Asymmetric response of root-associated fungal communities of an arbuscular mycorrhizal grass and an ectomycorrhizal tree to their coexistence in primary succession

. 2017 Nov ; 27 (8) : 775-789. [epub] 20170727

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28752181
Odkazy

PubMed 28752181
DOI 10.1007/s00572-017-0792-x
PII: 10.1007/s00572-017-0792-x
Knihovny.cz E-zdroje

The arbuscular mycorrhizal (AM) grass Calamagrostis epigejos and predominantly ectomycorrhizal (EcM) tree Salix caprea co-occur at post-mining sites spontaneously colonized by vegetation. During succession, AM herbaceous vegetation is replaced by predominantly EcM woody species. To better understand the interaction of AM and EcM plants during vegetation transition, we studied the reciprocal effects of these species' coexistence on their root-associated fungi (RAF). We collected root and soil samples from three different microenvironments: stand of C. epigejos, under S. caprea canopy, and contact zone where roots of the two species interacted. RAF communities and mycorrhizal colonization were determined in sampled roots, and the soil was tested for EcM and AM inoculation potentials. Although the microenvironment significantly affected composition of the RAF communities in both plant species, the effect was greater in the case of C. epigejos RAF communities than in that of S. caprea RAF communities. The presence of S. caprea also significantly decreased AM fungal abundance in soil as well as AM colonization and richness of AM fungi in C. epigejos roots. Changes observed in the abundance and community composition of AM fungi might constitute an important factor in transition from AM-dominated to EcM-dominated vegetation during succession.

Zobrazit více v PubMed

Mycologia. 2016 Sep;108(5):1028-1046 PubMed

Mycorrhiza. 2002 Dec;12(6):271-5 PubMed

Ecol Lett. 2011 Oct;14(10):1001-9 PubMed

Nat Methods. 2013 Oct;10(10):996-8 PubMed

Mycorrhiza. 2008 Sep;18(6-7):363-74 PubMed

New Phytol. 2010 Feb;185(3):631-47 PubMed

Front Microbiol. 2015 Jan 12;5:776 PubMed

Microb Ecol. 2012 Apr;63(3):682-93 PubMed

New Phytol. 2006;170(3):581-96 PubMed

FEMS Microbiol Ecol. 2016 Jun;92 (6):fiw073 PubMed

New Phytol. 2008;180(2):501-10 PubMed

PLoS One. 2014 Jan 28;9(1):e86566 PubMed

Front Microbiol. 2017 Apr 20;8:719 PubMed

Oecologia. 1991 May;86(3):349-358 PubMed

Oecologia. 2001 Oct;129(2):271-280 PubMed

Mol Ecol. 2015 Apr;24(8):1831-43 PubMed

Mycorrhiza. 2011 Jul;21(5):431-41 PubMed

New Phytol. 2010 Jul;187(2):475-84 PubMed

New Phytol. 2009;182(2):314-30 PubMed

Ecol Evol. 2016 Mar 08;6(8):2368-77 PubMed

Environ Microbiol. 2009 Dec;11(12):3166-78 PubMed

PLoS One. 2012;7(5):e36950 PubMed

Mycorrhiza. 2001 Dec;11(6):283-90 PubMed

Mycorrhiza. 2016 Oct;26(7):757-67 PubMed

Mol Ecol. 2013 Nov;22(21):5271-7 PubMed

FEMS Microbiol Ecol. 2016 Jul;92 (7):null PubMed

New Phytol. 2014 Jul;203(1):233-44 PubMed

Microb Ecol. 2003 May;45(4):373-83 PubMed

New Phytol. 2005 Oct;168(1):189-204 PubMed

Mycorrhiza. 2013 Apr;23(3):235-42 PubMed

New Phytol. 2006;171(1):171-8 PubMed

New Phytol. 2009;183(4):1188-200 PubMed

Mol Ecol. 2014 Mar;23(6):1379-91 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...