. Ecol. 63 682–693. 10.1007/s00248-011-9968-7 PubMed DOI

Becklin K. M., Pallo M. L., Galen C. (2012b). Willows indirectly reduce arbuscular mycorrhizal fungal colonization in understorey communities. J. Ecol. 100 343–351. 10.1111/j.1365-2745.2011.01903.x DOI

Bennett A. E., Daniell T. J., Öpik M., Davison J., Moora M., Zobel M., et al. (2013). Arbuscular mycorrhizal fungal networks vary throughout the growing season and between successional stages. PLoS ONE 8:e83241 10.1371/journal.pone.0083241 PubMed DOI PMC

Berger S. A., Krompaß D., Stamatakis A. (2011). Performance, accuracy, and web server for evolutionary placement of short sequence reads under maximum likelihood. Syst. Biol. 60 291–302. 10.1093/sysbio/syr010 PubMed DOI PMC

Borcard D., Legendre P. (2002). All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol. Model. 153 51–68. 10.1016/S0304-3800(01)00501-4 DOI

Brundrett M. C. (2009). Mycorrhizal associations and other means of nutrition of vascular plants, understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320 37–77. 10.1007/s11104-008-9877-9 DOI

Bruns T. D., Taylor J. W. (2016). Comment on “Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism”. Science 351 6275–6275. 10.1126/science.aad4228 PubMed DOI

Caporaso J. G., Kuczynski J., Stombaugh J., Bittinger K., Bushman F. D., Costello E. K., et al. (2010). QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7 335–336. 10.1038/nmeth.f.303 PubMed DOI PMC

Chagnon P. L., Bradley R. L., Klironomos J. N. (2012). Using ecological network theory to evaluate the causes and consequences of arbuscular mycorrhizal community structure. New Phytol. 194 307–312. 10.1111/j.1469-8137.2011.04044.x PubMed DOI

Chagnon P. L., Bradley R. L., Maherali H., Klironomos J. N. (2013). A trait-based framework to understand life history of mycorrhizal fungi. Trends Plant Sci. 18 484–491. 10.1016/j.tplants.2013.05.001 PubMed DOI

da Silva D. K. A., Coutinho F. P., Escobar I. E. C., de Souza R. G., Oehl F., Silva G. A., et al. (2015). The community of arbuscular mycorrhizal fungi in natural and revegetated coastal areas (Atlantic Forest) in northeastern Brazil. Biodivers. Conserv. 24 2213–2226. 10.1007/s10531-015-0968-7 DOI

Davison J., Moora M., Öpik M., Adholeya A., Ainsaar L., Bâ A., et al. (2015). Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science 349 970–973. 10.1126/science.aab1161 PubMed DOI

Davison J., Öpik M., Zobel M., Vasar M., Metsis M., Moora M. (2012). Communities of arbuscular mycorrhizal fungi detected in forest soil are spatially heterogeneous but do not vary throughout the growing season. PLoS ONE 7:e41938 10.1371/journal.pone.0041938 PubMed DOI PMC

de Cárcer D. A., Denman S. E., McSweeney C., Morrison M. (2011). Evaluation of subsampling-based normalization strategies for tagged high-throughput sequencing data sets from gut microbiomes. Appl. Environ. Microbiol. 77 8795–8798. 10.1128/AEM.05491-11 PubMed DOI PMC

de Souza R. G., da Silva D. K. A., de Mello C. M. A., Goto B. T., da Silva F. S. B., Sampaio E. V. S. B., et al. (2013). Arbuscular mycorrhizal fungi in revegetated mined dunes. Land Degrad. Dev. 24 147–155. 10.1002/ldr.1113 DOI

Dickie I. A., Martínez-García L. B., Koel N., Grelet G. A., Tylianakis J. M., Peltzer D. A., et al. (2013). Mycorrhizas and mycorrhizal fungal communities throughout ecosystem development. Plant Soil 367 11–39. 10.1007/s11104-013-1609-0 DOI

Edgar R. C. (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26 2460–2461. 10.1093/bioinformatics/btq461 PubMed DOI

Egan C., Li D. W., Klironomos J. (2014). Detection of arbuscular mycorrhizal fungal spores in the air across different biomes and ecoregions. Fungal Ecol. 12 26–31. 10.1016/j.funeco.2014.06.004 DOI

Elhottová D., Krištùfek V., Frouz J., Nováková A., Chroòáková A. (2006). Screening for microbial markers in Miocene sediment exposed during open-cast brown coal mining. Antonie Van Leeuwenhoek 89 459–463. 10.1007/s10482-005-9044-8 PubMed DOI

Fitzsimons M. S., Miller R. M., Jastrow J. D. (2008). Scale-dependent niche axes of arbuscular mycorrhizal fungi. Oecologia 158 117–127. 10.1007/s00442-008-1117-8 PubMed DOI

Frouz J., Dvorščík P., Vávrová A., Doušová O., Kadochová Š, Matìjíček L. (2015). Development of canopy cover and woody vegetation biomass on reclaimed and unreclaimed post-mining sites. Ecol. Eng. 84 233–239. 10.1016/j.ecoleng.2015.09.027 DOI

Frouz J., Keplin B., Pižl V., Tajovský K., Starý J., Lukešová A., et al. (2001). Soil biota and upper soil layer development in two contrasting post-mining chronosequences. Ecol. Eng. 17 275–284. 10.1016/S0925-8574(00)00144-0 DOI

Frouz J., Pižl V., Tajovský K. (2007). The effect of earthworms and other saprophagous macrofauna on soil microstructure in reclaimed and un-reclaimed post-mining sites in Central Europe. Eur. J. Soil Biol. 43 S184–S189. 10.1016/j.ejsobi.2007.08.033 DOI

Frouz J., Prach K., Pižl V., Háněl L., Starý J., Tajovský K., et al. (2008). Interactions between soil development, vegetation and soil fauna during spontaneous succession in post mining sites. Eur. J. Soil Biol. 44 109–121. 10.1016/j.ejsobi.2007.09.002 DOI

García de León D. G., Moora M., Öpik M., Neuenkamp L., Gerz M., Jairus T., et al. (2016). Symbiont dynamics during ecosystem succession: co-occurring plant and arbuscular mycorrhizal fungal communities. FEMS Microbiol. Ecol. 92:fiw097 10.1093/femsec/fiw097 PubMed DOI

Goslee S. C., Urban D. L. (2007). The ecodist package for dissimilarity-based analysis of ecological data. J. Stat. Softw. 22 1–19. 10.18637/jss.v022.i07 DOI

Gould A. B., Hendrix J. W., Ferriss R. S. (1996). Relationship of mycorrhizal activity to time following reclamation of surface mine land in western Kentucky. I. Propagule and spore population densities. Can. J. Bot. 74 247–261. 10.1139/b96-030 DOI

Hart M. M., Reader R. J., Klironomos J. N. (2001). Life-history strategies of arbuscular mycorrhizal fungi in relation to their successional dynamics. Mycologia 93 1186–1194. 10.2307/3761678 DOI

Hausmann N. T., Hawkes C. V. (2009). Plant neighborhood control of arbuscular mycorrhizal community composition. New Phytol. 183 1188–1200. 10.1111/j.1469-8137.2009.02882.x PubMed DOI

Herrmann L., Lesueur D., Brau L., Davison J., Jairus T., Robain H., et al. (2016). Diversity of root-associated arbuscular mycorrhizal fungal communities in a rubber tree plantation chronosequence in Northeast Thailand. Mycorrhiza 26 863–877. 10.1007/s00572-016-0720-5 PubMed DOI

Hiiesalu I., Pärtel M., Davison J., Gerhold P., Metsis M., Moora M., et al. (2014). Species richness of arbuscular mycorrhizal fungi: associations with grassland plant richness and biomass. New Phytol. 203 233–244. 10.1111/nph.12765 PubMed DOI

Johnson N. C., Zak D. R., Tilman D., Pfleger F. L. (1991). Dynamics of vesicular-arbuscular mycorrhizae during old field succession. Oecologia 86 349–358. 10.1007/BF00317600 PubMed DOI

Kohout P., Doubková P., Bahram M., Suda J., Tedersoo L., Voříšková J., et al. (2015). Niche partitioning in arbuscular mycorrhizal communities in temperate grasslands: a lesson from adjacent serpentine and nonserpentine habitats. Mol. Ecol. 24 1831–1843. 10.1111/mec.13147 PubMed DOI

Koske R. E., Gemma J. N. (1989). A modified procedure for staining roots to detect VA mycorrhizas. Mycol. Res. 92 486–505. 10.1016/S0953-7562(89)80195-9 DOI

Křibek B., Strnad M., Bohaček Z., Sykorova I., Čejka J., Sobalik Z. (1998). Geochemistry of Miocene lacustrine sediments from the Sokolov Coal Basin (Czech Republic). Int. J. Coal Geol. 37 207–233. 10.1016/S0166-5162(98)00002-0 DOI

Krüger M., Krüger C., Walker C., Stockinger H., Schüßler A. (2012). Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. New Phytol. 193 970–984. 10.1111/j.1469-8137.2011.03962.x PubMed DOI

Krüger M., Stockinger H., Krüger C., Schüßler A. (2009). DNA-based species level detection of Glomeromycota: one PCR primer set for all arbuscular mycorrhizal fungi. New Phytol. 183 212–223. 10.1111/j.1469-8137.2009.02835.x PubMed DOI

Krüger M., Teste F. P., Laliberté E., Lambers H., Coghlan M., Zemunik G., et al. (2015). The rise and fall of arbuscular mycorrhizal fungal diversity during ecosystem retrogression. Mol. Ecol. 24 4912–4930. 10.1111/mec.13363 PubMed DOI

Legendre P., Gallagher E. D. (2001). Ecologically meaningful transformations for ordination of species data. Oecologia 129 271–280. 10.1007/s004420100716 PubMed DOI

Lekberg Y., Koide R. T., Rohr J. R., Aldrich-Wolfe L., Morton J. B. (2007). Role of niche restrictions and dispersal in the composition of arbuscular mycorrhizal fungal communities. J. Ecol. 95 95–105. 10.1111/j.1365-2745.2006.01193.x DOI

Lichter J. (2000). Colonization constraints during primary succession on coastal Lake Michigan sand dunes. J. Ecol. 88 825–839. 10.1046/j.1365-2745.2000.00503.x DOI

Mangan S. A., Adler G. H. (2002). Seasonal dispersal of arbuscular mycorrhizal fungi by spiny rats in a neotropical forest. Oecologia 131 587–597. 10.1007/s00442-002-0907-7 PubMed DOI

Martínez-García L. B., Richardson S. J., Tylianakis J. M., Peltzer D. A., Dickie I. A. (2015). Host identity is a dominant driver of mycorrhizal fungal community composition during ecosystem development. New Phytol. 205 1565–1576. 10.1111/nph.13226 PubMed DOI

Meadow J. F., Zabinski C. A. (2012). Linking symbiont community structures in a model arbuscular mycorrhizal system. New Phytol. 194 800–809. 10.1111/j.1469-8137.2012.04096.x PubMed DOI

Mudrák O., Frouz J., Velichová V. (2010). Understory vegetation in reclaimed and unreclaimed post-mining forest stands. Ecol. Eng. 36 783–790. 10.1016/j.ecoleng.2010.02.003 DOI

Mummey D. L., Rillig M. C., Holben W. E. (2005). Neighboring plant influences on arbuscular mycorrhizal fungal community composition as assessed by T-RFLP analysis. Plant Soil 271 83–90. 10.1007/s11104-004-2066-6 DOI

Nielsen K. B., Kjoller R., Bruun H. H., Schnoor T. K., Rosendahl S. (2016). Colonization of new land by arbuscular mycorrhizal fungi. Fungal Ecol. 20 22–29. 10.1016/j.funeco.2015.10.004 DOI

Odum E. P. (1969). The strategy of ecosystem development. Science 164 262–270. 10.1126/science.164.3877.262 PubMed DOI

Oehl F., Schneider D., Sieverding E., Burga C. A. (2011). Succession of arbuscular mycorrhizal communities in the foreland of the retreating Morteratsch glacier in the Central Alps. Pedobiologia 54 321–331. 10.1016/j.pedobi.2011.07.006 DOI

Oksanen J., Blanchet F. G., Kindt R. (2012). vegan: Community Ecology Package. [WWW Document]. Available at: http://CRAN.R-project.org/package=vegan

Öpik M., Davison J., Moora M., Pärtel M., Zobel M. (2016). Response to Comment on “Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism”. Science 351 826–826. 10.1126/science.aad5495 PubMed DOI

Pinheiro J., Bates D., DebRoy S., Sarkar D. R Core Team. (2008). nlme: Linear and Nonlinear Mixed Effects Models. [WWW Document]. Available at: http://CRAN.R-project.org/package=nlme

Piotrowski J. S., Morford S. L., Rillig M. C. (2008). Inhibition of colonization by a native arbuscular mycorrhizal fungal community via Populus trichocarpa litter, litter extract, and soluble phenolic compounds. Soil Biol. Biochem. 40 709–717. 10.1016/j.soilbio.2007.10.005 DOI

Powell J. R., Parrent J. L., Hart M. M., Klironomos J. N., Rillig M. C., Maherali H. (2009). Phylogenetic trait conservatism and the evolution of functional trade-offs in arbuscular mycorrhizal fungi. Proc. R. Soc. B Biol. Sci. 276 4237–4245. 10.1098/rspb.2009.1015 PubMed DOI PMC

Prach K., Lencová K., Řehounková K., Dvořáková H., Jírová A., Konvalinková P., et al. (2013). Spontaneous vegetation succession at different central European mining sites: a comparison across seres. Environ. Sci. Pollut. Res. 20 7680–7685. 10.1007/s11356-013-1563-7 PubMed DOI

Püschel D., Rydlová J., Vosátka M. (2008). Does the sequence of plant dominants affect mycorrhiza development in simulated succession on spoil banks? Plant Soil 302 273–282. 10.1007/s11104-007-9480-5 DOI

R Core Development Team (2008). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.

Roberts D. W. (2014). labdsv: Ordination and Multivariate Analysis for Ecology. [WWW Document]. Available at: http://CRAN.R-project.org/package=labdsv

Roche (2009). Roche Technical Bulletin No. 005–2009. Branford, CT: Roche.

Rosendahl S., McGee P., Morton J. B. (2009). Lack of global population genetic differentiation in the arbuscular mycorrhizal fungus Glomus mosseae suggests a recent range expansion which may have coincided with the spread of agriculture. Mol. Ecol. 18 4316–4329. 10.1111/j.1365-294X.2009.04359.x PubMed DOI

Rydlová J., Püschel D., Vosátka M., Charvátová K. (2008). Different effect of mycorrhizal inoculation in direct and indirect reclamation of spoil banks. J. Appl. Bot. Food Qual. 82 15–20.

Rydlová J., Püschel D., Dostálová M., Janoušková M., Frouz J. (2016). Nutrient limitation drives response of calamagrostis epigejos to arbuscular mycorrhiza in primary succession. Mycorrhiza 7 757–767. 10.1007/s00572-016-0712-5 PubMed DOI

Schüßler A., Schwarzott D., Walker C. (2001). A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol. Res. 105 1413–1421. 10.1017/S0953756201005196 DOI

Senés-Guerrero C., Schüßler A. (2015). A conserved arbuscular mycorrhizal fungal core-species community colonizes potato roots in the Andes. Fungal Divers. 77 317–333. 10.1007/s00572-013-0549-0 DOI

Sikes B., Maherali H., Klironomos J. (2014). Mycorrhizal fungal growth responds to soil characteristics, but not host plant identity, during a primary lacustrine dune succession. Mycorrhiza 24 219–226. 10.1007/s00572-013-0531-x PubMed DOI

Sikes B. A., Maherali H., Klironomos J. N. (2012). Arbuscular mycorrhizal fungal communities change among three stages of primary sand dune succession but do not alter plant growth. Oikos 121 1791–1800. 10.1007/s00572-013-0531-x DOI

Smith S. E., Read D. J. (2008). Mycorrhizal Symbiosis. Cambridge: Academic Press.

Stamatakis A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22 2688–2690. 10.1093/bioinformatics/btl446 PubMed DOI

Stinson K. A., Campbell S. A., Powell J. R., Wolfe B. E., Callaway R. M., Thelen G. C., et al. (2006). Invasive plant suppresses the growth of native tree seedlings by disrupting belowground mutualisms. PLoS Biol. 4:e140 10.1371/journal.pbio.0040140 PubMed DOI PMC

Sýkorová Z., Börstler B., Zvolenská S., Fehrer J., Gryndler M., Vosátka M., et al. (2012). Long-term tracing of Rhizophagus irregularis isolate BEG140 inoculated on Phalaris arundinacea in a coal mine spoil bank, using mitochondrial large subunit rDNA markers. Mycorrhiza 22 69–80. 10.1007/s00572-011-0375-1 PubMed DOI

Sýkorová Z., Wiemken A., Redecker D. (2007). Cooccurring Gentiana verna and Gentiana acaulis and their neighboring plants in two Swiss upper montane meadows harbor distinct arbuscular mycorrhizal fungal communities. Appl. Environ. Microbiol. 73 5426–5434. 10.1128/AEM.00987-07 PubMed DOI PMC

Trouvelot A., Kough J. L., Gianinazzi-Pearson V. (1986). “Mesure du taux de mycorhization VA dún système radiculaire. Recherche de méthodes déstimation ayant une signification fonctionnelle,” in Proceeding of the 1st European Symposium on Mycorrhizae: Physiological and Genetical Aspects of Mycorrhizae, eds Gianinazzi-Pearson V., Gianinazzi S. (Paris: INRA; ), 217–221.

Vandenkoornhuyse P., Husband R., Daniell T. J., Watson I. J., Duck J. M., Fitter A. H., et al. (2002). Arbuscular mycorrhizal community composition associated with two plant species in a grassland ecosystem. Mol. Ecol. 11 1555–1564. 10.1046/j.1365-294X.2002.01538.x PubMed DOI

van de Voorde F. J., van der Putten W. H., Gamper H. A., Hol W. H. G., Bezemer T. M. (2010). Comparing arbuscular mycorrhizal communities of individual plants in a grassland biodiversity experiment. New Phytol. 186 746–754. 10.1111/j.1469-8137.2010.03216.x PubMed DOI

Větrovský T., Baldrian P. (2013). Analysis of soil fungal communities by amplicon pyrosequencing: current approaches to data analysis and the introduction of the pipeline SEED. Biol. Fertil. Soils 49 1027–1037. 10.1007/s00374-013-0801-y DOI

Walker L. R., Del Moral R. (2003). Primary Succession and Ecosystem Rehabilitation. Cambridge: Cambridge University Press; 10.1017/CBO9780511615078 DOI

Warner N. J., Allen M. F., MacMahon J. A. (1987). Dispersal agents of vesicular-arbuscular mycorrhizal fungi in a disturbed arid ecosystem. Mycologia 79 721–730. 10.2307/3807824 DOI

Zangaro W., Alves R. A., Lescano L. E., Ansanelo A. P., Nogueira M. A. (2012). Investment in fine roots and arbuscular mycorrhizal fungi decrease during succession in three Brazilian ecosystems. Biotropica 44 141–150. 10.1111/j.1744-7429.2011.00781.x DOI

Zhang H., Chu L. M. (2013). Early development of soil microbial communities of rehabilitated quarries. Restor. Ecol. 21 490–497. 10.1111/j.1526-100X.2012.00917.x DOI

Zobel M., Öpik M. (2014). Plant and arbuscular mycorrhizal fungi (AMF) communities – which drives which? J. Veg. Sci. 25 1133–1140. 10.1111/jvs.12191 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...